Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Material and Method
2.1. Study Subjects
2.2. Biochemical Characterization
2.3. Genomic DNA Extraction
2.4. Genotyping of Estrogen Receptor 1-(ESR1 PvuII-rs2234693 T>C) and miR- 146a-(rs2910164 C>G)
2.5. Gel Electrophoresis and PCR Product Visualization
- 1.
- ESR1 PvuII-rs2234693 T>C amplification: Primers Fo/Ro flank the intron of the ESR1 PvuII-rs2234693 T>C amplifying into a band of 278 bp as a qualitative and quantitative DNA experimental control. Primers Fwt/Ro provide the amplification of the T allele (wild-type allele), with a band of 131 bp, and primers Fo/Rmt amplify into a band of 193 bp that represents the mutant allele (C allele) as shown in Figure 1.
- 2.
- MicroRNA-146a rs2910164 C>G amplification: Primers Fo/Ro flank the exon of the miR- 146a-rs2910164 C>G gene, amplifying into a band of 364 bp as a qualitative and quantitative DNA experimental control. Primers FI/Ro provide the amplification of the C allele (wild-type allele) with a band of 169 bp, and primers Fo/RI amplify into a band of 249 bp that represents the mutant allele (G allele) as shown in Figure 2.
2.6. Statistical Analysis
3. Results
3.1. Clinically Altered Profile of Biochemical Markers in PCOS Patients
3.2. Statistical Comparisons between Patients and Controls (p-Values) for ESR1 PvuII-rs2234693 T>C Genotypes
3.3. Allele and Genotype Frequency of ESR1 PvuII-rs2234693 C>T Gene Polymorphism in Cases and Controls
3.4. Multivariate Analysis of ESR1 PvuII-rs2234693 C>T Gene Polymorphism between PCOS Patients and Healthy Controls
3.5. Statistical Comparisons between Patients and Controls (p Values) for miR- 146a rs2910164 C>G Genotypes
3.6. Allele and Genotype Frequency of Hsa-miR- 146a rs2910164 C>G Gene Polymorphism in Cases and Controls
3.7. Multivariate Analysis to Determine the Association between miR- 146a rs2910164 C>G Genotypes and Risk to PCOS
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahal, H.; Kyrou, I.; Uthman, O.; Brown, A.; Johnson, S.; Wall, P.; Metcalfe, A.; Tahrani, A.; Randeva, H. The Prevalence of Obstructive Sleep Apnoea in women with Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis. Sleep Breath. 2020, 24, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Stepto, N.K.; Patten, R.K.; Tassone, E.C.; Misso, M.L.; Brennan, L.; Boyle, J.; Boyle, R.A.; Harrison, C.L.; Hirschberg, A.L.; Marsh, K.; et al. Exercise Recommendations for Women with Polycystic Ovary Syndrome: Is the Evidence Enough? Sports Med. 2019, 49, 1143–1157. [Google Scholar] [CrossRef]
- Koivuaho, E.; Laru, J.; Ojaniemi, M.; Puukka, K.; Kettunen, J.; Tapanainen, J.S.; Franks, S.; Järvelin, M.-R.; Morin-Papunen, L.; Sebert, S.; et al. Age at adiposity rebound in childhood is associated with PCOS diagnosis and obesity in adulthood—Longitudinal analysis of BMI data from birth to age 46 in cases of PCOS. Int. J. Obes. 2019, 43, 1370–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Liang, X.; Hill, B.; Teede, H.; Moran, L.J.; O’Reilly, S. A systematic review and meta-analysis of intervention characteristics in postpartum weight management using the TIDieR framework: A summary of evidence to inform implementation. Obes. Rev. 2019, 20, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Vaitukaitis, J.L.; Ross, G.T. Estrogen and Follicle Stimulating Hormone Interactions on Follicle Growth in Rats. Endocrinology 1972, 90, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Speroff, L.F.M.A. Clinical Gynecologic Endocrinology and Infertility; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Kuiper, G.; Enmark, E.; PeltoHuikko, M.; Nilsson, S.; Gustafsson, J.A. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 1996, 93, 5925–5930. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, G.; El-Alfy, M. Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J. Clin. Endocrinol. Metab. 2000, 85, 4835–4840. [Google Scholar]
- Britt, K.; Findlay, J.K. Estrogen actions in the ovary revisited. J. Endocrinol. 2002, 175, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, I.; Konstantelli, M.; Syrrou, M.; Messinis, I.E.; Lolis, D.E. Oestrogen receptor gene polymorphisms and ovarian stimulation for in-vitro fertilization. Hum. Reprod. 1997, 12, 1430–1433. [Google Scholar] [CrossRef] [Green Version]
- Sundarrajan, C.; Liao, W.-X.; Roy, A.; Ng, S. Association of oestrogen receptor gene polymorphisms with outcome of ovarian stimulation in patients undergoing IVF. Mol. Hum. Reprod. 1999, 5, 797–802. [Google Scholar] [CrossRef]
- De Castro, F.; Morón, F.J.; Montoro, L.; Galán, J.J.; Hernández, D.P.; Padilla, E.S.-C.; Ramírez-Lorca, R.; Real, L.M.; Ruiz, A. Human controlled ovarian hyperstimulation outcome is a polygenic trait. Pharmacogenetics 2004, 14, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Altmäe, S.; Haller, K.; Peters, M.; Hovatta, O.; Stavreus-Evers, A.; Karro, H.; Metspalu, A.; Salumets, A. Allelic estrogen receptor 1 (ESR1) gene variants predict the outcome of ovarian stimulation in in vitro fertilization. Mol. Hum. Reprod. 2007, 13, 521–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayvaz, O.U.; Ekmekçi, A.; Baltacı, V.; Önen, H.I.; Ünsal, E. Evaluation of in vitro fertilization parameters and estrogen receptor alpha gene polymorphisms for women with unexplained infertility. J. Assist. Reprod. Genet. 2009, 26, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.S.; Kim, S.H.; Ku, S.-Y.; Jee, B.C.; Suh, C.S.; Choi, Y.M.; Kim, J.G.; Moon, S.Y. Efficacy of ER-α Polymorphisms and the Intrafollicular IGF System for Predicting Pregnancy in IVF-ET Patients. Gynecol. Obstet. Investig. 2009, 67, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Jakimiuk, A.J.; Weitsman, S.R.; Yen, H.W.; Bogusiewicz, M.; Magoffin, D.A. Estrogen receptor alpha and beta expression in theca and granulosa cells from women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 5532–5538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatzirodos, N.; Hummitzsch, K.; Irving-Rodgers, H.F.; Rodgers, R.J. Transcriptome Profiling of the Theca Interna in Transition from Small to Large Antral Ovarian Follicles. PLoS ONE 2014, 9, e97489. [Google Scholar] [CrossRef] [Green Version]
- Young, J.M.; McNeilly, A.S. Theca: The forgotten cell of the ovarian follicle. Reproduction 2010, 140, 489–504. [Google Scholar] [CrossRef] [Green Version]
- Dumesic, D.A.; Hoyos, L.R.; Chazenbalk, G.D.; Naik, R.; Padmanabhan, V.; Abbott, D.H. Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction 2020, 159, R1–R13. [Google Scholar] [CrossRef] [Green Version]
- Boomsma, C.; Eijkemans, M.; Hughes, E.; Visser, G.; Fauser, B.; Macklon, N. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum. Reprod. Update 2006, 12, 673–683. [Google Scholar] [CrossRef]
- Wei, J.; Huang, K.; Yang, C.; Kang, C. Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep. 2017, 37, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Peschansky, V.; Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 2014, 9, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilie, I.R.; Georgescu, C.E. Polycystic Ovary Syndrome-Epigenetic Mechanisms and Aberrant MicroRNA. In Advances in Applied Microbiology; Makowski, G.S., Ed.; Elsevier BV: Amsterdam, The Netherlands, 2015; Volume 71, pp. 25–45. [Google Scholar]
- Chen, B.; Xu, P.; Wang, J.; Zhang, C. The role of MiRNA in polycystic ovary syndrome (PCOS). Gene 2019, 706, 91–96. [Google Scholar] [CrossRef]
- Mu, L.; Sun, X.; Tu, M.; Zhang, D. Non-coding RNAs in polycystic ovary syndrome: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2021, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Zhao, C.; Ji, C.; Ding, H.; Cui, Y.; Guo, X.; Shen, R.; Liu, J. Characterization of Serum MicroRNAs Profile of PCOS and Identification of Novel Non-Invasive Biomarkers. Cell. Physiol. Biochem. 2014, 33, 1304–1315. [Google Scholar] [CrossRef]
- Robertson, S.A.; Zhang, B.; Chan, H.; Sharkey, D.J.; Barry, S.C.; Fullston, T.; Schjenken, J.E. MicroRNA regulation of immune events at conception. Mol. Reprod. Dev. 2017, 84, 914–925. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.E.; Ramachandran, V.; Sathyapalan, T.; David, R.; Gooderham, N.J.; Benurwar, M.; Dargham, S.R.; Hayat, S.; Hani Najafi-Shoushtari, S.; Atkin, S.L. microRNA Expression in Women with and without Polycystic Ovarian Syndrome Matched for Body Mass Index. Front. Endocrinol. 2020, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018, 110, 364–379. [Google Scholar] [CrossRef] [Green Version]
- Aversa, A.; La Vignera, S.; Rago, R.; Gambineri, A.; Nappi, R.E.; Calogero, A.E.; Ferlin, A. Fundamental Concepts and Novel Aspects of Polycystic Ovarian Syndrome: Expert Consensus Resolutions. Front. Endocrinol. 2020, 11, 516. [Google Scholar] [CrossRef]
- Ereqat, S.; Cauchi, S.; Eweidat, K.; Elqadi, M.; Nasereddin, A. Estrogen receptor 1 gene polymorphisms (PvuII and XbaI) are associated with type 2 diabetes in Palestinian women. PeerJ 2019, 7, e7164. [Google Scholar] [CrossRef]
- Dikeakos, P.; Theodoropoulos, G.; Rizos, S.; Tzanakis, N.; Zografos, G.; Gazouli, M. Association of the miR-146aC>G, miR-149T>C, and miR-196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. Mol. Biol. Rep. 2014, 41, 1075–1080. [Google Scholar] [CrossRef]
- Cheng, H.S.; Besla, R.; Li, A.; Chen, Z.; Shikatani, E.A.; Nazari-Jahantigh, M.; Hammoutène, A.; Nguyen, M.A.; Geoffrion, M.; Cai, L.; et al. Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a. Circ. Res. 2017, 121, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K.; Strong, A.; Frank-Kamenetsky, M.; Lee, N.E.; Ahfeldt, T.; Sachs, K.V.; Li, X.; Li, H.; Kuperwasser, N.; Ruda, V.M.; et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 2010, 466, 714–719. [Google Scholar] [CrossRef] [PubMed]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Ezzidi, I.; Mtiraoui, N.; Ali, M.E.; Al Masoudi, A.; Abuduhier, F. Adiponectin (ADIPOQ) gene variants and haplotypes in Saudi Arabian women with polycystic ovary syndrome (PCOS): A case–control study. Gynecol. Endocrinol. 2020, 36, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Elfaki, I.; Jha, C.; Javid, J.; Rehman, S.; Banu, S.; Mir, M.M.; Babakr, A.T.; Chahal, S.M.S. Molecular Evaluation of MicroRNA-146 Gene Variability (rs2910164 C>G) and its Association with Increased Susceptibility to Coronary Artery Disease. Microrna. 2020, 9, 363–372. [Google Scholar] [CrossRef]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Alsayed, B.A.; Wani, J.I.; Alharthi, M.H.; Al-Shahrani, A.M. Strong Association of Angiotensin Converting Enzyme-2 Gene Insertion/Deletion Polymorphism with Susceptibility to SARS-CoV-2, Hypertension, Coronary Artery Disease and COVID-19 Disease Mortality. J. Pers. Med. 2021, 11, 1098. [Google Scholar] [CrossRef]
- Mir, R.; Elfaki, I.; Abu Duhier, F.M.; Alotaibi, M.A.; AlAlawy, A.I.; Barnawi, J.; Babakr, A.T.; Mir, M.M.; Mirghani, H.; Hamadi, A.; et al. Molecular Determination of mirRNA-126 rs4636297, Phosphoinositide-3-Kinase Regulatory Subunit 1-Gene Variability rs7713645, rs706713 (Tyr73Tyr), rs3730089 (Met326Ile) and Their Association with Susceptibility to T2D. J. Pers. Med. 2021, 11, 861. [Google Scholar] [CrossRef]
- Escobar-Morreale, H. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef]
- Wang, F.; Dai, W.; Yang, X.H.; Guo, Y.H.; Sun, Y.P. Analyses of optimal body mass index for infertile patients with either polycystic or non-polycystic ovary syndrome during assisted reproductive treatment in China. Sci. Rep. 2016, 6, 34538. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.T.; Calderon-Margalit, R.; Cedars, M.I.; Daviglus, M.L.; Merkin, S.S.; Schreiner, P.J.; Sternfeld, B.; Wellons, M.; Schwartz, S.M.; Lewis, C.E.; et al. Polycystic Ovary Syndrome and Risk for Long-Term Diabetes and Dyslipidemia. Obstet. Gynecol. 2011, 117, 6–13. [Google Scholar] [CrossRef]
- Forslund, M.; Landin-Wilhelmsen, K.; Trimpou, P.; Schmidt, J.; Brännström, M.; Dahlgren, E. Type 2 diabetes mellitus in women with polycystic ovary syndrome during a 24-year period: Importance of obesity and abdominal fat distribution. Hum. Reprod. Open 2020, 2020, hoz042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, S.; Nabi, M.; Rasool, S.U.A.; Rashid, F.; Amin, S. Hyperandrogenism in polycystic ovarian syndrome and role of CYP gene variants: A review. Egypt. J. Med. Hum. Genet. 2019, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Choi, Y.M.; Choung, S.H.; Yoon, S.H.; Lee, G.H.; Moon, S.Y. Estrogen receptor beta gene +1730 G/A polymorphism in women with polycystic ovary syndrome. Fertil. Steril. 2010, 93, 1942–1947. [Google Scholar] [CrossRef]
- Nectaria, X.; Leandros, L.; Loannis, G.; Agathocles, T. The importance of ERα and ERβ gene polymorphisms in PCOS. Gynecol. Endocrinol. 2012, 28, 505–508. [Google Scholar] [CrossRef]
- Zhou, S.; Wen, S.; Sheng, Y.; Yang, M.; Shen, X.; Chen, Y.; Kang, D.; Xu, L. Association of Estrogen Receptor Genes Polymorphisms With Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis Based on Observational Studies. Front. Endocrinol. 2021, 12, 1234. [Google Scholar] [CrossRef]
- Shaw, N.; Histed, S.N.; Srouji, S.S.; Yang, J.; Lee, H.; Hall, J.E. Estrogen Negative Feedback on Gonadotropin Secretion: Evidence for a Direct Pituitary Effect in Women. J. Clin. Endocrinol. Metab. 2010, 95, 1955–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar] [PubMed]
- Chen, Y.; Tang, W.; Liu, C.; Lin, J.; Wang, Y.; Zhang, S.; Chen, G.; Zheng, X. miRNA-146a rs2910164 C>G polymorphism increased the risk of esophagogastric junction adenocarcinoma: A case–control study involving 2740 participants. Cancer Manag. Res. 2018, 10, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Gu, H.; Chen, Z.; Tang, W.; Zhang, S.; Lin, Z. MiRNA-146a rs2910164 Confers a Susceptibility to Digestive System Cancer: A Meta-Analysis Involving 59,098 Subjects. Immunol. Investig. 2020, 51, 199–219. [Google Scholar] [CrossRef]
- Keewan, E.; Naser, S.A. MiR-146a rs2910164 G>C polymorphism modulates Notch-1/IL-6 signaling during infection: A possible risk factor for Crohn’s disease. Gut. Pathog. 2020, 1, 48. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, E.; Ghattas, M.H.; Mesbah, N.; Saleh, S.M.; Abo-Elmatty, D.M. Association of MicroRNA-146a rs2910164 Gene Polymorphism with Metabolic Syndrome. Folia Biol. 2015, 61, 43–48. [Google Scholar]
- Francesca, C.; Cecilia, C.; Pietro, L.; Chiara, S.; Alessia, N.; Sergio, A.; Battista, L.G.; Elisabeth, S.M. MiRNAs Regulating Insulin Sensitivity Are Dysregulated in Polycystic Ovary Syndrome (PCOS) Ovaries and Are Associated with Markers of Inflammation and Insulin Sensitivity. Front. Endocrinol. 2019, 10, 879. [Google Scholar]
- Hosseini, A.H.; Kohan, L.; Aledavood, A.; Rostami, S. Association of miR-146a rs2910164 and miR-222 rs2858060 polymorphisms with the risk of polycystic ovary syndrome in Iranian women: A case–control study. Taiw. J. Obstet. Gynecol. 2017, 56, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Cross, D.S.; Ivacic, L.C.; Stefanski, E.L.; McCarty, C. Population based allele frequencies of disease associated polymorphisms in the Personalized Medicine Research Project. BMC Genet. 2010, 11, 51. [Google Scholar] [CrossRef] [Green Version]
Direction | Sequence of Primer | PCR Product | Annealing Temperature | |
---|---|---|---|---|
ESR1 PvuII-rs2234693 T>C ARMS primers | ||||
ESR1-Fo | FO | 5′-TGATATCCAGGGTTATGTGGCAA-3′ | 278 bp | 58 °C |
ESR1-Ro | RO | 5′-CTGCACCAGAATATGTTACCTATAAAAA-3′ | ||
ESR1-FI-C | FI | 5′-TGAGTTCCAAATGTCCCAGCC-3′ | 193 bp | |
ESR1-RI-T | RI | 5′-GGGAAACAGAGACAAAGCATAAACA-3′ | 131 bp | |
miR- 146a-rs2910164 C>G ARMS primers | ||||
miR- 146a Fo | FO | 5′-GGCCTGGTCTCCTCCAGATGTTTAT-3′ | 364 bp | 61 °C |
miR- 146a Ro | RO | 5′-ATACCTTCAGAGCCTGAGACTCTGCC-3′ | ||
miR- 146a FI-C | FI | 5′-ATGGGTTGTGTCAGTGTCAGACCTC-3′ | 169 bp | |
miR- 146a RI-G | RI | 5′-GATATCCCAGCTGAAGAACTGAATTTCAC-3′ | 249 bp |
Characteristic | Controls a | Cases a | pb |
---|---|---|---|
Age and BMI | |||
Age c | 27.49 ± 4.29 | 27.89 ± 4.97 | 0.229 |
BMI (kg/m2) c | 25.71 ± 2.39 | 27.79 ± 4.82 | <0.001 |
T2DM Markers | |||
Free Insulin (mU/mL) c | 8.30 ± 2.79 | 14.47 ± 6.48 | <0.001 |
HOMA-IR c | 1.64 ± 0.68 | 5.24 ± 3.24 | <0.001 |
FBG (mmol/l) c | 5.69 ± 0.93 | 7.66 ± 2.34 | <0.001 |
Lipid Markers | |||
Triglycerides (mmol/l) c | 1.82 ± 0.63 | 3.58 ± 1.39 | 0.038 |
Cholesterol (mmol/l) c | 1.36 ± 0.28 | 1.57 ± 0.37 | <0.001 |
LDL (mmol/l) c | 3.88 ± 0.48 | 5.51 ± 1.47 | <0.001 |
HDL (mmol/l) c | 1.55 ± 0.57 | 1.70 ± 0.85 | <0.001 |
Endocrine Markers | |||
LH (mIU/mL) d | 0.08 (0.07–1.38) | 3.88 (0.78–9.18) | <0.001 |
Progesterone (ng/mL) d | 17.36 (2.58–19.87) | 19.87 (1.77–34.87) | <0.001 |
FSH (mIU/mL) d | 0.41 (0.36–3.56) | 5.47 (2.20–6.80) | <0.001 |
Estradiol (pmol/l) d | 238.90 (141.88–488.18) | 251.40 (172.97–509.14) | 0.167 |
Testosterone (ng/dl) d | 13.98 (8.50–39.58) | 62.17 (44.89–92.36) | <0.001 |
Subjects | N = 217 | CC | CT | TT | C Allele | T Allele | Df | X2 | p Value |
---|---|---|---|---|---|---|---|---|---|
PCOS Cases | 102 | 10(9.80%) | 52(50.98%) | 40(39.21%) | 0.36 | 0.64 | 2 | 1.18 | 0.55 |
Controls | 115 | 13(11.30%) | 65(56.52%) | 37(32.17%) | 0.56 | 0.44 |
Genotypes | Healthy Controls | PCOS Patients | OR (95% CI) | Risk Ratio (RR) | p-Value | |
---|---|---|---|---|---|---|
(N = 115) | (N = 102) | |||||
Codominant | ||||||
ER-CC | 13 | 10 | (ref.) | (ref.) | ||
ER-CT | 65 | 52 | 1.04 (0.42–2.56) | 1.01 (0.68–1.50) | 0.93 | NS |
ER-TT | 37 | 40 | 1.40 (0.55–3.59) | 1.17 (0.76–1.80) | 0.47 | NS |
Dominant | ||||||
ER-CC | 13 | 10 | (ref.) | (ref.) | ||
ER-(CT + TT) | 102 | 92 | 1.17 (0.49–2.802) | 1.07 (0.73–1.57) | 0.071 | NS |
Recessive | ||||||
ER-(CC + CT) | 78 | 62 | (ref.) | (ref.) | ||
ER-TT | 37 | 40 | 1.36 (0.77–2.375) | 1.15 (0.88–1.52) | 0.27 | NS |
Allele | ||||||
ER-C | 91 | 72 | (ref.) | (ref.) | ||
ER-A | 139 | 132 | 1.36 (0.77–2.37) | 1.01 (0.90–1.30) | 0.35 | NS |
Subjects | N = 207 | GG | GC | CC | Df | X2 | G | C | p Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 100 | 27(27%) | 43(43%) | 30(30%) | 2 | 9.25 | 0.48 | 0.52 | 0.009 |
Controls | 107 | 49(45.79%) | 40(37.38%) | 18(16.82%) | 0.64 | 0.36 |
Genotypes | Healthy Controls | PCOS Cases | OR (95% CI) | Risk Ratio (RR) | p-Value |
---|---|---|---|---|---|
(N = 107) | (N = 100) | ||||
Codominant | |||||
miR- 146-CC | 49 | 27 | (ref.) | (ref.) | |
miR- 146-CG | 40 | 43 | 1.95 (1.03–3.68) | 1.33 (1.01–1.76) | 0.039 |
miR- 146-GG | 18 | 30 | 3.02 (1.42–6.40) | 1.71 (1.15–2.56) | 0.003 |
Dominant | |||||
MiR- 146-CC | 49 | 27 | (ref.) | (ref.) | |
MiR- 146-(CG + GG) | 58 | 73 | 2.28 (1.27–4.09) | 1.45 (1.12–1.87) | 0.003 |
Recessive | |||||
MiR- 146-(CC + GC) | 89 | 70 | (ref.) | (ref.) | |
MiR- 146-GG | 18 | 30 | 2.11 (1.09–4.11) | 1.49 (1.01–2.20) | 0.026 |
Allele | |||||
miR- 146-C | 138 | 97 | (ref.) | (ref.) | |
miR- 146-G | 76 | 103 | 1.92 (1.30–2.85) | 1.38 (1.13–1.69) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, R.; Tayeb, F.J.; Barnawi, J.; Jalal, M.M.; Saeedi, N.H.; Hamadi, A.; Altayar, M.A.; Alshammari, S.E.; Mtiraoui, N.; Ali, M.E.; et al. Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome. Int. J. Environ. Res. Public Health 2022, 19, 3114. https://doi.org/10.3390/ijerph19053114
Mir R, Tayeb FJ, Barnawi J, Jalal MM, Saeedi NH, Hamadi A, Altayar MA, Alshammari SE, Mtiraoui N, Ali ME, et al. Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome. International Journal of Environmental Research and Public Health. 2022; 19(5):3114. https://doi.org/10.3390/ijerph19053114
Chicago/Turabian StyleMir, Rashid, Faris J. Tayeb, Jameel Barnawi, Mohammed M. Jalal, Nizar H. Saeedi, Abdullah Hamadi, Malik A. Altayar, Sanad E. Alshammari, Nabil Mtiraoui, Mohammed Eltigani Ali, and et al. 2022. "Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome" International Journal of Environmental Research and Public Health 19, no. 5: 3114. https://doi.org/10.3390/ijerph19053114
APA StyleMir, R., Tayeb, F. J., Barnawi, J., Jalal, M. M., Saeedi, N. H., Hamadi, A., Altayar, M. A., Alshammari, S. E., Mtiraoui, N., Ali, M. E., Duhier, F. M. A., & Ullah, M. F. (2022). Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome. International Journal of Environmental Research and Public Health, 19(5), 3114. https://doi.org/10.3390/ijerph19053114