Metabolic Treatment of Wolfram Syndrome
Abstract
:1. Introduction
1.1. Pathogenesis
1.2. Metabolic Features of Wolfram Syndrome
1.3. Wolfram Syndrome Treatment by Regenerative and Gene Therapy
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pallotta, M.T.; Tascini, G.; Crispoldi, R.; Orabona, C.; Mondanelli, G.; Grohmann, U.; Esposito, S. Wolfram Syndrome, a Rare Neurodegenerative Disease: From Pathogenesis to Future Treatment Perspectives. J. Transl. Med. 2019, 17, 238. [Google Scholar] [CrossRef] [Green Version]
- Urano, F. Wolfram Syndrome: Diagnosis, Management, and Treatment. Curr. Diab. Rep. 2016, 16, 6. [Google Scholar] [CrossRef] [Green Version]
- Bansal, V.; Boehm, B.O.; Darvasi, A. Identification of a Missense Variant in the WFS1 Gene That Causes a Mild Form of Wolfram Syndrome and Is Associated with Risk for Type 2 Diabetes in Ashkenazi Jewish Individuals. Diabetologia 2018, 61, 2180–2188. [Google Scholar] [CrossRef] [Green Version]
- Rohayem, J.; Ehlers, C.; Wiedemann, B.; Holl, R.; Oexle, K.; Kordonouri, O.; Salzano, G.; Meissner, T.; Burger, W.; Schober, E.; et al. Diabetes and Neurodegeneration in Wolfram Syndrome: A Multicenter Study of Phenotype and Genotype. Diabetes Care 2011, 34, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Nevo-Shenker, M.; Shalitin, S. The Impact of Hypo- and Hyperglycemia on Cognition and Brain Development in Young Children with Type 1 Diabetes. Horm. Res. Paediatr. 2021, 94, 115–123. [Google Scholar] [CrossRef]
- Northam, E.A.; Cameron, F.J. Understanding the Diabetic Brain: New Technologies but Old Challenges. Diabetes 2013, 62, 341–342. [Google Scholar] [CrossRef] [Green Version]
- Piconi, L.; Quagliaro, L.; Assaloni, R.; Da Ros, R.; Maier, A.; Zuodar, G.; Ceriello, A. Constant and Intermittent High Glucose Enhances Endothelial Cell Apoptosis through Mitochondrial Superoxide Overproduction. Diabetes Metab. Res. Rev. 2006, 22, 198–203. [Google Scholar] [CrossRef]
- Arbelaez, A.M.; Semenkovich, K.; Hershey, T. Glycemic Extremes in Youth with T1DM: The Structural and Functional Integrity of the Developing Brain. Pediatr. Diabetes 2013, 14, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Delvecchio, M.; Salzano, G.; Bonura, C.; Cauvin, V.; Cherubini, V.; d’Annunzio, G.; Franzese, A.; Giglio, S.; Grasso, V.; Graziani, V.; et al. Can HbA1c Combined with Fasting Plasma Glucose Help to Assess Priority for GCK-MODY vs HNF1A-MODY Genetic Testing? Acta Diabetol. 2018, 55, 981–983. [Google Scholar] [CrossRef]
- Lombardo, B.; D’Argenio, V.; Monda, E.; Vitale, A.; Caiazza, M.; Sacchetti, L.; Pastore, L.; Limongelli, G.; Frisso, G.; Mazzaccara, C. Genetic Analysis Resolves Differential Diagnosis of a Familial Syndromic Dilated Cardiomyopathy: A New Case of Alström Syndrome. Mol. Genet. Genom. Med. 2020, 8, e1260. [Google Scholar] [CrossRef]
- Mazzaccara, C.; Mirra, B.; Barretta, F.; Caiazza, M.; Lombardo, B.; Scudiero, O.; Tinto, N.; Limongelli, G.; Frisso, G. Molecular Epidemiology of Mitochondrial Cardiomyopathy: A Search Among Mitochondrial and Nuclear Genes. Int. J. Mol. Sci. 2021, 22, 5742. [Google Scholar] [CrossRef]
- Limongelli, G.; Nunziato, M.; D’Argenio, V.; Esposito, M.V.; Monda, E.; Mazzaccara, C.; Caiazza, M.; D’Aponte, A.; D’Andrea, A.; Bossone, E.; et al. Yield and Clinical Significance of Genetic Screening in Elite and Amateur Athletes. Eur. J. Prev. Cardiol. 2020, 28, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Iafusco, F.; Maione, G.; Mazzaccara, C.; Di Candia, F.; Mozzillo, E.; Franzese, A.; Tinto, N. NGS Analysis Revealed Digenic Heterozygous GCK and HNF1A Variants in a Child with Mild Hyperglycemia: A Case Report. Diagnostics 2021, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Iafusco, F.; Meola, S.; Pecoraro, C.; Mazzaccara, C.; Iafusco, D.; Tinto, N. Prenatal Diagnosis of HNF1b Mutation Allows Recognition of Neonatal Dysglycemia. Acta Diabetol. 2021, 58, 393–395. [Google Scholar] [CrossRef]
- Barretta, F.; Mirra, B.; Monda, E.; Caiazza, M.; Lombardo, B.; Tinto, N.; Scudiero, O.; Frisso, G.; Mazzaccara, C. The Hidden Fragility in the Heart of the Athletes: A Review of Genetic Biomarkers. Int. J. Mol. Sci. 2020, 21, 6682. [Google Scholar] [CrossRef] [PubMed]
- Rigoli, L.; Bramanti, P.; Di Bella, C.; De Luca, F. Genetic and Clinical Aspects of Wolfram Syndrome 1, a Severe Neurodegenerative Disease. Pediatr. Res. 2018, 83, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Ganie, M.A.; Bhat, D. Current Developments in Wolfram Syndrome. J. Pediatr. Endocrinol. Metab. 2009, 22, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Molines, L.; Valéro, R.; Simonin, G.; Paquis-Flucklinger, V.; Vialettes, B.; French Group of Wolfram Syndrome. Microvascular Diabetes Complications in Wolfram Syndrome (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness [DIDMOAD]): An Age- and Duration-Matched Comparison with Common Type 1 Diabetes. Diabetes Care 2007, 30, 2327–2330. [Google Scholar] [CrossRef] [Green Version]
- Chaussenot, A.; Rouzier, C.; Quere, M.; Plutino, M.; Ait-El-Mkadem, S.; Bannwarth, S.; Barth, M.; Dollfus, H.; Charles, P.; Nicolino, M.; et al. Mutation Update and Uncommon Phenotypes in a French Cohort of 96 Patients with WFS1-Related Disorders. Clin. Genet. 2015, 87, 430–439. [Google Scholar] [CrossRef]
- Medlej, R.; Wasson, J.; Baz, P.; Azar, S.; Salti, I.; Loiselet, J.; Permutt, A.; Halaby, G. Diabetes Mellitus and Optic Atrophy: A Study of Wolfram Syndrome in the Lebanese Population. J. Clin. Endocrinol. Metab. 2004, 89, 1656–1661. [Google Scholar] [CrossRef] [Green Version]
- Zanfardino, A.; Iafusco, D.; Piscopo, A.; Cocca, A.; Villano, P.; Confetto, S.; Caredda, E.; Picariello, S.; Russo, L.; Casaburo, F.; et al. Continuous Subcutaneous Insulin Infusion in Preschool Children: Butt or Tummy, Which Is the Best Infusion Set Site? Diabetes Technol. Ther. 2014, 16, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Reschke, F.; Rohayem, J.; Maffei, P.; Dassie, F.; Schwandt, A.; de Beaufort, C.; Toni, S.; Szypowska, A.; Cardona-Hernandez, R.; Datz, N.; et al. Collaboration for Rare Diabetes: Understanding New Treatment Options for Wolfram Syndrome. Endocrine 2021, 71, 626–633. [Google Scholar] [CrossRef]
- Toppings, N.B.; McMillan, J.M.; Au, P.Y.B.; Suchowersky, O.; Donovan, L.E. Wolfram Syndrome: A Case Report and Review of Clinical Manifestations, Genetics Pathophysiology, and Potential Therapies. Case Rep. Endocrinol. 2018, 2018, 9412676. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.; Tanabe, K.; Amo-Shiinoki, K.; Hatanaka, M.; Morii, T.; Takahashi, H.; Seino, S.; Yamada, Y.; Tanizawa, Y. Activation of GLP-1 Receptor Signalling Alleviates Cellular Stresses and Improves Beta Cell Function in a Mouse Model of Wolfram Syndrome. Diabetologia 2018, 61, 2189–2201. [Google Scholar] [CrossRef] [Green Version]
- Danielpur, L.; Sohn, Y.-S.; Karmi, O.; Fogel, C.; Zinger, A.; Abu-Libdeh, A.; Israeli, T.; Riahi, Y.; Pappo, O.; Birk, R.; et al. GLP-1-RA Corrects Mitochondrial Labile Iron Accumulation and Improves β-Cell Function in Type 2 Wolfram Syndrome. J. Clin. Endocrinol. Metab. 2016, 101, 3592–3599. [Google Scholar] [CrossRef]
- Hölscher, C. Potential Role of Glucagon-like Peptide-1 (GLP-1) in Neuroprotection. CNS Drugs 2012, 26, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, H.A. A Case of Wolfram Syndrome with Chronic Renal Failure. Ann. Pediatr. Endocrinol. Metab. 2018, 23, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Early Intervention and Lifelong Treatment with GLP1 Receptor Agonist Liraglutide in a Wolfram Syndrome Rat Model with an Emphasis on Visual Neurodegeneration, Sensorineural Hearing Loss and Diabetic Phenotype—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/34831417/ (accessed on 21 December 2021).
- Seppa, K.; Toots, M.; Reimets, R.; Jagomäe, T.; Koppel, T.; Pallase, M.; Hasselholt, S.; Krogsbæk Mikkelsen, M.; Randel Nyengaard, J.; Vasar, E.; et al. GLP-1 Receptor Agonist Liraglutide Has a Neuroprotective Effect on an Aged Rat Model of Wolfram Syndrome. Sci. Rep. 2019, 9, 15742. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Hua, H.; Foo, K.; Martinez, H.; Watanabe, K.; Zimmer, M.; Kahler, D.J.; Freeby, M.; Chung, W.; LeDuc, C.; et al. β-Cell Dysfunction Due to Increased ER Stress in a Stem Cell Model of Wolfram Syndrome. Diabetes 2014, 63, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Toots, M.; Reimets, R.; Plaas, M.; Vasar, E. Muscarinic Agonist Ameliorates Insulin Secretion in Wfs1-Deficient Mice. Can. J. Diabetes 2019, 43, 115–120. [Google Scholar] [CrossRef]
- Szentesi, P.; Collet, C.; Sárközi, S.; Szegedi, C.; Jona, I.; Jacquemond, V.; Kovács, L.; Csernoch, L. Effects of Dantrolene on Steps of Excitation-Contraction Coupling in Mammalian Skeletal Muscle Fibers. J. Gen. Physiol. 2001, 118, 355–375. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wu, J.; Lvovskaya, S.; Herndon, E.; Supnet, C.; Bezprozvanny, I. Dantrolene Is Neuroprotective in Huntington’s Disease Transgenic Mouse Model. Mol. Neurodegener. 2011, 6, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Therapeutic Prospects for Spinocerebellar Ataxia Type 2 and 3—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/26023252/ (accessed on 21 December 2021).
- Wang, Y.; Shi, Y.; Wei, H. Calcium Dysregulation in Alzheimer’s Disease: A Target for New Drug Development. J. Alzheimers Dis. Parkinsonism 2017, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- Abreu, D.; Asada, R.; Revilla, J.M.P.; Lavagnino, Z.; Kries, K.; Piston, D.W.; Urano, F. Wolfram Syndrome 1 Gene Regulates Pathways Maintaining Beta-Cell Health and Survival. Lab. Investig. 2020, 100, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Abreu, D.; Stone, S.I.; Pearson, T.S.; Bucelli, R.C.; Simpson, A.N.; Hurst, S.; Brown, C.M.; Kries, K.; Onwumere, C.; Gu, H.; et al. A Phase Ib/IIa Clinical Trial of Dantrolene Sodium in Patients with Wolfram Syndrome. JCI Insight 2021, 6, 145188. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Kanekura, K.; Hara, T.; Mahadevan, J.; Spears, L.D.; Oslowski, C.M.; Martinez, R.; Yamazaki-Inoue, M.; Toyoda, M.; Neilson, A.; et al. A Calcium-Dependent Protease as a Potential Therapeutic Target for Wolfram Syndrome. Proc. Natl. Acad. Sci. USA 2014, 111, E5292–E5301. [Google Scholar] [CrossRef] [Green Version]
- Valproate Attenuates Endoplasmic Reticulum Stress-Induced Apoptosis in SH-SY5Y Cells via the AKT/GSK3β Signaling Pathway—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/28208696/ (accessed on 21 December 2021).
- Batjargal, K.; Tajima, T.; Jimbo, E.F.; Yamagata, T. Effect of 4-Phenylbutyrate and Valproate on Dominant Mutations of WFS1 Gene in Wolfram Syndrome. J. Endocrinol. Investig. 2020, 43, 1317–1325. [Google Scholar] [CrossRef]
- Karagiannis, P.; Takahashi, K.; Saito, M.; Yoshida, Y.; Okita, K.; Watanabe, A.; Inoue, H.; Yamashita, J.K.; Todani, M.; Nakagawa, M.; et al. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol. Rev. 2019, 99, 79–114. [Google Scholar] [CrossRef]
- Longobardi, E.; Miceli, F.; Secondo, A.; Cicatiello, R.; Izzo, A.; Tinto, N.; Moutton, S.; Tran Mau-Them, F.; Vitobello, A.; Taglialatela, M. Generation of an IPSC Line (UNINAi001-A) from a Girl with Neonatal-Onset Epilepsy and Non-Syndromic Intellectual Disability Carrying the Homozygous KCNQ3 p.PHE534ILEfs*15 Variant and of an IPSC Line (UNINAi002-A) from a Non-Carrier, Unaffected Brother. Stem Cell Res. 2021, 53, 102311. [Google Scholar] [CrossRef] [PubMed]
- Hamel, C.; Jagodzinska, J.; Bonner-Wersinger, D.; Koks, S.; Seveno, M.; Delettre, C. Advances in Gene Therapy for Wolfram Syndrome. Acta Ophthalmol. 2017, 95, S259. [Google Scholar] [CrossRef]
- Lindahl, M.; Danilova, T.; Palm, E.; Lindholm, P.; Võikar, V.; Hakonen, E.; Ustinov, J.; Andressoo, J.-O.; Harvey, B.K.; Otonkoski, T.; et al. MANF Is Indispensable for the Proliferation and Survival of Pancreatic β Cells. Cell Rep. 2014, 7, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, K.G.; Augsornworawat, P.; Velazco-Cruz, L.; Kim, M.H.; Asada, R.; Hogrebe, N.J.; Morikawa, S.; Urano, F.; Millman, J.R. Gene-Edited Human Stem Cell-Derived β Cells from a Patient with Monogenic Diabetes Reverse Preexisting Diabetes in Mice. Sci. Transl. Med. 2020, 12, eaax9106. [Google Scholar] [CrossRef]
- Petrova, P.; Raibekas, A.; Pevsner, J.; Vigo, N.; Anafi, M.; Moore, M.K.; Peaire, A.E.; Shridhar, V.; Smith, D.I.; Kelly, J.; et al. MANF: A New Mesencephalic, Astrocyte-Derived Neurotrophic Factor with Selectivity for Dopaminergic Neurons. J. Mol. Neurosci. 2003, 20, 173–188. [Google Scholar] [CrossRef]
- Brancaccio, M.; Mennitti, C.; Cesaro, A.; Fimiani, F.; Moscarella, E.; Caiazza, M.; Gragnano, F.; Ranieri, A.; D’Alicandro, G.; Tinto, N.; et al. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. Int. J. Environ. Res. Public Health 2020, 17, 9424. [Google Scholar] [CrossRef] [PubMed]
Patients | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Sex | F | M | F | F | M | M | M | M | M | M | M | F | M | F | F |
Age actual (years) | 27.3 | 28.3 | Dead 41 | Lost ° | Lost ° | Lost ° | Lost ° | Lost ° | Lost ° | Lost ° | 20.1 | 30.7 | 29 | 17.7 | 21 |
Diabetes Mellitus | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Age at onset (years) | 5 | 9 | 8 | 3 | 5 | 5 | 4 | 5 | 4 | 3 | 5 | 7 | 7 | 11 | 2 |
HbA1c at onset (%) | 12.3 | 9.9 | 13 | 10 | 11.3 | 10.6 | 12 | 10,6 | |||||||
Follow up HbA1c mean | 8.5 | 7 | 9.3 | 8 | 6.5 | 9 | 8.5 | 7.5 | 6.1 | 6 | 7.5 | 6 | 8.5 | 6.4 | 8 |
Therapy | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin | Insulin |
Daily Insulin Dose (U/Kg/day) | 0.5 | 0.4 | 0.8 | 0.4 | 0.4 | 0.8 | 0.7 | 0.3 | 0.3 | 0.4 | 0.4 | 0.3 | 0.7 | 0.3 | 0.5 |
Diabetes Insipidus | YES | YES | NO | YES | NO | YES | YES | YES | NO | NO | YES | YES | YES | NO | NO |
Age at onset (years) | 5 | 10 | 23 | 8 | 10 | 7 | 11 | 13 | |||||||
Eye Disease | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | NO | YES |
Age at onset (years) | 5 | 9 | 10 | 8 | 10 | 11 | 13 | 16 | 9 | 6 | 18 | 11 | 10 | 12 | |
Optic nerve subatrophy | YES | YES | YES | ||||||||||||
Optic nerve atrophy | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | ||||
Ear Disease | YES | YES | YES | YES | YES | YES | YES | YES | NO | NO | YES | YES | YES | YES | NO |
Age at onset (years) | 6 | 9 | 15 | 8 | 20 | 20 | 6 | 13 | 4 | 12 | 10 | At birth Coclear Implantation | |||
Urinary Disease | NO | NO | YES | NO | YES | YES | YES | NO | NO | NO | YES | YES | YES | YES | NO |
Press on bladder to pee | YES | YES | |||||||||||||
Auto-catheterism | YES | YES | YES | YES | YES | YES | |||||||||
Neurological Disease | YES | YES | YES | YES | YES | YES | YES | NO | NO | NO | NO | YES | YES | NO | NO |
Nistagmus | NO | YES | YES | YES | YES | YES | YES | YES | YES | ||||||
Vestibular syndrome | YES | NO | YES | YES | YES | YES | YES | YES | YES | ||||||
Patients | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Hypotonia | YES | NO | YES | YES | YES | YES | YES | YES | YES | ||||||
Hyporeflexia | YES | NO | YES | YES | YES | YES | YES | YES | YES | ||||||
Intellectual impairement | YES | NO | NO | NO | NO | YES | NO | NO | NO | ||||||
Gastrointestinal | NO | NO | NO | NO | NO | NO | YES | NO | YES | NO | NO | NO | NO | NO | NO |
Chronic diarrhea | NO | YES | |||||||||||||
Stipsis | YES | NO | |||||||||||||
Peptic ulcer | YES | NO | |||||||||||||
Familiar Anamnesis | |||||||||||||||
Early death/abortion | YES | YES | YES | YES | YES | YES | YES | ||||||||
Genetic Informations | |||||||||||||||
WSF1 mutation | p.Gly695 ValHomozygote | p.Tyr528Term Heterozygote | p.Tyr699Cys Homozygote | p.Gly107Arg Homozygote | p.Gly107Arg Homozygote | p.Ala684Val/ IVS6 + 16G > A Compound Heterozygote | p.Tyr291 TermHomozygote |
Therapeutical Options | Effects in WS |
---|---|
Liraglutide (Glucagon Like Peptide 1 Receptor Agonist) | Improve patients’ glycemic control and reduces the daily insulin dose Reduce pancreatic β Cell apoptosis Improve β cell grows and survival Delay the onset of diabetes Protect against vision lost Neuroprotective effect |
Exenatide, (Incretin Mimetic Agent) | Improve patients’ glycemic control and reduces the daily insulin dose |
Inibitors of Dipeptidil Peptidase 4 (DPP4) | Increase GLP-1 concentration |
Muscarinic receptors-3 agonists | Potentiate insulin secretion in mice |
Dantrolene sodium (Inhibition of ryanodine receptors (RyRs) on the ER) | Reduce pancreatic β cell apoptosis and restore dysfunctional β cells in mouse models Induce Pluripotent Stem Cell in mouse model Preserve β Cell residual function, visual acuity and neurological functions in humans: pediatrics and adults |
Valproate-Natrium | Attenuate endoplasmic reticulum stress-induced apoptosis in vitro |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iafusco, D.; Zanfardino, A.; Piscopo, A.; Curto, S.; Troncone, A.; Chianese, A.; Rollato, A.S.; Testa, V.; Iafusco, F.; Maione, G.; et al. Metabolic Treatment of Wolfram Syndrome. Int. J. Environ. Res. Public Health 2022, 19, 2755. https://doi.org/10.3390/ijerph19052755
Iafusco D, Zanfardino A, Piscopo A, Curto S, Troncone A, Chianese A, Rollato AS, Testa V, Iafusco F, Maione G, et al. Metabolic Treatment of Wolfram Syndrome. International Journal of Environmental Research and Public Health. 2022; 19(5):2755. https://doi.org/10.3390/ijerph19052755
Chicago/Turabian StyleIafusco, Dario, Angela Zanfardino, Alessia Piscopo, Stefano Curto, Alda Troncone, Antonietta Chianese, Assunta Serena Rollato, Veronica Testa, Fernanda Iafusco, Giovanna Maione, and et al. 2022. "Metabolic Treatment of Wolfram Syndrome" International Journal of Environmental Research and Public Health 19, no. 5: 2755. https://doi.org/10.3390/ijerph19052755
APA StyleIafusco, D., Zanfardino, A., Piscopo, A., Curto, S., Troncone, A., Chianese, A., Rollato, A. S., Testa, V., Iafusco, F., Maione, G., Pennarella, A., Boccabella, L., Ozen, G., Palma, P. L., Mazzaccara, C., Tinto, N., & Miraglia del Giudice, E. (2022). Metabolic Treatment of Wolfram Syndrome. International Journal of Environmental Research and Public Health, 19(5), 2755. https://doi.org/10.3390/ijerph19052755