Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Locations
2.2. Sample Collection and Processing
2.3. Statistical Analysis
3. Results
3.1. Water Parameters and Nutrients in the Five Lakes
3.2. Phytoplankton Composition and Biodiversity in the Five Lakes
3.3. Correlations between Water Parameters and Phytoplankton in the Five Lakes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, J.; Hou, Z.; Li, Z.; Chu, Z.; Yang, P.; Zheng, B. Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake. Sci. Total Environ. 2018, 631–632, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Shi, W.; Chen, Q.; Lauridsen, T.L. Spatial and temporal variations reveal the response of zooplankton to cyanobacteria. Harmful Algae 2017, 64, 63–73. [Google Scholar] [CrossRef]
- Jia, J.; Luo, W.; Lu, Y.; Giesy, J.P. Bioaccumulation of microcystins (MCs) in four fish species from Lake Taihu, China: Assessment of risks to humans. Sci. Total Environ. 2014, 487, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Steinman, A.D.; Oudsema, M.; Hassett, M.; Xie, L. The influence of nutrients limitation on phytoplankton growth and microcystins production in Spring Lake, USA. Chemosphere 2019, 234, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pan, J.; Han, B.-P.; Naselli-Flores, L. The effects of absolute and relative nutrient concentrations (N/P) on phytoplankton in a subtropical reservoir. Ecol. Indic. 2020, 115, 106466. [Google Scholar] [CrossRef]
- Derot, J.; Jamoneau, A.; Teichert, N.; Rosebery, J.; Morin, S.; Laplace-Treyture, C. Response of phytoplankton traits to environmental variables in French lakes: New perspectives for bioindication. Ecol. Indic. 2020, 108, 105659. [Google Scholar] [CrossRef]
- Li, J.; Ma, R.; Xue, K.; Loiselle, S. Drivers to spatial and temporal dynamics of column integrated phytoplankton biomass in the shallow lake of Chaohu, China. Ecol. Indic. 2020, 109, 105812. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gao, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Vrede, T.; Ballantyne, A.; Mille-Lindblom, C.; Algesten, G.; Gudasz, C.; Lindahl, S.; Brunberg, A.K. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biol. 2009, 54, 331–344. [Google Scholar] [CrossRef]
- Johnk, K.D.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P.M.; Stroom, J.M. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Chang. Biol. 2008, 14, 495–512. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Qin, B.; Yu, Y.; Yang, Z.; Shi, X.; Kong, F. Effects of temperature fluctuation on the development of cyanobacterial dominance in spring: Implication of future climate change. Hydrobiologia 2016, 763, 135–146. [Google Scholar] [CrossRef]
- Kosten, S.; Huszar, V.L.M.; Bécares, E.; Costa, L.S.; Donk, E.; Hansson, L.-A.; Jeppesen, E.; Kruk, C.; Lacerot, G.; Mazzeo, N.; et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Chang. Biol. 2012, 18, 118–126. [Google Scholar] [CrossRef]
- Schindler, D.W. Eutrophication and Recovery in Experimental Lakes-Implications for Lake Management. Science 1974, 184, 897–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecky, R.E.; Kilham, P. Nutrient limitation of phytoplankton in fresh-water and marine environments—A review of recent-evidence on the effects of enrichment. Limnol. Oceanogr. 1988, 33, 796–822. [Google Scholar]
- Nixon, S.W. Coastal marine eutrophication—A definition, social causes, and future concerns. Ophelia 1995, 41, 199–219. [Google Scholar] [CrossRef]
- Lv, J.; Wu, H.; Chen, M. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 2011, 41, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Dokulil, M.T.; Teubner, K. Cyanobacterial dominance in lakes. Hydrobiologia 2000, 438, 1–12. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. ECOLOGY Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Paerl, H.W.; Fulton, R.S. Ecology of Harmful Marine Algae; Springer: Berlin, Germany, 2006; pp. 95–107. [Google Scholar]
- Paerl, H.W.; Huisman, J. Climate-Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, C.; Estrada, V.; Parodi, E.R. Factors Triggering Cyanobacteria Dominance and Succession During Blooms in a Hypereutrophic Drinking Water Supply Reservoir. Water Air Soil Pollut. 2015, 226, 1–13. [Google Scholar] [CrossRef]
- Gobler, C.J.; Davis, T.W.; Coyne, K.J.; Boyer, G.L. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 2007, 6, 119–133. [Google Scholar] [CrossRef]
- Sunda, W.G.; Graneli, E.; Gobler, C.J. Positive feedback and the development and persistence of ecosystem disruptive algal blooms. J. Phycol. 2006, 42, 963–974. [Google Scholar] [CrossRef]
- Harke, M.J.; Davis, T.W.; Watson, S.B.; Gobler, C.J. Nutrient-Controlled Niche Differentiation of Western Lake Erie Cyanobacterial Populations Revealed via Metatranscriptomic Surveys. Environ. Sci. Technol. 2016, 50, 604–615. [Google Scholar] [CrossRef]
- Davis, T.W.; Harke, M.J.; Marcoval, M.A.; Goleski, J.; Orano-Dawson, C.; Berry, D.L.; Gobler, C.J. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat. Microb. Ecol. 2010, 61, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, M.K.; Bagchi, D.; Bagchi, S.N. Acute inhibition of protease and suppression of growth in zooplankter, Moina macrocopa, by Microcystis blooms collected in Central India. Hydrobiologia 2001, 464, 37–44. [Google Scholar] [CrossRef]
- Agrawal, M.K.; Zitt, A.; Bagchi, D.; Weckesser, J.; Bagchi, S.N.; von Elert, E. Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806. Environ. Toxicol. 2005, 20, 314–322. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef] [Green Version]
- Tolotti, M.; Thies, H.; Nickus, U.; Psenner, R. Temperature modulated effects of nutrients on phytoplankton changes in a mountain lake. Hydrobiologia 2012, 698, 61–75. [Google Scholar] [CrossRef]
- Ren, Z.; Niu, D.; Ma, P.; Wang, Y.; Fu, H.; Elser, J.J. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology 2019, 100, e02755. [Google Scholar] [CrossRef]
- Preece, E.P.; Hardy, F.J.; Moore, B.C.; Bryan, M. A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae 2017, 61, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Von Alvensleben, N.; Magnusson, M.; Heimann, K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J. Appl. Phycol. 2015, 28, 861–876. [Google Scholar] [CrossRef]
- Zhang, D.W.; Xie, P.; Liu, Y.Q.; Qiu, T. Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci. Total Environ. 2009, 407, 2191–2199. [Google Scholar] [CrossRef]
- Jin, X.; Hu, X. A comprehensive plan for treating the major polluted regions of Lake Taihu, China. Lakes Reserv. Res. Manag. 2003, 8, 217–230. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, C.; Zhou, X.; Lei, K.; Guo, B.; Cao, Y.; Lu, S.; Liu, X.; He, M. Concentrations, fluxes, and potential sources of nitrogen and phosphorus species in atmospheric wet deposition of the Lake Qinghai Watershed, China. Sci. Total Environ. 2019, 682, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lin, C.; Zhang, X.; Liu, X.; He, M.; Ouyang, W. Distribution, source, and ecological risks of polycyclic aromatic hydrocarbons in Lake Qinghai, China. Environ. Pollut. 2020, 266 Pt 1, 115401. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, J.; Yang, P.; Zhou, S.; Zhang, Y. Comparison of sediment proxies of cores and their environmental significance at different locations of Lake Toson in Qaidam Basin. J. Lake Sci. 2020, 32, 259–270. [Google Scholar]
- National Environmental Protection Bureau. Standard Methods for the Examination of Water and Wastewater (Version 4); China Environmental Science Publish Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Watanabe, M.M.; Kaya, K.; Takamura, N. Fate of the toxic cyclic heptapeptides, the microcystins, from blooms of Microcystis (cyanobacteria) in a hypertrophic lake. J. Phycol. 1992, 28, 761–767. [Google Scholar] [CrossRef]
- Song, L.R.; Chen, W.; Peng, L.; Wan, N.; Gan, N.Q.; Zhang, X.M. Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res. 2007, 41, 2853–2864. [Google Scholar] [CrossRef]
- Jeppesen, E.; Jensen, J.P.; Sondergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshwater Biol. 2000, 45, 201–218. [Google Scholar] [CrossRef]
- Ji, X.; Verspagen, J.M.H.; Stomp, M.; Huisman, J. Competition between cyanobacteria and green algae at low versus elevated CO2: Who will win, and why? J. Exp. Bot. 2017, 68, 3815–3828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranz, S.A.; Gladrow, D.W.; Nehrke, G.; Langer, G.; Rosta, B. Calcium carbonate precipitation induced by the growth of the marine cyanobacteriaTrichodesmium. Limnol. Oceanogr. 2010, 55, 2563–2569. [Google Scholar] [CrossRef] [Green Version]
- Talling, J.F. The Depletion of Carbon Dioxide from Lake Water by Phytoplankton. J. Ecol. 1976, 64, 79–121. [Google Scholar] [CrossRef]
- Balmer, M.B.; Downing, J.A. Carbon dioxide concentrations in eutrophic lakes: Undersaturation implies atmospheric uptake. Inland Waters 2011, 1, 125–132. [Google Scholar] [CrossRef]
- Verschoor, A.M.; Van Dijk, M.A.; Huisman, J.; Van Donk, E. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshwater Biol. 2013, 58, 597–611. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.H.; Chen, Y.W. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation. Harmful Algae 2011, 10, 337–343. [Google Scholar] [CrossRef]
- Hörnström, E. Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH. Hydrobiologia 2002, 470, 115–126. [Google Scholar] [CrossRef]
- Ma, Z.; Chu, Z.; Hu, X.; Jin, X.; Zhang, G. The Effect of pH on Competition of M. aeruginosa and S. quadricauda at Different Phosphorus Mass Concentration. Res. Environ. Sci. 2005, 18, 30–33. [Google Scholar]
- Touloupakis, E.; Cicchi, B.; Silva Benavides, A.M.; Torzillo, G. Effect of high pH on growth of Synechocystis sp PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Appl. Microbiol. Biotechnol. 2016, 100, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Georges des Aulnois, M.; Roux, P.; Caruana, A.; Réveillon, D.; Briand, E.; Hervé, F.; Savar, V.; Bormans, M.; Amzil, Z. Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance. Appl. Environ. Microbiol. 2019, 85, e01614-19. [Google Scholar] [CrossRef]
- Ross, C.; Warhurst, B.C.; Brown, A.; Huff, C.; Ochrietor, J.D. Mesohaline conditions represent the threshold for oxidative stress, cell death and toxin release in the cyanobacterium Microcystis aeruginosa. Aquat. Toxicol. 2019, 206, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Affenzeller, M.J.; Darehshouri, A.; Andosch, A.; Lutz, C.; Lutz-Meindl, U. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. Exp. Bot. 2009, 60, 939–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T.; Yu, W. Recent Glacial Retreat and Its Impact on Hydrological Processes on the Tibetan Plateau, China, and Surrounding Regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Xu, L.; Hou, J.; Liu, Z.; Jeppesen, E.; Han, B.P. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming. Water Res. 2017, 124, 618–629. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Holmgren, K.; González-Bergonzoni, I.; Teixeira-de Mello, F.; Declerck, S.A.J.; De Meester, L.; Søndergaard, M.; Lauridsen, T.L.; Bjerring, R.; et al. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 2010, 646, 73–90. [Google Scholar] [CrossRef]
Lakes and Rivers (n) | Seasons | Water Parameters | ||||
---|---|---|---|---|---|---|
Temperature (°C) | pH | Salinity (ppt) | TN (mg/L) | TP (mg/L) | ||
Qinghai (6) | Spring | 17.9 ± 2.3 | 9.2 ± 0.09 | 10.5 ± 0.7 | 2.7 ± 1.2 | 0.06 ± 0.05 |
Summer | 17.5 ± 0.1 | 9.2 ± 0.01 | 9.5 ± 1.1 | 1.8 ± 0.8 | 0.01 ± 0.004 | |
Autumn | 7.0 ± 3.5 | 9.4 ± 0.2 | 8.6 ± 2.9 | 3.5 ± 3.0 | 0.04 ± 0.04 | |
Mean | 14.6 ± 5.5 | 9.3 ± 0.1 | 9.6 ± 1.8 | 2.6 ± 1.8 | 0.04 ± 0.04 | |
Qinghai (IR) (4) | Spring | 12.3 ± 3.4 | 8.5 ± 0.3 | 0.26 ± 0.1 | 7.0 ± 9.6 | 0.004 ± 0.003 |
Summer | 16.5 ± 0.8 | 8.6 ± 0.3 | 0.28 ± 0.07 | 5.8 ± 4.9 | 0.02 ± 0.02 | |
Autumn | 8.1 ± 0.9 | 8.6 ± 0.1 | 0.24 ± 0.09 | 7.0 ± 3.6 | 0.02 ± 0.01 | |
Mean | 12.5 ± 4.0 | 8.6 ± 0.2 | 0.26 ± 0.09 | 6.6 ± 6.6 | 0.01 ± 0.01 | |
Keluke (5) | Spring | 20.6 ± 4.0 | 8.5 ± 0.2 | 10.2 ± 20.4 | 5.1 ± 8.0 | 0.05 ± 0.05 |
Summer | 21.2 ± 0.8 | 8.4 ± 0.3 | 3.0 ± 3.8 | 3.9 ± 1.1 | 0.05 ± 0.03 | |
Autumn | 6.0 ± 0.6 | 8.2 ± 0.4 | 7.7 ± 11.7 | 7.5 ± 7.3 | 0.06 ± 0.05 | |
Mean | 15.9 ± 7.6 | 8.4 ± 0.3 | 6.9 ± 13.1 | 5.5 ± 6.0 | 0.05 ± 0.04 | |
Tuosu (3) | Spring | 20.3 ± 0.9 | 9.2 ± 0.03 | 22.2 ± 0.4 | 0.3 ± 0.4 | 0.02 ± 0.002 |
Summer | 23.1 ± 1.2 | 8.8 ± 0.3 | 8.5 ± 7.4 | 2.0 ± 0.4 | 0.02 ± 0.003 | |
Autumn | 10.1 ± 0.3 | 9.1 ± 0.02 | 13.9 ± 6.7 | 1.6 ± 0.3 | 0.02 ± 0.01 | |
Mean | 17.8 ± 5.9 | 9.0 ± 0.2 | 14.9 ± 7.8 | 1.3 ± 0.8 | 0.02 ± 0.008 | |
Tuosu (IR)(1) | Mean | 16.1 ± 6.8 | 8.6 ± 0.2 | 0.77 ± 0.1 | 2.2 ± 0.05 | 0.01 ± 0.004 |
Yanghe (6) | Spring | 17.1 ± 0.7 | 5.7 ± 0.8 | 0.17 ± 0.08 | 2.7 ± 0.02 | 0.01 ± 0.001 |
Summer | 26.9 ± 0.7 | 8.4 ± 0.2 | 0.16 ± 0.005 | 0.1 ± 0.01 | 0.01 ± 0.002 | |
Autumn | 15.5 ± 0.1 | 6.5 ± 0.6 | 0.18 ± 0.001 | 0.5 ± 0.1 | 0.03 ± 0.01 | |
Mean | 19.8 ± 5.2 | 6.9 ± 1.3 | 0.17 ± 0.04 | 1.1 ± 1.2 | 0.02 ± 0.01 | |
Taihu (12) | Spring | 17.4 ± 0.2 | 6.8 ± 0.3 | 0.30 ± 0.04 | 2.8 ± 0.7 | 0.09 ± 0.11 |
Summer | 30.6 ± 0.4 | 7.4 ± 0.4 | 0.24 ± 0.03 | 0.6 ± 0.5 | 0.01 ± 0.003 | |
Autumn | 23 ± 0.4 | 6.9 ± 0.3 | 0.22 ± 0.02 | 0.5 ± 0.4 | 0.04 ± 0.03 | |
Mean | 23.7 ± 5.5 | 7.0 ± 0.4 | 0.25 ± 0.04 | 1.3 ± 1.2 | 0.05 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Chen, Q.; Ren, H.; Lu, R.; He, H.; Gu, P. Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management. Int. J. Environ. Res. Public Health 2022, 19, 3135. https://doi.org/10.3390/ijerph19053135
Jia J, Chen Q, Ren H, Lu R, He H, Gu P. Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management. International Journal of Environmental Research and Public Health. 2022; 19(5):3135. https://doi.org/10.3390/ijerph19053135
Chicago/Turabian StyleJia, Junmei, Qiuwen Chen, Haidong Ren, Renjie Lu, Hui He, and Peiwen Gu. 2022. "Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management" International Journal of Environmental Research and Public Health 19, no. 5: 3135. https://doi.org/10.3390/ijerph19053135
APA StyleJia, J., Chen, Q., Ren, H., Lu, R., He, H., & Gu, P. (2022). Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management. International Journal of Environmental Research and Public Health, 19(5), 3135. https://doi.org/10.3390/ijerph19053135