Effect of Wastewater Treatment on Bacterial Community, Antibiotic-Resistant Bacteria and Endoparasites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Investigated Wastewater Treatment Plants
2.2. Sample Collection
2.3. Chemical Examination of Samples
2.4. Microbiological Examination of Samples
Isolation of Bacteria
2.5. E. coli Isolation
2.6. Determination of Minimal Antibiotics Inhibitory Concentrations in E. coli Isolates
2.7. Parasitological Examination of Samples
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onda, K.; LoBuglio, J.; Bartram, J. Global access to safe water: Accounting for water quality and the resulting impact on MDG progress. Int. J. Environ. Res. Public Health 2012, 9, 880–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bain, R.E.; Gundry, S.W.; Wright, J.A.; Yang, H.; Pedley, S.; Bartram, J.K. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: Lessons from five countries. Bull. World Health Organ. 2012, 90, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoh, A.I.; Sibanda, T.; Gusha, S.S. Inadequately treated wastewater as a source of human enteric viruses in the environment. Int. J. Environ. Res. Public Health 2010, 7, 2620–2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čornejová, T.; Venglovský, J.; Gregová, G.; Kmeťová, M.; Kmet’, V. Extended spectrum beta-lactamases in Escherichia coli from municipal wastewater. Ann. Agric. Environ. Med. 2015, 22, 447–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregová, G.; Kmet’, V. Antibiotic resistance and virulence of Escherichia coli strains isolated from animal rendering plant. Sci. Rep. 2020, 10, 17108. [Google Scholar] [CrossRef] [PubMed]
- Gregová, G.; Kmeť, V.; Szabóová, T. New insight on antibiotic resistance and virulence of Escherichia coli from municipal and animal wastewater. Antibiotics 2021, 10, 1111. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Elahi, E.; Abid, M.; Zhang, L.; Alugongo, G.M. The use of wastewater in livestock production and its socioeconomic and welfare implications. Environ. Sci. Pollut. Res. 2017, 24, 17255–17266. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Payment, P.; Waite, M.; Dufour, A. Introducing parameters for the assessment of drinking water quality. Assess. Microb. Saf. Drink. Water Improv. Approaches Methods 2003, 4, 47–77. [Google Scholar]
- Simpson, J.M.; Santo Domingo, J.W.; Reasoner, D.J. Microbial source tracking: State of the science. Environ. Sci. Technol. 2002, 36, 5279–5298. [Google Scholar] [CrossRef] [PubMed]
- Handrova, L.; Kmet, V. Antibiotic resistance and virulence factors of Escherichia coli from eagles and goshawks. J. Environ. Sci. Health Part B 2019, 54, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Drugdova, Z.; Kmet, V. Prevalence of β-lactam and fluoroquinolone resistance, and virulence factors in Escherichia coli isolated from chickens in Slovakia. Biologia 2013, 68, 11–17. [Google Scholar] [CrossRef]
- ECDC. National Action Plan on Antimicrobial Resistance in the Slovak Republic for the Period 2019–2021; ECDC: Bratislava, Slovakia, 2018. (In Slovak) [Google Scholar]
- Public Health Authority of the Slovak Republic. Available online: http://www.snars.sk (accessed on 5 December 2021).
- Buitrón, G.; Galván, M. Effect of compression–decompression on helminth eggs present in sludge of a settling tank. Water. Res. 1998, 32, 1708–1712. [Google Scholar] [CrossRef]
- Mun, S.; Cho, S.H.; Kim, T.S.; Oh, B.T.; Yoon, J. Inactivation of Ascaris eggs in soil by microwave treatment compared to UV and ozone treatment. Chemosphere 2009, 77, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Paruch, A.M. Possible scenarios of environmental transport, occurrence and fate of helminth eggs in light weight aggregate wastewater treatment systems. Rev. Environ. Sci. Biotechnol. 2010, 9, 51–58. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Safe Use of Wastewater Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- Wang, M.; Zhu, J.; Mao, X. Removal of pathogens in onsite wastewater treatment systems: A review of design considerations and influencing factors. Water 2021, 13, 1190. [Google Scholar] [CrossRef]
- Heitman, T.L.; Frederick, L.M.; Viste, J.R.; Guselle, N.J.; Morgan, U.M.; Thompson, R.C.; Olson, M.E. Prevalence of Giardia and Cryptosporidium and characterization of Cryptosporidium spp. isolated from wildlife, human, and agricultural sources in the North Saskatchewan River Basin in Alberta, Canada. Can. J. Microbiol. 2002, 48, 530–541. [Google Scholar] [CrossRef]
- Caccio, S.M.; De Giacomo, M.; Aulicino, F.A.; Pozio, E. Giardia cysts in wastewater treatment plants in Italy. Appl. Environ. Microbiol. 2003, 69, 3393–3398. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, I.M.; Jiang, J.; Singh, A.; Xiao, L. Distribution of Giardia duodenalis genotypes and subgenotypes in raw urban wastewater in Milwaukee, Wisconsin. Appl. Environ. Microbiol. 2004, 70, 3776–3780. [Google Scholar] [CrossRef] [Green Version]
- Leelayoova, S.; Siripattanapipong, S.; Thathaisong, U.; Naaglor, T.; Taamasri, P.; Piyaraj, P.; Mungthin, M. Drinking water: A possible source of Blastocystis spp. subtype 1 infection in schoolchildren of a rural community in central Thailand. Am. J. Trop. Med. Hyg. 2008, 79, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajonina, C.; Buzie, C.; Ajonina, I.U.; Basner, A.; Reinhardt, H.; Gulyas, H.; Liebau, E.; Otterpohl, R. Occurrence of Cryptosporidium in a wastewater treatment plant in North Germany. J. Toxicol. Environ. Health A 2012, 75, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Haramoto, E.; Iker, B.C.; Gerba, C.P. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona. Sci. Total Environ. 2014, 484, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Sangbari, N.; Dadban Shahamat, Y.; Abbasinejat, Z.; Sharbatkhori, M.; Rostami, M. Survey of parasitic contamination of sewage sludges in northern Iran. J. Appl. Sci. Environ. Manag. 2018, 22, 1277–1280. [Google Scholar] [CrossRef] [Green Version]
- Stott, R.; May, E.; Mara, D.D. Parasite removal by natural wastewater treatment systems: Performance of waste stabilisation ponds and constructed wetlands. Water Sci. Technol. 2003, 48, 97–104. [Google Scholar] [CrossRef]
- Jimenez, B.; Chavez, A.; Leyva, A.; Tchobanoglous, G. Sand and synthetic medium filtration of advanced primary treatment effluent from Mexico City. Water Res. 2000, 34, 473–480. [Google Scholar] [CrossRef]
- Ben Ayed, L.; Schijven, J.; Alouini, Z.; Jemli, M.; Sabbahi, S. Presence of parasitic protozoa and helminth in sewage and efficiency of sewage treatment in Tunisia. Parasitol. Res. 2009, 105, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Paruch, A.M.; Mæhlum, T.; Robertson, L. Changes in microbial quality of irrigation water under different weather conditions in Southeast Norway. Environ. Process. 2015, 2, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Feachem, R.G.; Bradley, D.J.; Garelick, H.; Mara, D.D. Sanitation and Disease Health Aspects of Excreta and Wastewater Management; John Wiley & Sons Edition: New York, NY, USA, 1983; p. 534. [Google Scholar]
- Sasáková, N.; Juriš, P.; Papajová, I.; Vargová, M.; Ondrašovičová, O.; Ondrašovič, M.; Kasková, A.; Szabová, E. Parasitological and bacteriological risks to animal and human health arising from waste-water treatment plants. Helminthologia 2005, 42, 137–142. [Google Scholar]
- Gaspard, P.G.; Wiart, J.; Schwartzbrod, J. Urban sludge reuse in agriculture:waste treatment and parasitological risk. Bioresour. Technol. 1995, 52, 37–40. [Google Scholar] [CrossRef]
- Nelson, K.L.; Darby, J. Inactivation of viable Ascaris eggs by reagents during enumeration. Appl. Environ. Microbiol. 2001, 67, 5453–5459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalander, C.; Diener, S.; Magri, M.E.; Zurbrügg, C.; Lindström, A.; Vinnerås, B. Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—From a hygiene aspect. Sci. Total Environ. 2013, 458–460, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Papajová, I.; Pipiková, J.; Papaj, J.; Čižmár, A. Parasitic contamination of urban and rural environments in the Slovak Republic: Dog’s excrements as a source. Helminthologia 2014, 51, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Zdybel, J.; Cencek, T.; Karamon, J.; Kłapéc, T. Effectiveness of selected stages of waste water treatment in elimination of eggs of intestinal parasites. Bull. Vet. Inst. Pulawy 2015, 59, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Bruňanská, M. Histochemical topography of succinate dehydrogenase in the reproductive system of Ascaris suum females. Helminthologia 1989, 26, 43–49. [Google Scholar]
- Stephenson, L.S.; Latham, M.C.; Ottesen, E.A. Malnutrition and parasitic helminth infections. Parasitology 2000, 121, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Toze, S. Reuse of effluent water-benefits and risks. Agric. Water Manag. 2006, 80, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Amoah, I.D.; Kumari, S.; Reddy, P.; Stendström, T.A.; Bux, F. Impact of informal settlements and wastewater treatment plants on helminth egg contamination of urban rivers and risks associated with exposure. Environ. Monit. Assess. 2020, 192, 713. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Sreesai, S.; Peapueng, P.; Tippayamongkonkun, T.; Sthiannopkao, S. Assessment of a potential agricultural application of Bangkok-digested sewage sludge and finished compost products. Waste Manag. Res. 2013, 31, 925–936. [Google Scholar] [CrossRef]
- ECDC. National Regulation SR No. 188/2003, Laying Down the Requirements of the Application of Sew-Age Sludge and Bottom Sediments to the Soil; ECDC: Bratislava, Slovakia, 2003. (In Slovak) [Google Scholar]
- STN ISO 10523; Water Quality. Determination of ph. ISO: Geneva, Switzerland, 2010. (In Slovak)
- STN EN ISO 8467; Water Quality. Determination of Permanganate Index. ISO: Geneva, Switzerland, 2000. (In Slovak)
- STN ISO 7150-1; Water Quality. Determination of Ammonium. Part 1: Manual Spectrometric Method. ISO: Geneva, Switzerland, 1995. (In Slovak)
- Mulvaney, R.L. Nitrogen—Inorganic forms. In Methods of Soil Analysis; Sparks, D.L., Ed.; SSSA Inc.: Madison WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- STN EN 25663; Water Quality. Determination of Kjeldahl Nitrogen. Method after Mineralization with Selenium. ISO: Geneva, Switzerland, 2000. (In Slovak)
- Bremner, J.M. Nitrogen—Total. In Methods of Soil Analysis; Sparks, D.L., Ed.; SSSA Inc.: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- STN EN ISO 6878; Water Quality. Determination of Phosphorus. Ammonium Molybdate Spectrometric Method. ISO: Geneva, Switzerland, 2005. (In Slovak)
- Lu, R. Soil Agricultural Chemical Analysis Methods; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- ECDC. National Regulation SR No. 269/2010, Laying Down Requirements for Achieving Good Water Status; ECDC: Bratislava, Slovakia, 2010. (In Slovak) [Google Scholar]
- ECDC. Regulation of the Slovak Government 496/2010 Amending the Regulation 354/2006 Defining the Requirements for Drinking Water Intended for Human Consumption, and for Drinking Water Quality Monitoring; ECDC: Bratislava, Slovakia, 2010. (In Slovak) [Google Scholar]
- STN EN ISO 6222; Water Quality. Enumeration of Culturable Microorganisms. Colony Count by Inoculation in a Nutrient Agar Culture Medium. ISO: Geneva, Switzerland, 2001. (In Slovak)
- STN EN ISO 9308-1; Water Quality. Detection and Enumeration of Coliform Organisms, Thermotolerant Coliform Organisms and Presumptive Escherichia coli. Membrane Filtration Method. ISO: Geneva, Switzerland, 1990. (In Slovak)
- STN EN ISO 7899-2; Water Quality. Detection and Enumeration of Intestinal Enterococci. Part 2: Membrane Filtration Method. ISO: Geneva, Switzerland, 2003. (In Slovak)
- CLSI Document VET01-S2. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Publ. Clinical and Laboratory Standards Institute: Wayne, IL, USA, 2013; pp. 1–168. [Google Scholar]
- EUCAST. Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance; Version 2.0; EUCAST: Växjö, Sweden, 2017; pp. 1–43. [Google Scholar]
- Gattringer, R.; Nikš, M.; Ostertág, R.; Schwarz, K.; Medvedovic, H.; Graninger, W.; Georgopoulos, A. Evaluation of MIDITECH automated colorimetric MIC reading for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2002, 49, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Cherepanov, A.A. Methods of Laboratory Centrals of Cleaning Plants on Farms; Kolos: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Kazacos, K.R. Improved method for recovering ascarid and other helminth eggs from soil associated with epizootics and during survey studies. Am. J. Vet. Res. 1983, 44, 896–900. [Google Scholar] [PubMed]
- Grant, S.B.; Saphores, J.D.; Feldman, D.L.; Hamilton, A.J.; Fletcher, T.D.; Cook, P.L.M.; Stewardson, M.; Sanders, B.F.; Levin, L.A.; Ambrose, R.F.; et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 2012, 337, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitton, G. Wastewater Microbiology, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 213–217. ISBN 0-471-65071-4. [Google Scholar]
- Lépesová, K.; Mackul’ak, T.; Birošová, L. Chapter 3: Nutrients, Wastewater and Leachate: Testing, Risks and Hazards; Nova Science Publishers: New York, NY, USA, 2018. [Google Scholar]
- Lépesová, K.; Olejníková, P.; Mackuľak, T.; Cverenkárová, K.; Krahulcová, M.; Bírošová, L. Hospital wastewater-important source of multidrug resistant coliform bacteria with ESBL-production. Int. J. Environ. Res. Public. Health 2020, 17, 7827. [Google Scholar] [CrossRef] [PubMed]
- Feuerpfeil, J.; Lopez-Pila, J.; Schmidt, R.; Schneider, E.; Szewzyk, R. Antibiotic resistant bacteria and antibiotics in the environment. Bundesgesundheitsblatt 1999, 42, 37–50. [Google Scholar] [CrossRef]
- Mach, P.A.; Grimes, J.D. R-plasmid transfer in a wastewater treatment plant. Appl. Environ. Microbiol. 1982, 44, 1935–1943. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Astorga, A.; Muela, A.; Cisterna, R.; Iriberri, J.; Barcina, I. Biotic and abiotic factors affecting plasmid transfer in Escherichia coli strains. Appl. Environ. Microbiol. 1992, 58, 392–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinthaler, F.F.; Posch, J.; Feierl, G.; Wüst, G.; Haas, D.; Ruckenbauer, G.; Mascher, F.; Marth, E. Antibiotic resistance of E. coli in sewage and sludge. Affiliations expand. Water Res. 2003, 37, 1685–1690. [Google Scholar] [CrossRef]
- Redhead, S.; Nieuwland, J.; Esteves, S.; Lee, D.H.; Kim, D.W.; Mathias, J.; Cha, C.J.; Toleman, M.; Dinsdale, R.; Guwy, A.; et al. Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge. PLoS ONE 2020, 15, e0237283. [Google Scholar] [CrossRef]
- Martins Da Costa, P.; Vaz-Pires, P.; Bernardo, F. Antimicrobial resistance in Escherichia coli isolated in inflow, effluent and sludge from municipal wastewater treatment plants. Urban Water J. 2007, 4, 275–281. [Google Scholar] [CrossRef]
- Raven, K.E.; Ludden, C.; Gouliouris, T.; Blane, B.; Naydenova, P.; Brown, N.M.; Parkhill, J.; Peacock, S.J. Genomic surveillance of Escherichia coli in municipal wastewater treatment plants as an indicator of clinically relevant pathogens and their resistance genes. Microbial Genomics 2019, 5, e000267. [Google Scholar] [CrossRef] [PubMed]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef]
- Sidhu, J.P.S.; Toze, S.G. Human pathogens and their indicators in biosolids: A literature review. Environ. Internat. 2009, 35, 187–201. [Google Scholar] [CrossRef]
- Dudlová, A.; Juriš, P.; Jarčuška, P.; Čisláková, L.; Papajová, I.; Krčméry, V. Epidemiological risks of endoparasitoses spread by municipal waste water. Helminthologia 2015, 52, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Amoah, I.D.; Reddy, P.; Seidu, R.; Stenstrom, T.A. Removal of helminth eggs by centralized and decentralized wastewater treatment plants in South Africa and Lesotho: Health implications for direct and indirect exposure to the effluents. Environ. Sci. Pollut. Res. 2018, 25, 12883–12895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaoua, S.; Boussaa, S.; Khadra, A.; Boumezzough, A. Efficiency of two sewage treatment systems (activated sludge and natural lagoons) for helminth egg removal in Morocco. J. Infect. Public Health 2018, 11, 197–202. [Google Scholar] [CrossRef]
- Kansiime, F.; Van Bruggen, J.J.A. Distribution and retention of faecal coliforms in the Nakivubo wetland in Kampala, Uganda. Water Sci. Technol. 2001, 44, 199–206. [Google Scholar] [CrossRef]
- Dai, X.; Boll, J. Settling velocity of Cryptosporidium parvum and Giardia lamblia. Water Res. 2006, 40, 1321–1325. [Google Scholar] [CrossRef]
- Sengupta, M.E.; Thamsborg, S.M.; Andersen, T.J.; Olsen, A.; Dalsgaard, A. Sedimentation of helminth eggs in water. Water Res. 2011, 45, 4651–4660. [Google Scholar] [CrossRef]
- Ulrich, H.; Klaus, D.; Irmgard, F.; Annette, H.; Juan, L.P.; Regine, S. Microbiological investigations for sanitary assessment of wastewater treated in constructed wetlands. Water Res. 2005, 39, 4849–4858. [Google Scholar] [CrossRef] [PubMed]
- Morató, J.; Codony, F.; Sánchez, O.; Pérez, L.M.; García, J.; Mas, J. Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands. Sci. Total Environ. 2014, 481, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Davies-Colley, R.J.; Donnison, A.M.; Speed, D.J.; Ross, C.M.; Nagels, J.W. Inactivation of faecal indicator micro-organisms in waste stabilisation ponds: Interactions of environmental factors with sunlight. Water Res. 1999, 33, 1220–1230. [Google Scholar] [CrossRef]
- Mandi, L.; Houhoum, B.; Asmama, S.; Schwartzbrod, J. Wastewater treatment by reed beds an experimental approach. Water Res. 1996, 33, 2009–2016. [Google Scholar] [CrossRef]
- Reinioso, R.; Torres, L.A.; Bécares, E. Efficiency of natural systems for removal of bacteria and pathodenic parasites from wastewater. Sci. Total Environ. 2008, 395, 80–86. [Google Scholar] [CrossRef]
- Ensink, J.H.; Blumenthal, U.J.; Brooker, S. Wastewater quality and the risk of intestinal nematode infection in sewage farming families in hyderabad, India. Am. J. Tropic. Med. Hygiene 2008, 79, 561–567. [Google Scholar] [CrossRef]
WWTP | |||||
---|---|---|---|---|---|
A | B | C | D | E | |
Number of residents | 630 | 7529 | 87,126 | 454 | 881 |
Discharge (m3/day) | 550.8 | 3299.6 | 24,698.1 | 112.1 | 73.9 |
Discharge (l/s) | 6.38 | 38.06 | 283.41 | 1.29 | 0.86 |
Recipient river | Turiec | Teplica | Váh | Vríca | Blatnický potok |
Cleaning method | Mechanical and biological | ||||
Treatment of sludge | Unstabilized sludge (treatment at WWTP B) | Aerobic stabilization, sludge applied to the compost | Anaerobic stabilization, sludge applied to the compost | Unstabilized sludge (treatment together WWTP B) | Unstabilized sludge (treatment at WWTP B) |
Sewage type | Domestic | Domestic | Domestic | Domestic | Domestic |
Number of Recipient | Nt (mg/L) | NH4-N (mg/L) | Pt (mg/L) | CODMn (mg/L) | IS (mg/L) |
---|---|---|---|---|---|
up to 50 | − | − | − | − | − |
51–2000 | − | − | − | 170 | 60 |
2001–10,000 | − | 40 | − | 170 | 50 |
10,001–25,000 | 40 | 30 | − | 140 | 50 |
25,001–100,000 | 30 | 20 | 5 | 125 | 40 |
over 100,000 | 25 | 10 | 4 | 125 | 40 |
Nt (mg/L) | NH4-N (mg/L) | Pt (mg/L) | CODMn (mg/L) | pH | |
---|---|---|---|---|---|
WWTP A | |||||
Influent | 22.41 | 14.01 | 17.02 | 214.84 | 7.13 |
Effluent | 14.01 | 3.50 | 1.05 | 152.65 | 7.01 |
Sludge | 249.33 | 11.21 | 32.76 | 290.30 | 6.70 |
Efficiency | 37.5% | 75.0% | 93.8% | 28.9% | |
WWTP B | |||||
Influent | 44.83 | 15.41 | 26.37 | 478.40 | 7.30 |
WWTP C | |||||
Influent | 39.22 | 51.83 | 67.82 | 537.35 | 7.45 |
Effluent | 12.61 | 3.50 | 2.71 | 282.80 | 7.34 |
Sludge | 424.41 | 11.80 | 129.65 | 2467.475 | 6.78 |
Efficiency | 67.9% | 93.2% | 96.0% | 47.4% | |
WWTP D | |||||
Influent | 39.22 | 26.61 | 108.14 | 348.95 | 7.26 |
Effluent | 18.21 | 4.90 | 2.57 | 180.41 | 7.60 |
Sludge | 260.53 | 21.01 | 86.20 | 863.47 | 6.92 |
Efficiency | 53.6% | 81.6% | 14.4% | 48.3% | |
WWTP E | |||||
Influent | 103.65 | 81.24 | 133.96 | 936.90 | 7.93 |
Effluent | 82.64 | 35.02 | 5.36 | 414.83 | 7.16 |
Sludge | 140.07 | 43.42 | 71.79 | 623.22 | 6.95 |
Efficiency | 20.3% | 56.9% | 96.0% | 55.7% |
WWTP | Sample | Eggs/Oocysts |
---|---|---|
WWTP A | Influent | Ascaris spp., Hymenolepis nana, family Ancylostomatidae |
Effluent | Neg. | |
Sludge | Ascaris spp., family Ancylostomatidae | |
WWTP B | ||
Influent | Hymenolepis nana, Ascaris spp., family Ancylostomatidae | |
WWTP C | Influent | Hymenolepis nana, Giardia duodenalis |
Effluent | Neg. | |
Sludge | Ascaris spp., family Ancylostomatidae | |
WWTP D | Influent | Neg. |
Effluent | Neg. | |
Sludge | Ascaris spp., family Ancylostomatidae | |
WWTP E | Influent | Ascaris spp. |
Effluent | Neg. | |
Sludge | family Ancylostomatidae |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papajová, I.; Šmigová, J.; Gregová, G.; Šoltys, J.; Venglovský, J.; Papaj, J.; Szabóová, T.; Dančová, N.; Ihnacik, L.; Schusterová, I.; et al. Effect of Wastewater Treatment on Bacterial Community, Antibiotic-Resistant Bacteria and Endoparasites. Int. J. Environ. Res. Public Health 2022, 19, 2750. https://doi.org/10.3390/ijerph19052750
Papajová I, Šmigová J, Gregová G, Šoltys J, Venglovský J, Papaj J, Szabóová T, Dančová N, Ihnacik L, Schusterová I, et al. Effect of Wastewater Treatment on Bacterial Community, Antibiotic-Resistant Bacteria and Endoparasites. International Journal of Environmental Research and Public Health. 2022; 19(5):2750. https://doi.org/10.3390/ijerph19052750
Chicago/Turabian StylePapajová, Ingrid, Júlia Šmigová, Gabriela Gregová, Jindřich Šoltys, Ján Venglovský, Ján Papaj, Tatiana Szabóová, Nikola Dančová, Lukáš Ihnacik, Ingrid Schusterová, and et al. 2022. "Effect of Wastewater Treatment on Bacterial Community, Antibiotic-Resistant Bacteria and Endoparasites" International Journal of Environmental Research and Public Health 19, no. 5: 2750. https://doi.org/10.3390/ijerph19052750
APA StylePapajová, I., Šmigová, J., Gregová, G., Šoltys, J., Venglovský, J., Papaj, J., Szabóová, T., Dančová, N., Ihnacik, L., Schusterová, I., Sušinková, J., Raková, J., & Regecová, I. (2022). Effect of Wastewater Treatment on Bacterial Community, Antibiotic-Resistant Bacteria and Endoparasites. International Journal of Environmental Research and Public Health, 19(5), 2750. https://doi.org/10.3390/ijerph19052750