The Use of Virtual and Computational Technologies in the Psychomotor and Cognitive Development of Children with Down Syndrome: A Systematic Literature Review
Abstract
:1. Introduction
Considerations about Comorbidities Associated with DS
2. Literature Search
3. Data Collection
4. Results
4.1. Down Syndrome and Motor Development
4.2. Development of DS Communication
4.3. Use of Electronic Games for DS
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holz, F.; Plenzig, S.; Held, H.; Verhoff, M.; Birngruber, C. Trisomy 21 in forensic autopsies: Review of a 20-year period. Forensic Sci. Int. 2019, 297, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Kaczorowska, N.; Kaczorowski, K.; Laskowska, J.; Mikulewicz, M. Down syndrome as a cause of abnormalities in the craniofacial region: A systematic literature review. Adv. Clin. Exp. Med. 2019, 28, 1587–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, S.E.; Mai, C.T.; Canfield, M.A.; Rickard, R.; Wang, Y.; Meyer, R.E.; Anderson, P.; Mason, C.A.; Collins, J.S.; Kirby, R.S. Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 1008–1016. [Google Scholar] [CrossRef]
- Van Robays, J. John Langdon Down (1828–1896). Facts Views Vis. ObGyn 2016, 8, 131. [Google Scholar] [PubMed]
- Sherman, S.L.; Allen, E.G.; Bean, L.H.; Freeman, S.B. Epidemiology of Down syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Bertapelli, F.; Agiovlasitis, S.; Machado, M.R.; do Val Roso, R.; Guerra-Junior, G. Growth charts for Brazilian children with Down syndrome: Birth to 20 years of age. J. Epidemiol. 2017, 27, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.J.; The Committee on Genetics. Health supervision for children with Down syndrome. Pediatrics 2011, 128, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Roizen, N.J.; Patterson, D. Down’s syndrome. Lancet 2003, 361, 1281–1289. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Tian, J. Molecular mechanisms of congenital heart disease in down syndrome. Genes Dis. 2019, 6, 372–377. [Google Scholar] [CrossRef]
- Graber, E.; Chacko, E.; Regelmann, M.O.; Costin, G.; Rapaport, R. Down syndrome and thyroid function. Endocrinol. Metab. Clin. 2012, 41, 735–745. [Google Scholar] [CrossRef]
- Fidler, D.J. The emerging Down syndrome behavioral phenotype in early childhood: Implications for practice. Infants Young Child. 2005, 18, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Malegiannaki, A.C.; Katsarou, D.; Liolios, A.; Zisi, V. Ageing and Down syndrome: Neurocognitive characteristics and pharmacological treatment. Hell. J. Nucl. Med. 2019, 22, 123–132. [Google Scholar] [PubMed]
- Mansour, E.; Yaacoub, J.; Bakouny, Z.; Assi, A.; Ghanem, I. A podoscopic and descriptive study of foot deformities in patients with Down syndrome. Orthop. Traumatol. Surg. Res. 2017, 103, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Fisher, P.G. Who should care for children with Down syndrome? J. Pediatrics 2020, 218, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofler, R.C.; Pecoraro, N.; Jones, G.A. Outcomes of surgical correction of atlantoaxial instability in patients with Down syndrome: Systematic review and meta-analysis. World Neurosurg. 2019, 126, e125–e135. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Gensous, N.; Bacalini, M.G.; Conte, M.; Salvioli, S. Accelerated bio-cognitive aging in Down syndrome: State of the art and possible deceleration strategies. Aging Cell 2019, 18, e12903. [Google Scholar] [CrossRef]
- Patkee, P.A.; Baburamani, A.A.; Kyriakopoulou, V.; Davidson, A.; Avini, E.; Dimitrova, R.; Allsop, J.; Hughes, E.; Kangas, J.; McAlonan, G. Early alterations in cortical and cerebellar regional brain growth in Down Syndrome: An in vivo fetal and neonatal MRI assessment. NeuroImage Clin. 2020, 25, 102139. [Google Scholar] [CrossRef]
- Pennington, B.F.; Moon, J.; Edgin, J.; Stedron, J.; Nadel, L. The neuropsychology of Down syndrome: Evidence for hippocampal dysfunction. Child Dev. 2003, 74, 75–93. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Lu, F.-M.; Wang, M.-Y.; Hu, Z.-S.; Zhang, J.; Chen, Z.-Y.; Armada-da-Silva, P.A.; Yuan, Z. Altered functional connectivity in the motor and prefrontal cortex for children with Down’s syndrome: An fNIRS study. Front. Hum. Neurosci. 2020, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.I.; Kim, S.W.; Kim, J.; Jeon, H.R.; Jung, D.W. Motor and cognitive developmental profiles in children with Down syndrome. Ann. Rehabil. Med. 2017, 41, 97. [Google Scholar] [CrossRef] [Green Version]
- Antón, D.L.; De Miguel, A.; De Miguel, M.; Lucena-Antón, D. Efectos de la hipoterapia sobre la función motora en personas con síndrome de Down: Revisión sistemática. Rev. Neurol. 2018, 67, 233–241. [Google Scholar]
- Reis, J.R.G.; Neiva, C.M.; Pessoa Filho, D.M.; Ciolac, E.G.; Verardi, C.E.L.; da Cruz Siqueira, L.O.; de Freitas Gonçalves, D.; da Silva, G.R.; Hiraga, C.Y.; Tonello, M.G.M. Virtual reality therapy: Motor coordination and balance analysis in children and teenagers with Down syndrome. Eur. J. Hum. Mov. 2017, 38, 53–67. [Google Scholar]
- Linn, K.; Sevilla, F.; Cifuentes, V.; Eugenin, M.I.; Río, B.; Cerda, J.; Lizama, M. Desarrollo de habilidades comunicativas en lactantes con síndrome de Down posterior a capacitaciones sistematizadas en comunicación gestual. Rev. Chil. Pediatría 2019, 90, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.E.; Klusek, J.; Estigarribia, B.; Roberts, J.E. Language characteristics of individuals with Down syndrome. Top. Lang. Disord. 2009, 29, 112. [Google Scholar] [CrossRef] [PubMed]
- López-Riobóo, E.; Martínez-Castilla, P. Psycholinguistic profile of young adults with Down syndrome. Res. Dev. Disabil. 2019, 94, 103460. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.E.; Price, J.; Malkin, C. Language and communication development in Down syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 26–35. [Google Scholar] [CrossRef]
- Rosser, T.C.; Edgin, J.O.; Capone, G.T.; Hamilton, D.R.; Allen, E.G.; Dooley, K.J.; Anand, P.; Strang, J.F.; Armour, A.C.; Frank-Crawford, M.A. Associations between medical history, cognition, and behavior in youth with down syndrome: A report from the down syndrome cognition project. Am. J. Intellect. Dev. Disabil. 2018, 123, 514–528. [Google Scholar] [CrossRef]
- Silverman, W. Down syndrome: Cognitive phenotype. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 228–236. [Google Scholar] [CrossRef]
- Lanfranchi, S.; Jerman, O.; Dal Pont, E.; Alberti, A.; Vianello, R. Executive function in adolescents with Down syndrome. J. Intellect. Disabil. Res. 2010, 54, 308–319. [Google Scholar] [CrossRef]
- Nightengale, E.; Yoon, P.; Wolter-Warmerdam, K.; Daniels, D.; Hickey, F. Understanding hearing and hearing loss in children with Down syndrome. Am. J. Audiol. 2017, 26, 301–308. [Google Scholar] [CrossRef]
- Kreicher, K.L.; Weir, F.W.; Nguyen, S.A.; Meyer, T.A. Characteristics and progression of hearing loss in children with Down syndrome. J. Pediatrics 2018, 193, 27–33.e22. [Google Scholar] [CrossRef] [PubMed]
- da Cruz Netto, O.L.; Rodrigues, S.C.M.; de Castro, M.V.; da Silva, D.P.; da Silva, R.R.; de Souza, R.R.B.; de Souza, A.A.F.; Bissaco, M.A.S. Memorization of daily routines by children with Down syndrome assisted by a playful virtual environment. Sci. Rep. 2020, 10, 3144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, K. Visual characteristics of children with Down syndrome. Jpn. J. Ophthalmol. 2017, 61, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Abbeduto, L.; Warren, S.F.; Conners, F.A. Language development in Down syndrome: From the prelinguistic period to the acquisition of literacy. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 247–261. [Google Scholar] [CrossRef]
- Vitale, L.; Serpieri, V.; Lauriola, M.; Piovesan, A.; Antonaros, F.; Cicchini, E.; Locatelli, C.; Cocchi, G.; Strippoli, P.; Caracausi, M. Human trisomy 21 fibroblasts rescue methotrexate toxic effect after treatment with 5-methyl-tetrahydrofolate and 5-formyl-tetrahydrofolate. J. Cell. Physiol. 2019, 234, 15010–15024. [Google Scholar] [CrossRef] [PubMed]
- Czechowicz, P.; Malodobra-Mazur, M.; Cukierska, K.; Lebioda, A.; Jonkisz, A.; Dobosz, T.; Smigiel, R. Polymorphisms of the MTHFR gene in mothers of children with trisomy 21 (Down syndrome) in a Polish population. Adv. Clin. Exp. Med. 2019, 29, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Ugurlu, A.; Altinkurt, E. Ophthalmologic manifestations and retinal findings in children with down syndrome. J. Ophthalmol. 2020, 2020, 9726261. [Google Scholar] [CrossRef]
- Stander, J.; du Preez, J.C.; Kritzinger, C.; Obermeyer, N.M.; Struwig, S.; van Wyk, N.; Zaayman, J.; Burger, M. Effect of virtual reality therapy, combined with physiotherapy for improving motor proficiency in individuals with Down syndrome: A systematic review. S. Afr. J. Physiother. 2021, 77, 1516. [Google Scholar] [CrossRef]
- Torres-Carrión, P.V.; González-González, C.S.; Toledo-Delgado, P.A.; Muñoz-Cruz, V.; Gil-Iranzo, R.; Reyes-Alonso, N.; Hernández-Morales, S. Improving cognitive visual-motor abilities in individuals with down syndrome. Sensors 2019, 19, 3984. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.D.; de Carvalho, B.A.; Nery Filho, J. Utilização dos Jogos Eletrônicos no Processo Ensino-Aprendizagem de Crianças com Síndrome de Down na Escola Municipal Tatiana de Morais no Município de Campo Formoso-Ba. An. Semin. Jogos Eletrônicos Educ. Comun. 2017, 1, 87–95. [Google Scholar]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Callon, M.; Courtial, J.-P.; Turner, W.A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983, 22, 191–235. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media: 2009, San Jose, CA, USA, 17–20 May 2009; pp. 361–362. [Google Scholar]
- Newman, M. Networks; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Chapman, R.S.; Hesketh, L.J. Behavioral phenotype of individuals with Down syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2000, 6, 84–95. [Google Scholar] [CrossRef]
- Álvareza, N.G.; Mortecinosb, A.V.; Rodríguezb, V.Z.; Fontanillab, M.L.; Vásquezb, M.M.; Pavez-Adasmea, G.; Hernández-Mosqueiraa, C. Effect of an intervention based on virtual reality on motor development and postural control in children with Down Syndrome. Rev. Chil. Pediatr. 2018, 89, 747–752. [Google Scholar]
- Bedford, R.; Saez de Urabain, I.R.; Cheung, C.H.; Karmiloff-Smith, A.; Smith, T.J. Toddlers’ fine motor milestone achievement is associated with early touchscreen scrolling. Front. Psychol. 2016, 7, 1108. [Google Scholar] [CrossRef]
- Berg, P.; Becker, T.; Martian, A.; Danielle, P.K.; Wingen, J. Motor control outcomes following Nintendo Wii use by a child with Down syndrome. Pediatric Phys. Ther. 2012, 24, 78–84. [Google Scholar] [CrossRef]
- Boleracki, M.; Farkas, F.; Meszely, A.; Szikszai, Z.; Sik-Lányi, C. Developing an Animal Counting Game in Second Life for a Young Adult with Down Syndrome. Stud. Health Technol. Inform. 2015, 217, 71–77. [Google Scholar]
- Carrogi-Vianna, D.; Lopes, P.B.; Cymrot, R.; Hengles Almeida, J.J.; Yazaki, M.L.; Blascovi-Assis, S.M. Analysis of movement acceleration of Down’s syndrome teenagers playing computer games. Games Health J. 2017, 6, 358–364. [Google Scholar] [CrossRef]
- Diatel, M.; Carvalho Md Hounsell, M.d.S. Movipensando: Um jogo sério para o desenvolvimento cognitivo e motor de crianças com síndrome de down. SBGames-Simpósio Bras. Jogos Entretenimento Digit. 2016, 15, 421–429. [Google Scholar]
- Lopez-Basterretxea, A.; Mendez-Zorrilla, A.; Garcia-Zapirain, B. A telemonitoring tool based on serious games addressing money management skills for people with intellectual disability. Int. J. Environ. Res. Public Health 2014, 11, 2361–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo SMd Braccialli, L.M.P.; Araújo, R.d.C.T. Realidade virtual como intervenção na síndrome de Down: Uma perspectiva de ação na interface saúde e educação. Rev. Bras. De Educ. Espec. 2015, 21, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Menezes LDCd Gomes, K.d.S.C.; Massetti, T.; Silva TDd Possebom, W.F.; Capelini, C.M.; Monteiro, C.B.d.M. Motor learning in mobile (cell phone) device in Down syndrome patients-pilot project. MedicalExpress 2015, 2, M150405. [Google Scholar]
- da Cruz Netto, O.L.; Bissaco, M.A.S. Desenvolvimento de ambiente virtual para auxiliar a memorização de rotinas diárias importantes para crianças com Síndrome de Down. Bras. Para Todos-Rev. Int. 2014, 1, 50–60. [Google Scholar]
- Possebom, W.F.; Massetti, T.; Silva TDd Malheiros, S.R.P.; Menezes LDCd Caromano, F.A.; Ré, A.H.N.; Bezerra, I.M.P.; Monteiro, C.B.d.M. Desempenho em uma tarefa de labirinto no computador na síndrome de Down. Rev. Bras. Crescimento Desenvolv. Hum. 2016, 26, 205–210. [Google Scholar]
- Pelosi, M.B.; Teixeira, P.d.O.; Nascimento, J.S. O uso de jogos interativos por crianças com síndrome de Down. Cad. Bras. De Ter. Ocup. 2019, 27, 718–733. [Google Scholar] [CrossRef]
- Purser, H.R.; Farran, E.K.; Courbois, Y.; Lemahieu, A.; Sockeel, P.; Mellier, D.; Blades, M. The development of route learning in Down syndrome, Williams syndrome and typical development: Investigations with virtual environments. Dev. Sci. 2015, 18, 599–613. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, V.; Campos, J.A.d.P.P.; Almeida, M.A. Uso do PECS associado ao Video Modeling na criança com Síndrome de Down. Rev. Bras. Educ. Espec. 2015, 21, 379–392. [Google Scholar] [CrossRef]
- Wuang, Y.-P.; Chiang, C.-S.; Su, C.-Y.; Wang, C.-C. Effectiveness of virtual reality using Wii gaming technology in children with Down syndrome. Res. Dev. Disabil. 2011, 32, 312–321. [Google Scholar] [CrossRef]
- Jung, H.-K.; Chung, E.; Lee, B.-H. A comparison of the balance and gait function between children with Down syndrome and typically developing children. J. Phys. Ther. Sci. 2017, 29, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneghetti, C.; Lanfranchi, S.; Carretti, B.; Toffalini, E. Visuo-spatial knowledge acquisition in individuals with Down syndrome: The role of descriptions and sketch maps. Res. Dev. Disabil. 2017, 63, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Trindade, A.S.; Nascimento, M.A.d. Avaliação do desenvolvimento motor em crianças com síndrome de down. Rev. Bras. De Educ. Espec. 2016, 22, 577–588. [Google Scholar] [CrossRef]
- Ferreira-Vasques, A.T.; Lamônica, D.A.C. Motor, linguistic, personal and social aspects of children with Down syndrome. J. Appl. Oral Sci. 2015, 23, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Priosti, P.A.; Blascovi-Assis, S.M.; Cymrot, R.; Vianna, D.L.; Caromano, F.A. Força de preensão e destreza manual na criança com Síndrome de Down. Fisioterapia Pesquisa 2013, 20, 278–285. [Google Scholar] [CrossRef]
- Hauck, J.L.; Felzer-Kim, I.T.; Gwizdala, K.L. Early movement matters: Interplay of physical activity and motor skill development in infants with Down syndrome. Adapt. Phys. Act. Q. 2020, 37, 160–176. [Google Scholar] [CrossRef]
- Scapinelli, D.F.; Laraia, É.M.S.; de Souza, A.S. Evaluation of functional capabilities in children with Down Syndrome. Fisioterapia em Movimento 2016, 29, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Hamner, T.; Udhnani, M.D.; Osipowicz, K.Z.; Lee, N.R. Pediatric brain development in Down syndrome: A field in its infancy. J. Int. Neuropsychol. Soc. 2018, 24, 966–976. [Google Scholar] [CrossRef]
- Rao, P.T.; Guddattu, V.; Solomon, J.M. Response abilities of children with Down Syndrome and other intellectual developmental disorders. Exp. Brain Res. 2017, 235, 1411–1427. [Google Scholar] [CrossRef]
- Mecca, T.P.; Morão, C.P.d.A.B.; Silva PBd Macedo, E.C.d. Perfil de Habilidades Cognitivas Não-Verbais na Síndrome de Down1. Rev. Bras. De Educ. Espec. 2015, 21, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, N.G.; Mortecinos, A.V.; Rodríguez, V.Z.; Fontanilla, M.L.; Vásquez, M.M.; Pavez-Adasme, G.; Hemández-Mosqueira, C. Efecto de una intervención basada en realidad virtual sobre las habi lidades motrices básicas y control postural de niños con Síndrome de Down. Revista Chilena de Pediatría 2018, 89, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Nuthmann, A.; Smith, T.J.; Engbert, R.; Henderson, J.M. CRISP: A computational model of fixation durations in scene viewing. Psychol. Rev. 2010, 117, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.J.; Mital, P.K. Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes. J. Vis. 2013, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Cebula, K.R.; Wishart, J.G.; Willis, D.S.; Pitcairn, T.K. Emotion recognition in children with down syndrome: Influence of emotion label and expression intensity. Am. J. Intellect. Dev. Disabil. 2017, 122, 138–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Development Area | Associated Issues | Main References in the Field |
---|---|---|
Health | Congenital heart diseases | Zhang, Liu, and Tian [9]; Parker et al. [3]; Roizen and Patterson [8] |
Thyroid dysfunction | Graber et al. [10] | |
Obesity and early aging | Malegiannaki et al. [12] | |
Neurodevelopment | Premature aging of the brain and the immune system | Franceschi et al. [16] |
Abnormalities in the development and connectivity of the cortex and cerebellum | Patkee et al. [17]; Pennington et al. [18] | |
Functional brain connectivity interrupted in the motor and prefrontal cortex | Xu et al. [19] | |
Behavioral phenotype | Fidler [11]; Chapman and Hesketh [11] | |
Motor | Motor development delay | Kim et al. [20] |
Abnormal bone growth and ligamental connexon | Bertapelli et al. [6] | |
Generalized muscle hypotonia and hyper-laxity | Kaczorowska et al. [2]; Antón et al. [21]; Mansour et al. [13] | |
Problems with balance, coordination and manual co-ordination | Reis et al. [22] | |
Communication | Difficulty in expressive language | Linn et al. [23]; Martin et al. [24] |
Deficits in language and communication | López-Riobóo and Martínez-Castilla [25]; Roberts et al. [26] | |
Cognition | Intellectual disability | Rosser et al. [27]; Silverman [28]; Lanfranchi et al. [29] |
Hearing | Hearing loss | Fisher [14]; Nightengale et al. [30]; Kreicher et al. [31] |
Vision | Visual disorders | da Cruz Netto et al. [32] Tomita [33] |
Keywords | Cluster | Average Year | Degree | Eigenvector Centrality |
---|---|---|---|---|
Down syndrome | 1 | 2012.0341 | 546 | 1.0000 |
Children | 1 | 2013.212 | 281 | 0.6343 |
Intellectual disabilities | 3 | 2014.6408 | 265 | 0.6087 |
Autism spectrum disorder | 4 | 2012.0855 | 215 | 0.5259 |
Trisomy 21 | 1 | 2012.5455 | 220 | 0.4839 |
Mental retardation | 3 | 2005.6486 | 96 | 0.2901 |
Fragile X syndrome | 3 | 2012.4706 | 90 | 0.2691 |
Parents | 4 | 2013.7024 | 83 | 0.2601 |
Language | 3 | 2010.619 | 77 | 0.2461 |
Developmental disabilities | 4 | 2012.7241 | 71 | 0.2447 |
Cognition | 3 | 2011.7317 | 68 | 0.2247 |
Williams syndrome | 3 | 2012.0238 | 81 | 0.2224 |
Obstructive sleep apnea | 1 | 2014.9101 | 67 | 0.2047 |
Prevalence | 2 | 2011.7708 | 62 | 0.2029 |
Adolescents | 6 | 2015.2105 | 54 | 0.2017 |
Development | 3 | 2012.2439 | 60 | 0.2003 |
Autism spectrum disorders | 4 | 2013.2955 | 54 | 0.1936 |
Genetics | 1 | 2011.1176 | 60 | 0.1926 |
Siblings | 4 | 2012.9783 | 47 | 0.1910 |
Epidemiology | 2 | 2009.2105 | 60 | 0.1891 |
Quality of life | 4 | 2015.8936 | 54 | 0.1883 |
Physical activity | 6 | 2015.8696 | 53 | 0.1867 |
Sleep | 1 | 2013.4194 | 49 | 0.1860 |
Obesity | 6 | 2013.587 | 51 | 0.1835 |
Pediatric | 1 | 2015.0816 | 69 | 0.1833 |
Developmental delay | 3 | 2009.92 | 46 | 0.1787 |
Document | Subject | Degree | Eigenvector Centrality |
---|---|---|---|
Parker et al. [3] | The prevalence of birth defects | 207 | 1.0000 |
Chapman and Hesketh [47] | Behavioral phenotype of individuals with Down syndrome | 182 | 0.9913 |
Roizen and Patterson [8] | Medical management of Down syndrome | 195 | 0.9001 |
Fidler [11] | The emerging Down syndrome behavioral phenotype in infants, toddlers and preschoolers | 156 | 0.8846 |
Pennington et al. [18] | Neuropsychological domains of individuals with Down syndrome | 153 | 0.8783 |
Silverman [28] | Cognitive characteristics of Down syndrome | 155 | 0.8660 |
Abbeduto et al. [34] | The syndrome-specific features of the language phenotype | 141 | 0.8394 |
Roberts, Price and Malkin [26] | The language and communication development of individuals with Down syndrome | 141 | 0.8345 |
Martin et al. [24] | The language and literacy skills of individuals with Down syndrome | 140 | 0.8233 |
Lanfranchi et al. [29] | Executive function (EF) in adolescents with Down syndrome | 138 | 0.8167 |
no | Authors | Year | Country | Technology | Main Findings |
---|---|---|---|---|---|
01 | Álvarez et al. [48] | 2018 | Chile | Nintendo® Wii™ TV | The intervention based on virtual reality was effective for the Wii game, since it provides low-impact exercises to improve postural control and, thus, leads to better performance in TGMD 2 in children with DS. |
02 | Bedford et al. [49] | 2016 | United Kingdom | Touchscreen technologies | In the present study, no evidence was found to support a negative association between the age of first use of the touchscreen and developmental milestones. Previous use of the touchscreen, specifically scrolling, was associated with previous fine motor performance. Future longitudinal studies are needed to elucidate the temporal order and the mechanisms of this association and to examine the impact of using the touchscreen on other more refined measures of behavioral, cognitive and neural development. |
03 | Berg et al. [50] | 2012 | USA | Nintendo® Wii™ TV | The practice of the Wii game in children with DS can be a good tool for improvements in the coordination of the upper limbs, manual dexterity, balance, postural stability and control of stability limits. |
04 | Boleracki et al. [51] | 2015 | Hungary | Virtual Game | The study suggests that virtual space for DS will not only help in the development of counting skills for young adults, but will also create an entertainment environment for all visitors, in addition to promoting imagination and motivation within a virtual community. |
05 | Carrogi-Vianna et al. [52] | 2017 | Brazil | Nintendo® Wii™ TV | The accelerometer is a good tool for assessing the movement acceleration characteristics of adolescents with DS during virtual bowling and golf played on the Nintendo® Wii ™ video game. |
06 | da Cruz Netto et al. [32] | 2020 | Brazil | Virtual environment “Our Life” | According to specialists (psychologist and pedagogue) from APAE and parents, the recreational activities implemented in this virtual environment have been of great interest to children, who had fun, tested hypotheses and questioned them about the sequences of actions carried out in their daily lives. |
07 | Diatel et al. [53] | 2016 | Brazil | MoviPensando | MoviPensando is a Serious Game that uses a webcam to capture the child’s image and insert it into the game where “groups of similar images” or “from the same context” are used, thus expanding the cognitive scope achieved. The combination of cognitive and motor aspects in a fun activity makes MoviPensando an interesting and viable option for use by health and education professionals. |
08 | Lopez-Basterretxea et al. [54] | 2014 | Spain | Serious Games | Based on a technological tool based on Serious Games aimed at people with ID, including DS, it was concluded that it is possible to develop technological solutions that work successfully as a pleasant training tool and with remote monitoring functions. |
09 | Lorenzo et al. [55] | 2015 | Brazil | Xbox 360 with Kinect TV sensor | After the intervention, there was an improvement in the skills of global motor skills, balance, body scheme and spatial organization; however, the development of fine motor skills and language/temporal organization remained stable. |
10 | Menezes et al. [56] | 2015 | Brazil | Marble Maze Classic®—Mobile | It was concluded that there was a motor learning process in individuals with DS through the maze task on mobile devices, who showed improved performance, evidenced by a reduced time in the retention and maintenance phase in the transfer phase. |
11 | da Cruz Netto et al. [57] | 2014 | Brazil | Virtual environment “Our Life” | The proposed virtual environment provides entertainment, attractiveness and immersion for the child in the plot, which helps them to memorize the daily routines implemented. |
12 | de Oliveira et al. [40] | 2017 | Brazil | Papado (video game) | The use of the Papado electronic game, together with the mediation of a professional, provided children with DS with a learning process for symmetry, colors, figures, ordinality, set, quantity, addition and subtraction. |
13 | Possebom et al. [58] | 2016 | Brazil | Maze task—PC | It was found that participants with DS improved their performance during acquisition and retention, but showed difficulty in transferring the computational task to a similar situation. |
14 | Pelosi et al. [59] | 2019 | Brazil | Six interactive games from Leap Motion, Nintendo platforms Wii® and Timocco | The correlation between the “players’ performance” and the “demonstration of interest” variables presented significant results. Game preference was based on how much fun and easy to play the game was when improving children’s performance. |
15 | Purser et al. [60] | 2015 | United Kingdom | Virtual Route Games | The study showed that weak non-verbal ability can be particularly detrimental to some aspects of route learning in the DS group. |
16 | Rodrigues et al. [61] | 2015 | Brazil | Video Modeling—PC | The results show that Video Modeling can be an effective and fast technique to teach the communication system by exchanging figures. The effects of this intervention in relation to this child with DS contributed to the increase in vocabulary in general, in addition to developing communication skills. |
17 | Torres-Carrión et al. [39] | 2019 | Spain | TANGO: H Designer—Kinect sensor | Visual–motor cognitive stimulation through the movement of hands, arms, feet and head has been proposed. The TANGO: H platform allowed users to design and implement digital exercises for gestural interaction, adding to its set of uses the stimulation of cognitive visual–motor skills in individuals with DS. The gestural platform allows users to stimulate visual–spatial memory in individuals with DS, producing excellent results in all cases. |
18 | Wuang et al. [62] | 2011 | Taiwan | Nintendo® Wii ™—TV | Virtual reality using Wii gaming technology has demonstrated benefits in improving sensory motor functions among children with DS. It can be used as adjunctive therapy for other successful rehabilitation interventions proven to treat children with DS. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boato, E.; Melo, G.; Filho, M.; Moresi, E.; Lourenço, C.; Tristão, R. The Use of Virtual and Computational Technologies in the Psychomotor and Cognitive Development of Children with Down Syndrome: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 2955. https://doi.org/10.3390/ijerph19052955
Boato E, Melo G, Filho M, Moresi E, Lourenço C, Tristão R. The Use of Virtual and Computational Technologies in the Psychomotor and Cognitive Development of Children with Down Syndrome: A Systematic Literature Review. International Journal of Environmental Research and Public Health. 2022; 19(5):2955. https://doi.org/10.3390/ijerph19052955
Chicago/Turabian StyleBoato, Elvio, Geiziane Melo, Mário Filho, Eduardo Moresi, Carla Lourenço, and Rosana Tristão. 2022. "The Use of Virtual and Computational Technologies in the Psychomotor and Cognitive Development of Children with Down Syndrome: A Systematic Literature Review" International Journal of Environmental Research and Public Health 19, no. 5: 2955. https://doi.org/10.3390/ijerph19052955
APA StyleBoato, E., Melo, G., Filho, M., Moresi, E., Lourenço, C., & Tristão, R. (2022). The Use of Virtual and Computational Technologies in the Psychomotor and Cognitive Development of Children with Down Syndrome: A Systematic Literature Review. International Journal of Environmental Research and Public Health, 19(5), 2955. https://doi.org/10.3390/ijerph19052955