Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review
Abstract
:1. Introduction
2. Microbial Recruitment in Different Tillage Practices
2.1. Impact of Conventional Tillage vs. No-Tillage on Soil
2.2. Soil Microbial Diversity in Different Tillage Practices
2.2.1. Bacterial Diversity
2.2.2. Fungal Diversity
2.3. Other Properties
3. Microbial Recruitment Affected by Crop Cultivar Rhizosphere
3.1. Factors Affecting Rhizosphere Microbial Population
3.1.1. Soil Type
3.1.2. Crop Cultivar
3.1.3. Composition of Root Exudates
4. Impact of Organic Farming on Soil Biodiversity
4.1. Cover Crops
4.2. Organic Amendments
5. Effect of Pesticides on Microbial Diversity
5.1. Microbial Metabolism of Pesticides
Herbicides | Effects on Microorganism and Associated Process | References |
---|---|---|
2,4-D | Adversely affects the activities of Rhizobium sp. | [122] |
2,4-D | Reduces nitrogenase, phosphatase, and hydrogen photoproduction activities of purple non-sulfur bacteria. | [123] |
2,4-D and 2,4,5-T | Adversely affects node-expression disrupting plant Rhizobium signaling. 2,4-D also reduces fixation by blue-green algae and nitrifying process impacting Nitrosomonas and Nitrobacter sp. | [124] |
2,4-D, Agroxone, and Atranex | Inhibits activities of Rhizobium phaseoli and Azotobacter vinelandii (most sensitive). | [122] |
2,4-D, Bromoxynil, and Methomyl | Reduces CH4 oxidation to CO2. | [125] |
Bensulfuron methyl and Metsulfuron-methyl | Decreases N-mineralization. | [126] |
Bentazone, Prometryn, Simazine, and Terbutryn | Inhibits N-fixation and decreases the number of nodules and N content overall. | [127] |
Isoproturon, Triclopyr | Adversely impacts Nitrosomonas, Nitrobacter, urea hydrolyzing bacteria, nitrate reductase activity, and growth of actinomycetes and fungi. | [128] |
Linuron, Terbutryn, and Methabenzthiazuron | Adversely impacts nitrogenase activity and nodulation at the pre-emergence application. | [129] |
Glyphosate | Suppresses phosphatase activity. | [130] |
Glyphosate | Reduces the growth and activity of Azotobacter. | [131] |
Metribuzin | At lower doses, no effects on AM fungi in maize and barley. | [132] |
Butachlor | Butachlor (20 μg/g) reduced the population of Azospirillum and anerobic nitrogen fixers in a non-flooded alluvial soil. | [133] |
Metsulfuron-methyl, Chlorsulfuron, Thifensulfuron methyl | Reduced the growth of fluorescent psendomonads (77 strains). | [134] |
Diuron, Linuron, Chlorotoluron | Negatively affect the microbial community structures. | [135] |
Propanil, Prometryne | Propanil did not affect soil bacteria in general. Prometryne persisted in soil longer than propanil. | [136] |
Glyphosate | Glyphosate produces a non-specific, short-term stimulation of bacteria at a high concentration. | [137] |
Isoproturon | Affects the proliferation of Sphingomonas spp. | [138] |
Butachlor | Negatively affects the general bacterial communities; the diversities ranged from 28% to 52%. | [139] |
Diuron or Linuron | Removal of dominant acidobacterium. | [135] |
Glyphosate | Increased relative abundance of β-Proteobacteria (Burkholderia). | [140] |
Napropramide | Initial decrease in bacterial and fungal abundance followed by an increase in abundance of Gram-negative bacteria and fungi. | [141] |
Pretilachlor | Decreased activity of phosphatase, urease, and dehydrogenase | [111] |
Mesotrione | No response of the soil microbial communities in soil spread with field rate applications. Soil microbial activity stimulated by 100× FRA of pure Mesotrione. | [142] |
Isoproturon | Treatment-induced changes in community composition | [109] |
Imazetapir | Decreases nitrogenase activity in Rhizobium leguminosarum. R. trifolii, Bradyrhizobium sp., and Sinorhizobium meliloti. | [143] |
Fungicides | Effects on Microorganism and Associated Process | References |
---|---|---|
Fenpropimorph | Fenpropimorph inhabited the growth of active fungi and calculable bacteria. | [144] |
Iprodione | Affects the soil bacterial communities. | [145] |
Apron, Arrest, and Captan | Reduces viable counts of Rhizobium cicero. | [146] |
Benomyl | Impacts mycorrhizal associations and nitrifying bacteria. | [147] |
Benomyl, Mancozeb | Arrests activity of dehydrogenase, urease, and phosphatase. | [148] |
Captan | Inhibits aerobic N-fixing, nitrifying, denitrifying bacteria, nitrogenase activity, phosphate solubilization, and other fungi. | [149] |
Captan and Thiram | Decreases cell growth and nitrogenase activity in Azospirillum brasilense. | [150] |
Captan and Carbendazim | Decreases the activity of nitrogenase enzyme. | [123] |
Captan, Carboxin, Thiram | Inhibits the activity of bacteria responsible for denitrification. | [151] |
Carbendazin and Thiram | Inhibits nodulation in legumes and thus N-fixation process. | [143] |
Chlorothalonil | Affects bacteria associated with nitrogen cycling. | [147] |
Chlorothalonil, Azoxystrobin | Affects biocontrol agent(s) used against Fusarium wilt. | [152] |
Copper fungicides | Decreases population of bacteria, cellulolytic fungi, and Streptomycetes. | [153] |
Dimethomorph | Inhibits nitrification and ammonification process. | [154] |
Dinocap | Inhibits the activity of ammonifying bacteria. | [155] |
Dithianon | Destroys bacterial diversity. | [156] |
Fenpropimorph | Slows down bacterial activity. | [151] |
Fludioxonil | Toxic to algal activities. | [157] |
Funaben, Baytan, Oxafun | Inhibits nitrogenase activity of methylotrophic bacteria. | [158] |
Hexaconazole | Impacts bacteria involved in N cycling. | [159] |
Mancozeb | Impacts on bacteria involved in the N & C cycle. | [155] |
Mancozeb, Chlorothalonil, Metal dithiocarbamates | Reduces nitrification process. | [160] |
Metalaxyl | Reduces urease activity continuously while phosphatase activity seems stimulated but then reduces. | [161] |
Metalaxyl | Disturbs activity of ammonifying and nitrifying bacteria. | [162] |
Oxytetracycline | Acts as bactericide. | [163] |
Pencycuron | Short-term impact on metabolically active soil bacteria. | [164] |
Propiconazole | Retards PGP effects of Azospirillum brasilense on its host plant. | [165] |
Triadimefon | Deleterious to long-term soil bacterial community. | [166] |
Triarimol and Captan | Reduces frequency of Aspergillus sp. | [167] |
Azoxystrobin, Chlorothalonil, Tebuconazole | None of the fungicides affected bacterial community structure. Chlorothalonil negatively affect the ciliate protozoan Arcuospathidium sp., or Bresslaua vorax. Azoxystrobin affect the Flagellate protozoan Paraflabellula hoguae, while ascomycete fungus Cladosporium tenuissimum was affected by tebuconazole. | [162] |
Cobber | Bioavailable Cu positively correlated with relative abundances of phylums Acidobacteria and negatively correlated with the phylums Proteobacteria and Bacteroidetes. | [168] |
Cobber | Decrease in abundance of acidobacteria and increase of Firmicutes. Bacillus community highly resistant to high cobber concentrations. | [169] |
Mancozeb | Enhanced activity of alkaline phosphatase, protease, amidase. Decreased activity of urease and asparaginase | [170] |
Propiconazole | Decreased activity of phosphatase, urease, and dehydrogenase. | [111] |
Chlorothalonil | More transient and weaker negative effects on soil micro-organisms. | [171] |
Thiram | Diversity decrease at 200 mg kg−1. | [172] |
Tebuconazole, Metalaxyl | Perturbation of bacterial community structure compared to control. | [173] |
Carbendazim, Thiram | Decreases nitrogenase activity in Rhizobium leguminosarum. R. trifolii, Bradyrhizobium sp., and Sinorhizobium meliloti. | [143] |
Metalaxyl and Mefenoxam | Decreases nitrogen-fixing bacteria and microbial biomass. | [174] |
Insecticides | Effects on Microorganism and Associated Process | References |
---|---|---|
Cypermethrin | Increase in Gram-negative bacteria and decrease in firmicutes. | [175] |
Amitraz, Aztec, Cyfluthrin, Imidachlorpid, and Tebupirimphos | Reduces activities of urease and phosphatase enzymes. | [176] |
Arsenic, DDT, and Lindane | Decreases microbial biomass and microbial and enzymatic activities. | [177] |
Bensulfuron methyl and Metsulfuron-methyl | Reduces soil microbial biomass. | [178] |
Carbamate | Inhibits several soil microorganisms, enzymes, and nitrogenase activity of Azospirillum. | [130,179] |
Carbofuran, Ethion | Inhibits nitrogenase activity of Anabaena doliolum. | [180] |
Chlorinated hydrocarbons | Inhibits methanogenesis. | [181] |
Chlorpyrifos, Dichlorvos, Phorate, Monocrotophos, Methyl parathion, Cypermethrin, Fenvalerate, Methomyl and Quinalphos | Increases phosphatase activity initially and later reduces gradually. Phorate reduces the total bacterial population and N-fixing bacteria. | [182] |
Chlorpyrifos, Profenofos, Pyrethrins, and Methylpyrimifos | Reduces the population of aerobic N-fixing, nitrifying and denitrifying bacteria, and several fungi. Profenofos and Pyrethrins decrease the activity of urease enzyme and nitrate reductase. | [183] |
Chlorpyrifos, Quinalphos | Reduces the ammonification process. | [182] |
Cyfluthrin, Fenpropimorph, and Imidacloprid | Decreases the nitrification and denitrification process. Stimulates sulfur oxidation. | [176] |
Diazinon and Imidacloprid | Inhibits a urease-producing bacterium (Proteus vulgaris). | [184] |
Lindane, Malathion, Diazinon, and Imidacloprid | Lindane inhibit state of nitrification, N-availability, P-solubilization, and activity of phosphomonoesterase enzyme, while the opposite effect is observed in the case of Diazinon and Imidacloprid. | [177] |
Methamidophos | Reduces microbial biomass by 41–83%. | [185] |
Neemix-4E | Reduces urease enzyme activity. | [186] |
Organophosphate insecticide | Impacts the activity of soil enzymes, several beneficial soil bacteria, and fungal population and reduces N-mineralization rate. | [179] |
Pentachlorophenol | Reduces nitrification. | [187] |
Quinalphos | Reduces activity of phosphomonoesterase. | [188] |
Diflubenzuron | Diflubenzuron (100–500 μg/g) stimulates dinitrogen-fixing bacteria (Azotobacter vinelandii). | [189] |
Methylpyrimifos, Chlorpyrifos | Methylpyrimifos (100–300 μg/g) or chlorpyrifos (10–300 μg/g) significantly decreased aerobic dinitrogen-fixing bacteria. Fungal populations and denitrifying bacteria were not affected. | [190] |
Fenamiphos | Not toxic to dehydrogenase or urease activities, but likely to be detrimental to the nitrification in the soil. | [191] |
Methamidophos | High concentrations of methamidophos (250 mg/kg) stimulate fungal populations. DGGE fingerprinting patterns showed a significant difference between the responses of culturable and total fungi communities under the stress of methamidophos. | [192] |
Methamidophos | Methamidophos at 0.031 g/pot/week and 0.31 g/pot/week significantly decreases microbial biomass by 41–83% compared with the control. | [185] |
Methylparathion | Induced the community of γ-porteobacteria (Pseudomonas stutzeri and Pseudomonas putida). | [193] |
Carbaryl, Carbofuran | Carbary (10 μg/g) had almost no effect on nitrogenise; however, carbofuran (2 μg/g) reduced the population of Azospirillum and anerobic nitrogen fixers. Carbofuran (4 μg/g) stimulated the population of Azospirillum and other anaerobic nitrogen fixers. | [133] |
Profenofos | Decreased activity of phosphatase, urease, and dehydrogenase | [189] |
Higher activities at lower dosage, greater toxic effects at higher dosage. | [194] |
Soil Fumigants | Effects on Microorganism and Associated Process | References |
---|---|---|
Metam sodium | Dose-dependent shift in community structure (after 5 weeks). | [195] |
Methyl Bromide | Increased abundance of Gram-positive bacteria. | [196] |
Methyl isothiocyanate | Increased abundance of Gram-positive bacteria. | [196] |
Metam sodium | Inhibitory effect on Gram-negative bacteria and fungi in both field and laboratory studies. | [197] |
1,3-dichloropropene | Initial inhibition of dehydrogenase activity (at 500 mg kg−1). Bacterial community diversity decreased with higher concentration. | [126] |
5.2. Deleterious Effects on Microbial Community
5.3. Methods of Detecting Effects of Pesticides on Microbial Community Structure
6. Effect of Moisture Levels on Soil Microbial Biodiversity
7. Microbial Inputs: A Way Out for Sustainable Crop Production
8. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jackson-Smith, D.B. Toward Sustainable Agricultural Systems in the 21st Century; National Academies Press: New York, NY, USA, 2010. [Google Scholar]
- Shelton, J.F.; Picciotto, I.H.; Pessah, I.N. Tipping the balance of autism risk: Potential mechanisms linking pesticides and autism. Environ. Health Perspect. 2012, 120, 944–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullin, C.A.; Chen, J.; Fine, J.D.; Frazier, M.T.; Frazier, J.L. The formulation makes the honey bee poison. Pestic. Biochem. Physiol. 2015, 120, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.L. Assessing the Impacts of Unrestricted Pesticide Use in Small-Scale Agriculture on Water Quality and Associated Human Health and Ecological Implications in an Indigenous Village in Rural Panama. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2014. [Google Scholar]
- Xin, L.J.; Li, X.B. China should not massively reclaim new farmland. Land Use Policy 2018, 72, 12–15. [Google Scholar] [CrossRef]
- Govaerts, B.; Mezzalama, M.; Unno, Y.; Sayre, K.D.; Luna-Guido, M.; Vanherck, K.; Dendooven, L.; Deckers, J. Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl. Soil Ecol. 2007, 37, 18–30. [Google Scholar] [CrossRef]
- Pascault, N.; Ranjard, L.; Kaisermann, A.; Bachar, D.; Christen, R.; Terrat, S.; Mathieu, O.; Lévêque, J.; Mougel, C.; Henault, C.; et al. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 2013, 16, 810–822. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Tivet, F.; de MoraesSá, J.C.; Lal, R.; Briedis, C.; Borszowskei, P.R.; dos Santos, J.B.; Farias, A.; Eurich, G.; Hartman, D.d.C.; Nadolny Junior, M.; et al. Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil Tillage Res. 2013, 126, 203–218. [Google Scholar] [CrossRef]
- Ngosong, C.; Jarosch, M.; Raupp, J.; Neumann, E.; Ruess, L. The impact of farming practice on soil microorganisms and arbuscular mycorrhizal fungi: Crop type versus long-term mineral and organic fertilization. Appl. Soil Ecol. 2010, 46, 134–142. [Google Scholar] [CrossRef]
- Lienhard, P.; Terrat, S.; Prévost-Bouré, N.C.; Nowak, V.; Régnier, T.; Sayphoummie, S.; Panyasiri, K.; Tivet, F.; Mathieu, O.; Levêque, J.; et al. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron. Sustain. Dev. 2014, 34, 525–533. [Google Scholar] [CrossRef]
- Ghimire, R.; Norton, J.B.; Stahl, P.D.; Norton, U. Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems. PLoS ONE 2014, 9, e10390. [Google Scholar] [CrossRef] [Green Version]
- Wolińska, A.; Górniak, D.; Zielenkiewicz, U.; Goryluk-Salmonowicz, A.; Kuźniar, A.; Stępniewska, Z.; Błaszczyk, M. Microbial biodiversity in arable soils is affected by agricultural practices. Int. Agrophys. 2017, 31, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Farrar, K.; Bryant, D.; Cope-Selby, N. Understanding and engineering beneficial plant–microbe interactions: Plant growth promotion in energy crops. Plant Biotechnol. J. 2014, 12, 1193–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, P.; López, P.; Capozzi, V.; Palencia, P.; Dueñas, M.; Spano, G.; Fiocco, D. Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms. Int. J. Mol. Sci. 2012, 13, 6026–6039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Graaff, M.A.; Hornslein, N.; Throop, H.L.; Kardol, P.; van Diepen, L.T.A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: A meta-analysis. Adv. Agron. 2019, 155, 1–44. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijdena, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, Z.; Yuan, J. Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest. Rev. Bras. Cienc. Solo 2019, 43, 0190044. [Google Scholar] [CrossRef]
- Hendgen, M.; Hoppe, B.; Döring, J.; Friede, M.; Kauer, R.; Frisch, M.; Dahl, A.; Kellner, H. Effects of different management regimes on microbial biodiversity in vineyard soils. Sci. Rep. 2018, 8, 9393. [Google Scholar] [CrossRef] [Green Version]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Liu, E.; Yan, C.; Tian, J.; Zhang, H.; Zhang, Y. Impact of no tillage vs. conventional tillage on the soil bacterial community structure in a winter wheat cropping succession in northern china. Eur. J. Soil Biol. 2017, 80, 35–42. [Google Scholar] [CrossRef]
- Bielińska, E.; Mocek-Płóciniak, A. Impact of the tillage system on the soil enzymatic activity. Arch. Environ. Prot. 2012, 31, 75–82. [Google Scholar] [CrossRef]
- Davis, C.M.; Fox, J.F. Sediment fingerprinting: Review of the method and future improvements for allocating nonpoint source pollution. J. Environ. Eng. ASCE 2009, 135, 490–504. [Google Scholar] [CrossRef]
- Kok, M.; Jäger, J.; Karlsson, S.I.; Ludeke, M.B.; Mohammed-Katerere, J.; Thomalla, F. Vulnerability of People and the Environment-Challenges and Opportunities. Background Report on Chapter 7 of GEO-4; Report no. 555048002; Netherlands Environmental Assessment Agency, (PBL): Bilthoven, The Netherlands, 2009. [Google Scholar]
- Rong, Q.; Cai, Y.; Chen, B.; Yue, W.; Yin, X.A.; Tan, Q. An enhanced export coefficient based optimization model for supporting agricultural nonpoint source pollution mitigation under uncertainity. Sci. Total Environ. 2017, 580, 1351–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, L.A.; Agaras, B.; Wall, L.G.; Valverde, C. Abundance and ribotypes of phosphate-solubilizing bacteria in Argentinean agricultural soils under no-till management. Ann. Microbiol. 2015, 65, 1667–1678. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Tu, C.; Hoyt, G.D.; De Forest, J.L.; Hu, S. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ. 2017, 609, 341–347. [Google Scholar] [CrossRef]
- Zhang, B.; He, H.; Ding, X.; Zhang, X.; Zhang, X.; Yang, X.; Filley, T.R. Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional-and no-tillage practices in a rainfed agroecosystem. Soil Till. Res. 2012, 124, 153–160. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Mangalassery, S.; Mooney, S.J.; Sparkes, D.L.; Fraser, W.T.; Sjogersten, S. Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Eur. J. Soil Biol. 2015, 68, 9–17. [Google Scholar] [CrossRef]
- Guo, L.J.; Lin, S.; Liu, T.Q.; Cao, C.G.; Li, C.F. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.)–Wheat (Triticum aestivum L.) Cropping System in Central China. PLoS ONE 2016, 11, e0146145. [Google Scholar] [CrossRef] [Green Version]
- Carkovic, A.B.; Pastén, P.A.; Bonilla, C.A. Sediment composition for the assessment of water erosion and nonpoint source pollution in natural and fire-affected landscapes. Sci. Total Environ. 2015, 512, 26–35. [Google Scholar] [CrossRef]
- Zuber, S.M.; Villamil, M.B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 2016, 97, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Nivelle, E.; Verzeaux, J.; Habbib, H.; Kuzyakov, Y.; Decocq, G.; Roger, D.; Lacoux, J.; Duclercq, J.; Spicher, F.; Nava-Saucedo, J.-E.; et al. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl. Soil Ecol. 2016, 108, 147–155. [Google Scholar] [CrossRef]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBryun, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Sun, H.; Koal, P.; Liu, D.; Gerl, G.; Schroll, R.; Gattinger, A.; Ioergensen, G.; Munch, J.C. Soil microbial community and microbial residues respond positively to minimum tillage under organic farming I Southern Germany. Appl. Soil Ecol. 2016, 108, 16–24. [Google Scholar] [CrossRef]
- Esperschütz, J.; Gattinger, A.; Mader, P.; Schloter, M.; Fliessbach, A. Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol. Ecol. 2007, 61, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Guinina, A.; Kuzyakov, Y. Sugars in soil and sweets for microorganisms Review of origin, content, composition and fate. Soil Biol. Biochem. 2015, 90, 87–100. [Google Scholar] [CrossRef]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.F.; Carof, M.; Chen, W.; Floch, G.L. Effect of tillage and static abiotic soil properties on microbial diversity. Appl. Soil Ecol. 2018, 132, 135–145. [Google Scholar] [CrossRef]
- Degrune, F.; Theodorakopoulos, N.; Dufrêne, M.; Colinet, G.; Bodson, B.; Hiel, M.P.; Taminiau, B.; Nezer, C.; Daube, G.; Vandenbol, M. No favorable effect of reduced tillage on microbial community diversity in a silty loam soil (Belgium). Agric. Ecosyst. Environ. 2016, 224, 12–21. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhou, P.; Cheng, H.; Wang, C.S.; Wu, M. Draft genome sequence of Microbacterium profundi Shh49T, an Actinobacterium isolated from deep-sea sediment of a polymetallic nodule environment. Genome Announc. 2015, 3, e00642-15. [Google Scholar] [CrossRef] [Green Version]
- McHugh, T.A.; Schwartz, E. Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland. Plant Soil 2015, 388, 175–186. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Helgason, T.; Gislason, J.; McClements, D.J.; Kristburgsson, K.; Weiss, J. Influence of molecular characters of chitosan on the adsorpsion of chitosan to oil droplet inter-face in an vitrodigetion model. Food Hydrocolloides 2009, 23, 2243–2253. [Google Scholar] [CrossRef]
- Waring, B.G.; Averill, C.; Hawkes, C.V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models. Ecol. Lett. 2013, 16, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Drijber, R.A.; Doran, J.W.; Parkhurst, A.M.; Lyon, D.J. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol. Biochem. 2000, 32, 1419–1430. [Google Scholar] [CrossRef] [Green Version]
- Hartman, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta-Martínez, V.; Dowd, S.; Sun, Y.; Allen, V. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol. Biochem. 2008, 40, 2762–2770. [Google Scholar] [CrossRef]
- Moore, J.; Klose, S.; Tabatabai, M. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol. Fertil. Soils 2000, 31, 200–210. [Google Scholar] [CrossRef]
- Rincon-Florez, V.A.; Ng, C.; Dang, Y.P.; Schenk, P.M.; Carvalhais, L.C. Short-term impact of an occasional tillage on microbial communities in a Vertosol after 43 years of no-tillage or conventional tillage. Eur. J. Soil Biol. 2016, 74, 32–38. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L.Y.; Liu, Q.; Hentzer, M.; Smith, G.P.; Wang, M.W. High-throughput screening of antagonists for the orphan G-protein coupled receptor GPR139. ActaPharmacol Sin. 2015, 36, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Egamberdieva, D.; Kamilova, F.; Validov, S.; Gafurova, L.; Kucharova, Z.; Lugtenberg, B. High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 2008, 10, 1–9. [Google Scholar] [CrossRef]
- Mendes, R.; Kruijt, M.; De Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Millard, P.; Whiteley, A.S.; Murrell, J.C. Unravelling rhizosphere–microbial interactions: Opportunities and limitations. Trends Microbiol. 2004, 12, 386–393. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Rott, M.; Schlaeppi, K.; van Themaat, E.V.L.; Ahmadinejad, N.; Assenza, F. Revealing structure and assembly cues for Arabidopsis root inhabiting bacterial microbiota. Nature 2012, 488, 91–95. [Google Scholar] [CrossRef]
- Marschner, P.; Yang, C.; Lieberei, R.; Crowley, D. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 2001, 33, 1437–1445. [Google Scholar] [CrossRef]
- Buyer, J.S.; Roberts, D.P.; Russek-Cohen, E. Soil and plant effects on microbial community structure. Can. J. Microbiol. 2002, 48, 955–964. [Google Scholar] [CrossRef] [Green Version]
- Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial diversity in soil: Selection of microbial population by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Garbeva, P.; Postma, J.; van Veen, J.A.; van Elsas, J.D. Effect of above ground plant species on soil microbial community structure and its impact on supply of Rhizoctonia solani AG3. Environ. Microb. 2006, 8, 233. [Google Scholar] [CrossRef]
- İnceoğlu, Ö.; Salles, J.F.; van Elsas, J.D. Soil and cultivar type shape the bacterial community in the potato rhizosphere. Microb. Ecol. 2012, 63, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Breidenbach, B.; Pump, J.; Dumont, M.G. Microbial community structure in the rhizosphere of rice plants. Front. Microbiol. 2016, 6, 1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, G.; Opelt, K.; Zachow, C.; Lottmann, J.; Götz, M.; Costa, R.D.S.; Smalla, K. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol. Ecol. 2006, 56, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Garbeva, P.; van Elsas, J.D.; van Veen, J.A. Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 2008, 302, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Viebahn, M.; Veenman, C.; Wernars, K.; Van Loon, L.C.; Smit, E.; Bakker, P.A. Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol. Ecol. 2005, 53, 245–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miethling, R.; Wieland, G.; Backhaus, H.; Tebbe, C.C. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb. Ecol. 2000, 40, 43–56. [Google Scholar] [CrossRef]
- Micallef, S.A.; Shiaris, M.P.; Colón-Carmona, A. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J. Exp. Bot. 2009, 60, 1729–1742. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; del Rio, T.G. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Hentzer, M.; Givskov, M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Investig. 2003, 112, 1300–1307. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Li, S.; Li, R.; Zhang, J.; Liu, Y.; Lv, L.; Zhu, H.; Wu, W.; Li, W. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 2017, 109, 145–155. [Google Scholar] [CrossRef]
- Lynch, J.; Whipps, J. Substrate flows in the rhizosphere. Plant Soil 1990, 129, 1–10. [Google Scholar] [CrossRef]
- Doornbos, R.; van Loon, L.C.; Bakker, P.A. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere- A review. Agron. Sustain. Dev. 2012, 32, 227–243. [Google Scholar] [CrossRef]
- Bertin, C.; Yang, X.H.; Weston, L.A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Dakora, F.D.; Phillips, D.A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 2002, 245, 35–47. [Google Scholar] [CrossRef]
- Brimecombe, M.J.; Leij, F.A.; Lynch, J.M. Nematode community structure as a sensitive indicator of microbial perturbations induced by a genetically modified Pseudomonas fluorescens strain. Biol. Fertil. Soil 2001, 34, 270–275. [Google Scholar] [CrossRef]
- Somers, E.; Vanderleyden, J.; Srinivasan, M. Rhizosphere bacterial signalling: A love parade beneath our feet. Crit. Rev. Microbiol. 2004, 30, 205–235. [Google Scholar] [CrossRef]
- Bais, H.P.; Park, S.W.; Weir, T.L.; Callaway, R.M.; Vivanco, J.M. How plants communicate using the underground information superhighway. Trends Plant Sci. 2004, 9, 26–32. [Google Scholar] [CrossRef]
- Weert, S.D.; Vermeiren, H.; Mulders, I.H.M.; Kuiper, I.; Hendrickx, N.; Bloemberg, G.V.; Vanderleyden, J.; Mot, R.D.; Lugtenberg, B.J.J. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe. Int. 2002, 15, 1173–1180. [Google Scholar] [CrossRef] [Green Version]
- Lugtenberg, B.J.; Chin-A-Woeng, T.F.; Bloemberg, G.V. Microbe-plant interactions: Principles and mechanisms. Antonie Van Leeuwenhoek 2002, 81, 373–383. [Google Scholar] [CrossRef]
- Burdman, S.; Dulguerova, G.; Okon, Y.; Jurkevitch, E. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol. Plant-Microbe Interact. 2001, 4, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Peters, N.K.; Frost, J.W.; Long, S.R. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 1986, 233, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Perret, X.; Staehelin, C.; Broughton, W.J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 2000, 64, 180–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zhao, D.; Shuang, L.; Xiao, D.; Xuan, Y.; Duan, Y.; Chen, L.; Wang, Y.; Liu, X.; Fan, H.; et al. Transcriptome analysis of rice roots in response to root-knot nematode infection. Int. J. Mol. Sci. 2020, 21, 848. [Google Scholar] [CrossRef] [Green Version]
- Buee, M.; Rossignol, M.; Jauneau, A.; Ranjeva, R.; Becard, G. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact. 2000, 13, 693–698. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho-Niebel, F.; Timmers, A.C.; Chabaud, M.; Defaux-Petras, A.; Barker, D.G. The Nod factor-elicited annexin MtAnn1 is preferentially localized at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. Plant J. 2002, 32, 343–352. [Google Scholar] [CrossRef]
- Akiyama, K.; Matsuzaki, K.; Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435, 824–827. [Google Scholar] [CrossRef]
- Nagahashi, G.; Douds, D.D. A rapid and sensitive bioassay with practical application for studies on interactions between root exudates and arbuscular mycorrhizal fungi. Biotechnol. Tech. 1999, 13, 893–897. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, W.; Wang, B.; Tang, J.; Chen, X. Secondary metabolites from the invasive Solidago canadensis L. accumulation in soil and contribution to inhibition of soil pathogen Phytium ultimum. Appl. Soil Ecol. 2011, 48, 280–286. [Google Scholar] [CrossRef]
- Bais, H.P.; Walker, T.S.; Schweizer, H.P.; Vivanco, J.M. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol. Biochem. 2002, 40, 983–995. [Google Scholar] [CrossRef]
- Neal, A.L.; Ahmad, S.; Gordon-Weeks, R.; Ton, J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 2012, 7, 35498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teplitski, M.; Robinson, J.B.; Bauer, W.D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe. Interact. 2000, 13, 637–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, M.; Teplitski, M.; Robinson, J.B.; Bauer, W.D. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant Microbe. Interact. 2003, 16, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferluga, S.; Venturi, V. OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonasoryzae pv. oryzae and rice. J. Bacteriol. 2009, 191, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Young, I.; Ritz, K. Tillage, habitat space and function of soil microbes. Soil Till. Res. 2000, 53, 201–213. [Google Scholar] [CrossRef]
- Zhao, C.; Fu, S.; Mathew, R.P.; Lawrence, K.S.; Feng, Y.; Linn, D.; Doran, J. Aerobic and anaerobic microbial populations in no-till and plowed soils. Soil Sci. Soc. Am. J. 1984, 48, 1–6. [Google Scholar]
- Wortman, S.E.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl. Soil Ecol. 2013, 72, 232–241. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Graystona, S.J.; Dawsona, L.A.; Treonisa, A.M.; Murrayb, P.J.; Rossa, J.; Reida, E.J.; Ruth, M.D. Impact of root herbivory by insect larvae on soil microbial communities. Eur. J. Soil Biol. 2001, 37, 277–280. [Google Scholar] [CrossRef]
- De Fede, K.L.; Panaccione, D.G.; Sexstone, A.J. Characterization of dialution enrichment cultures obtained from size fractionated soil bacteria by BIOLOG community level physiological profiles and restriction analysis of 16Sr RNA genes. Soil Biol. Biochem. 2001, 33, 1555–1562. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Dumontet, S.; Cavoski, I.; Ricciuti, P.; Mondelli, D.; Jarrar, M.; Pasquale, V.; Crecchio, C. Metabolic and genetic patterns of soil microbial communities in response to different amendments under organic farming system. Geoderma 2017, 296, 79–85. [Google Scholar] [CrossRef]
- Gevao, B.; Semple, K.T.; Jones, K.C. Bound pesticide residues in soils: A review. Environ. Pollut. 2000, 108, 3–14. [Google Scholar] [CrossRef]
- Kalam, A.; Tah, J.; Mukherjee, A.K. Pesticide effects on microbial population and soil enzyme activities during vermicomposting of agricultural waste. J. Environ. Biol. 2004, 25, 201–208. [Google Scholar] [PubMed]
- Widenfalk, A.; Bertilsson, S.; Sundh, I.; Goedkoop, W. Effects of pesticides on community composition and activity of sediment microbes-responses at various levels of microbial community organization. Environ. Pollut. 2008, 152, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 2012, 49, 22–30. [Google Scholar] [CrossRef]
- Johnsen, K.; Jacobsen, C.S.; Torsvik, V.; Sorensen, J. Pesticide effects on bacterial diversity in agricultural soils—A review. Biol. Fertil. Soils 2001, 33, 443–453. [Google Scholar] [CrossRef]
- Sun, G.; Du, Y.; Yin, J.; Jiang, Y.; Zhang, D.; Jiang, B.; Li, G.; Wang, H.; Kong, F.; Su, L.; et al. Response of microbial communities to different organochlorine pesticides (OCPs) contamination levels in contaminated soils. Chemosphere 2019, 215, 461–469. [Google Scholar] [CrossRef]
- Nkuekam, G.K.; Cowan, D.A.; Valverde, A. Arable agriculture changes soil microbial communities in the South African Grassland Biome. S. Afr. J. Sci. 2018, 114, 1–7. [Google Scholar] [CrossRef]
- Haney, R.L.; Senseman, S.A.; Hons, F.M.; Zuberer, D.A. Effect of Glyphosate on Soil Microbial Activity and Biomass. Weed Sci. 2000, 48, 89–93. [Google Scholar] [CrossRef]
- Gomez, E.; Ferreras, L.; Lovotti, L.; Fernandez, E. Impact of Glyphosate Application on Microbial Biomass and Metabolic Activity in a VerticArgiudoll from Argentina. Eur. J. Soil Biol. 2009, 45, 163–167. [Google Scholar] [CrossRef]
- Bjørnlund, L.; Ekelund, F.; Christensen, S.; Jacobsen, C.S.; Krogh, P.H.; Johnsen, K. Interactions between saprotrophic fungi, bacteria and Protozoa on decomposing wheat roots in soil influenced by the fungicide fenpropimorph [Corbel(R)]: A field study. Soil Biol. Biochem. 2000, 32, 967–975. [Google Scholar] [CrossRef]
- Zhuang, R.S.; Chen, H.L.; Yao, J.; Li, Z.; Burnet, J.E.; Choi, M.M.F. Impact of Beta-Cypermethrin on Soil Microbial Community Associated with Its Bioavailability, a Combined Study by Isothermal Microcalorimetry and Enzyme Assay Techniques. J. Hazard. Mater. 2011, 189, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.-H.; Min, H.; Lu, Z.-H.; Yuan, H.P. Influence of Acetamiprid on Soil Enzymatic Activities and Respiration. Eur. J. Soil Biol. 2006, 42, 120–126. [Google Scholar] [CrossRef]
- Sangwan, N.; Lata, P.; Dwivedi, V.; Singh, A.; Niharika, N.; Kaur, J.; Anand, S.; Malhotra, J.; Jindal, S.; Nigam, A.; et al. Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS ONE 2012, 7, e46219. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Kato, H.; Ohtsubo, Y.; Tsuda, M. Mobile Genetic Elements Involved in the Evolution of Bacteria that Degrade Recalcitrant Xenobiotic Compounds. In DNA Traffic in the Environment; Springer: Singapore, 2019; pp. 215–244. [Google Scholar]
- Huang, L.; Shah, S.B.; Hu, H.; Xu, P.; Tang, H. Pollution and biodegradation of hexabromocyclododecanes: A review. Front. Environ. Sci. Eng. 2020, 14, 11. [Google Scholar] [CrossRef]
- Fabra, A.; Duffard, R.; de Duffard, A.E. Toxicity of 2,4-Dichlorophenoxyacetic Acid to Rhizobium sp. in Pure Culture. Bull. Environ. Contam. Toxicol. 1997, 59, 645–652. [Google Scholar] [CrossRef]
- Chalam, A.V.; Sasikala, C.; Ramana, C.V.; Uma, N.R.; Rao, P.R. Effect of Pesticides on the Diazotrophic Growth and Nitrogenase Activity of Purple Non-sulfur Bacteria. Bull. Environ. Contam. Toxicol. 1997, 58, 463–468. [Google Scholar] [CrossRef]
- Fox, J.E.; Starcevic, M.; Kow, K.Y.; Burow, M.E.; McLachlan, J.A. Nitrogen fixation: Endocrine disrupters and flavonoid signalling. Nature 2001, 413, 128–129. [Google Scholar] [CrossRef]
- Syamsul Arif, M.A.; Houwen, F.; Verstraete, W. Agricultural factors affecting methane oxidation in arable soil. Biol. Fertil. Soils 1996, 21, 95–102. [Google Scholar] [CrossRef]
- Subhani, A.; El-ghamry, A.M.; Changyong, H.; Jianming, X. Effects of Pesticides (Herbicides) on Soil Microbial Biomass—A Review. Pak. J. Biol. Sci. 2000, 3, 705–709. [Google Scholar]
- Singh, G.; Wright, D. In vitro studies on the effects of herbicides on the growth of rhizobia. Lett. Appl. Microbiol. 2002, 35, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.; Kaklewski, K.; Klódka, D. Influence of various concentrations of selenic acid (IV) on the activity of soil enzymes. Sci. Total Environ. 2002, 291, 105–110. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaidi, A.; Rizvi, P.Q. Biotoxic Effects of Herbicides on Growth, Nodulation, Nitrogenase Activity, and Seed Production in Chickpeas. Commun. Soil Sci. Plant Anal. 2006, 37, 1783–1793. [Google Scholar] [CrossRef]
- Sannino, F.; Gianfreda, L. Pesticide influence on soil enzymatic activities. Chemosphere 2001, 45, 417–425. [Google Scholar] [CrossRef]
- Santos, A.; Flores, M. Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett. Appl. Microbiol. 1995, 20, 349–352. [Google Scholar] [CrossRef]
- Makarian, H.; Poozesh, V.; Asghari, H.R.; Nazari, M. Interaction Effects of Arbuscular Mycorrhiza Fungi and Soil Applied Herbicides on Plant Growth. Commun. Soil Sci. Plant Anal. 2016, 47, 619–629. [Google Scholar] [CrossRef]
- Jena, P.K.; Adhya, T.K.; Rao, V.R. Influence of carbaryl on nitrogenase activity and combinations of butachlor and carbofuran on nitrogen-fixing microorganisms in paddy soils. Pestic. Sci. 1987, 19, 179–184. [Google Scholar] [CrossRef]
- Boldt, T.S.; Jacobsen, C.S. Different toxic effects of the sulphonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. FEMS Microbiol. Lett. 1998, 161, 29–35. [Google Scholar] [CrossRef]
- El Fantroussi, S.; Verschuere, L.; Verstraete, W.; Top, E.M. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol. 1999, 65, 982–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crecchio, C.; Curci, M.; Pizzigallo, M.D.R.; Ricciuti, P.; Ruggiero, P. Molecular approaches to investigate herbicides induced bacterial community changes in soil microcosms. Biol. Fertil. Soils 2001, 33, 460–466. [Google Scholar] [CrossRef]
- Ratcliff, A.W.; Busse, M.D.; Shestak, C.J. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 2006, 34, 114–124. [Google Scholar] [CrossRef]
- Bending, G.D.; Rodriguez-Cruz, M.S. Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon. Chemosphere 2007, 66, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Yen, J.H.; Chang, C.S.; Wang, Y.S. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil. Ecotoxicol. Environ. Saf. 2009, 72, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, S.H.; Hollister, E.B.; Senseman, S.A.; Gentry, T.J. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manage. Sci. 2010, 66, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Cycon, M.; Wojcik, M.; Borymski, S.; Piotrowska-Seget, Z. Short-term effects of the herbicide napropamide on the activity and structure of the soil microbial community assessed by the multi-approach analysis. Appl. Soil Ecol. 2013, 66, 8–18. [Google Scholar] [CrossRef]
- Crouzet, O.; Batisson, I.; Besse-Hoggan, P.; Bonnemoy, F.; Bardot, C.; Poly, F.; Bohatier, J.; Mallet, C. Response of soil microbial communities to the herbicide mesotrione: A dose-effect microcosm approach. Soil Biol. Biochem. 2010, 42, 193–202. [Google Scholar] [CrossRef]
- Niewiadomska, A. Effect of Carbendazim, Imazetapir and Thiram on Nitrogenase Activity, the Number of Microorganisms in Soil and Yield of Red Clover (Trifolium pratense L.). Pol. J. Environ. Stud. 2004, 13, 4. [Google Scholar]
- Thirup, L.; Johnsen, K.; Torsvik, V.; Spliid, N.H.; Jacobsen, C.S. Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots. Soil Biol. Biochem. 2001, 33, 1517–1524. [Google Scholar] [CrossRef]
- Wang, Y.S.; Wen, C.Y.; Chiu, T.C.; Yen, J.H. Effect of fungicide iprodione on soil bacterial community. Ecotoxicol. Environ. Saf. 2004, 59, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Kyei-Boahen, S.; Slinkard, A.E.; Walley, F.L. Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Can. J. Microbiol. 2001, 47, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.K.; Edwards, C.A.; Subler, S. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol. Biochem. 2001, 33, 1971–1980. [Google Scholar] [CrossRef]
- Shukla, A.K. Impact of fungicides on soil microbial population and enzyme activities. Acta Bot. Indica 2000, 28, 85–88. [Google Scholar]
- Sáez, F.; Pozo, C.; Gómez, M.A.; Martínez-Toledo, M.V.; Rodelas, B.; Gónzalez-López, J. Growth and denitrifying activity of Xanthobacter autotrophicus CECT 7064 in the presence of selected pesticides. Appl. Microbiol. Biotechnol. 2005, 71, 563–567. [Google Scholar] [CrossRef]
- Di Ciocco, C.A.; Rodríguez, C.E. Effect of the fungicide captan on Azospirillum brasilense Cd in pure culture and associated with Setaria italica. Rev. Argent. Microbiol. 1997, 29, 152. [Google Scholar]
- Milenkovski, S.; Bååth, E.; Lindgren, P.E.; Berglund, O. Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology 2010, 19, 285–294. [Google Scholar] [CrossRef]
- Fravel, D.R.; Deahl, K.L.; Stommel, J.R. Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biol. Control 2005, 34, 165–169. [Google Scholar] [CrossRef]
- Kostov, O.; Van Cleemput, O. Microbial Activity of Cu Contaminated Soils and Effect of Lime and Compost on Soil Resiliency. Compost Sci. Util. 2001, 9, 336–351. [Google Scholar] [CrossRef]
- Cycon, M.; Piotrowska-Seget, Z.; Kozdrój, J. Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. Int. Biodeterior. Biodegrad. 2010, 64, 316–323. [Google Scholar] [CrossRef]
- Cernohlávková, J.; Jarkovský, J.; Hofman, J. Effects of fungicides mancozeb and dinocap on carbon and nitrogen mineralization in soils. Ecotoxicol. Environ. Saf. 2009, 72, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Liebich, J.; Schäer, A.; Burauel, P. Structural and functional approach to studying pesticide side-effects on specific soil functions. Environ. Toxicol. Chem. 2003, 22, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Verdisson, S.; Couderchet, M.; Vernet, G. Effects of procymidone, fludioxonil and pyrimethanil on two non-target aquatic plants. Chemosphere 2001, 44, 467–474. [Google Scholar] [CrossRef]
- Durska, G. Fungicide effect on nitrogenase activity in methylotrophic bacteria. Pol. J. Microbiol. 2004, 53, 155–158. [Google Scholar]
- Madhuri, R.J.; Rangaswamy, V. Influence of selected fungicides on microbial population in groundnut (Arachis hypogeae L.) soils. Pollut. Res. 2003, 22, 205–212. [Google Scholar]
- Kinney, C.A.; Mandernack, K.W.; Mosier, A.R. Laboratory investigations into the effects of the pesticides mancozeb, chlorothalonil, and prosulfuron on nitrous oxide and nitric oxide production in fertilized soil. Soil Biol. Biochem. 2005, 37, 837–850. [Google Scholar] [CrossRef]
- Sukul, P. Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues. Soil Biol. Biochem. 2006, 38, 320–326. [Google Scholar] [CrossRef]
- Monkiedje, A.; Spiteller, M. Degradation of Metalaxyl and Mefenoxam and Effects on the Microbiological Properties of Tropical and Temperate Soils. Int. J. Environ. Res. Public Health 2005, 2, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Zhang, J.; Zhu, K.; Zhang, H. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J. Environ. Sci. 2009, 21, 954–959. [Google Scholar] [CrossRef]
- Pal, R.; Chakrabarti, K.; Chakraborty, A.; Chowdhury, A. Pencycuron application to soils: Degradation and effect on microbiological parameters. Chemosphere 2005, 60, 1513–1522. [Google Scholar] [CrossRef]
- Pereyra, M.A.; Ballesteros, F.M.; Creus, C.M.; Sueldo, R.J.; Barassi, C.A. Seedlings growth promotion by Azospirillum brasilense under normal and drought conditions remains unaltered in Tebuconazole-treated wheat seeds. Eur. J. Soil Biol. 2009, 45, 20–27. [Google Scholar] [CrossRef]
- Yen, J.H.; Chang, J.S.; Huang, P.J.; Wang, Y.S. Effects of fungicides triadimefon and propiconazole on soil bacterial communities. J. Environ. Sci. Health Part B 2009, 44, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M.; Pugh, G.J.F. Effect of fungicides on the numbers of micro-organisms and frequency of cellulolytic fungi in soils. Plant Soil 1975, 43, 561–572. [Google Scholar] [CrossRef]
- Berg, J.; Brandt, K.K.; Al-Soud, W.A.; Holm, P.E.; Hansen, L.H.; Sorensen, S.J.; Nybroe, O. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Appl. Environ. Microbiol. 2012, 78, 7438–7446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakelin, S.A.; Chu, G.; Lardner, R.; Liang, Y.; McLaughlin, M. A single application of Cu to field soil has long-term effects on bacterial community structure, diversity, and soil processes. Pedobiologia 2010, 53, 149–158. [Google Scholar] [CrossRef]
- Rasool, N.; Reshi, Z.A. Effect of the fungicide Mancozeb at different application rates on enzyme activities in a silt loam soil of the Kashmir Himalaya, India. Trop. Ecol. 2010, 51, 199–205. [Google Scholar]
- Yu, Y.L.; Shan, M.; Fang, H.; Wang, X.; Chu, X.Q. Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil. J. Agric. Food Chem. 2006, 54, 10070–10075. [Google Scholar] [CrossRef]
- Cycon, M.; Piotrowska-Seget, Z. Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicology 2009, 18, 632–642. [Google Scholar] [CrossRef]
- Joynt, J.; Bischoff, M.; Turco, R.; Konopka, A.; Nakatsu, C.H. Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microb. Ecol. 2006, 51, 209–219. [Google Scholar] [CrossRef]
- Monkiedje, A. Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biol. Biochem. 2002, 34, 1939–1948. [Google Scholar] [CrossRef]
- Zhang, B.; Bai, Z.; Hoefel, D.; Tang, L.; Wang, X.; Li, B.; Li, Z.; Zhuang, G. The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. Sci. Total Environ. 2009, 407, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.M. Effect of five insecticides on microbial and enzymatic activities in sandy soil. J. Environ. Sci. Health Part B 1995, 30, 289–306. [Google Scholar] [CrossRef]
- Singh, J.; Singh, D.K. Dehydrogenase and phosphomonoesterase activities in groundnut (Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments. Chemosphere 2005, 60, 32–42. [Google Scholar] [CrossRef]
- El-Ghamry, A.M.; Xu, J.M.; Huang, C.Y.; Gan, J. Microbial response to bensulfuron-methyl treatment in soil. J. Agric. Food Chem. 2002, 50, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Singh, D.K. Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogea L.) soil. Chemosphere 2004, 55, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Kalam, A.; Mukherjee, A.K. Influence of hexaconazole, carbofuran and ethion on soil microflora and dehydrogenase activities in soil and intact cell. Indian J. Exp. Biol. 2001, 39, 90–94. [Google Scholar]
- Mahía, J.; Cabaneiro, A.; Carballas, T.; Díaz-Raviña, M. Microbial biomass and C mineralization in agricultural soils as affected by atrazine addition. Biol. Fertil. Soils 2008, 45, 99–105. [Google Scholar] [CrossRef]
- Madhuri, R.J.; Rangaswamy, V. Influence of selected insecticides on phosphatase activity in groundnut (Arachis hypogea L.) soils. J. Environ. Biol. 2002, 23, 393–397. [Google Scholar]
- Martínez-Toledo, M.V.; Salmerón, V.; Rodelas, B.; Pozo, C.; González-López, J. Effects of the fungicide Captan on some functional groups of soil microflora. Appl. Soil Ecol. 1998, 7, 245–255. [Google Scholar] [CrossRef]
- Ingram, C.W.; Coyne, M.S.; Williams, D.W. Effects of Commercial Diazinon and Imidacloprid on Microbial Urease Activity in Soil and Sod. J. Environ. Qual. 2005, 34, 1573–1580. [Google Scholar] [CrossRef]
- Wang, M.C.; Gong, M.; Zang, H.B.; Hua, X.M.; Yao, J.; Pang, Y.J.; Yang, Y.H. Effect of Methamidophos and Urea Application on Microbial Communities in Soils as Determined by Microbial Biomass and Community Level Physiological Profiles. J. Environ. Sci. Health Part B 2006, 41, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Antonious, G.F. Impact of Soil Management and Two Botanical Insecticides on Urease and Invertase Activity. J. Environ. Sci. Health Part B 2003, 38, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Colores, G.M.; Schmidt, S.K. Recovery of Microbially Mediated Processes in Soil Augmented with a Pentachlorophenol-Mineralizing Bacterium. Environ. Toxicol. Chem. 2005, 24, 1912–1917. [Google Scholar] [CrossRef] [PubMed]
- Mayanglambam, T.; Vig, K.; Singh, D.K. Quinalphos Persistence and Leaching Under Field Conditions and Effects of Residues on Dehydrogenase and Alkaline Phosphomonoesterases Activities in Soil. Bull. Environ. Contam. Toxicol. 2005, 75, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Toledo, M.V.; de la Rubia, T.; Moreno, J.; Gonzalez-Lopez, J. Effect of diflubenzuron on Azotobacter nitrogen fixation in soil. Chemosphere 1988, 17, 829–834. [Google Scholar] [CrossRef]
- Martinez-Toledo, M.V.; Salmeron, V.; Gonzalez-Lopez, J. Effect of insecticides methylpyrimifos and chlorpyrifos on soil microflora in an agricultural loam. Plant Soil 1992, 147, 25–30. [Google Scholar] [CrossRef]
- Caceres, T.P.; He, W.; Megharaj, M.; Naidu, R. Effect of insecticide fenamiphos on soil microbial activities in Australian and Ecuadorean soils. J. Environ. Sci. Health 2009, 44, 13–17. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Wu, M.; Zhang, Y.; Zhang, C. Effect of methamidophos on soil fungi community in microcosms by plate count, DGGE and clone library analysis. J. Environ. Sci. 2008, 20, 619–625. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, J.; Gu, J.D.; Li, S. Long term effect of methylparathion contamination on soil microbial community diversity estimated by 16S rRNA gene cloning. Ecotoxicology 2006, 15, 523–530. [Google Scholar] [CrossRef]
- Murray, A.E.; Preston, C.M.; Massana, R.; Taylor, L.T.; Blakis, A.; Wu, K.; DeLong, E.F. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 1998, 64, 2585–2595. [Google Scholar] [CrossRef] [Green Version]
- Macalady, J.L.; Fuller, M.E.; Scow, K.M. Effects of Metam Sodium Fumigation on Soil Microbial Activity and Community Structure. J. Environ. Qual. 1998, 27, 54–63. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Papiernik, S.K.; Gan, J.; Yates, S.R.; Yang, C.H.; Crowley, D.E. Impact of fumigants on soil microbial communities. Appl. Environ. Microbiol. 2001, 67, 3245–3257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spyrou, I.M.; Karpouzas, D.G.; Menkissoglu-Spiroudi, U. Do botanical pesticides alter the structure of the soil microbial community? Microb. Ecol. 2009, 58, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.R. Procedures for Assessing the Environmental Fate and Ecotoxicity of Pesticides; Society of Environmental Toxicology and Chemistry: Brussels, Belgium, 1995. [Google Scholar]
- Greaves, M.P. Effect of pesticides on soil microorganisms. In Experimental Microbial Ecology; Burns, R.G., Slater, J.H., Eds.; Blackwell: Oxford, UK, 1982; pp. 613–630. [Google Scholar]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil-nitrogen—A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Shiyin, L.; Lixiao, N.; Panying, P.; Cheng, S.; Liansheng, W. Effects of pesticides and their hydrolysates on catalase activity in soil. Bull. Environ. Contam. Toxicol. 2004, 72, 600–606. [Google Scholar] [CrossRef]
- Iyyemperumal, K.; Israel, D.W.; Shi, W. Soil microbial biomass, activity and potential nitrogen mineralization in a pasture: Impact of stock camping activity. Soil Biol. Biochem. 2007, 39, 149–157. [Google Scholar] [CrossRef]
- Kahkonen, M.A.; Tuomela, M.; Hatakka, A. Microbial activities in soils of a former sawmill area. Chemosphere 2007, 67, 521–526. [Google Scholar] [CrossRef]
- Ros, M.; Goberna, M.; Moreno, J.L.; Hernandez, T.; Garcia, C.; Insam, H.; Pascual, J.A. Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine. Appl. Soil Ecol. 2006, 34, 93–102. [Google Scholar] [CrossRef]
- Desai, C.; Pathak, H.; Madamwar, D. Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour. Technol. 2010, 101, 1558–1569. [Google Scholar] [CrossRef]
- Lerch, T.Z.; Dignac, M.F.; Nunan, N.; Bardoux, G.; Barriuso, E.; Mariotti, A. Dynamics of soil microbial populations involved in 2,4-D biodegradation revealed by FAME-based stable isotope probing. Soil Biol. Biochem. 2009, 41, 77–85. [Google Scholar] [CrossRef]
- Jeffries, T.C.; Rayu, S.; Nielsen, U.N.; Lai, K.; Ijaz, A.; Nazaries, L.; Singh, B.K. Metagenomic functional potential predicts degradation rates of a model organophosphorus xenobiotic in pesticide contaminated soils. Front. Microbiol. 2018, 9, 147. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Varjani, S.; Iragavarapu, G.P.; Ngo, H.H.; Guo, W.; Vishal, B. Microbial Fingerprinting of Potential Biodegrading Organisms. Curr. Pollut. Rep. 2019, 5, 181–197. [Google Scholar] [CrossRef]
- Huang, C.; Han, X.; Yang, Z.; Chen, Y.; Rengel, Z. Sowing Methods Influence Soil Bacterial Diversity and Community Composition in a Winter Wheat-Summer Maize Rotation System on the Loess Plateau. Front. Microbiol. 2020, 11, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widenfalk, A.; Goedkoop, W.; Svensson, J.M. Effects of the pesticides captan, deltamethrin, isoproturon, and pirimicarb on the microbial community of a fresh water sediment. Environ. Toxicol. Chem. 2004, 23, 1920–1927. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.K. Preserving Microbial Diversity of Soil Ecosystem: A Key to Sustainable Productivity. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 85–101. [Google Scholar]
- Torsvik, V.; Overeas, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef]
- Sun, X.; Katsigiris, E.; White, A. Meeting China’s Demand for Forest Products: An Overview of Import Trends, Rorts of Entry, and Supplying Countries, with Emphasis on the Asia—Pacific Region; Forest Trends: Washington, DC, USA; Center for Chinese Agricultural Policy (CCAP): Beijing, China; CIFOR: Bogota, Indonesia, 2004. [Google Scholar]
- Zhou, J.; Xia, B.; Treves, D.; Wu, L.; Marsh, T.; O’Neill, R.; Palumbo, A.V.; Tiedje, J.M. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 2002, 68, 326–334. [Google Scholar] [CrossRef] [Green Version]
- Stams, A.J.M.; Plugge, P. The microbiology of methanogenesis. In Methane and Climate Change; Earthscan: Abingdon, UK; New York, NY, USA, 2010; pp. 14–26. [Google Scholar]
- Denef, K.; Six, J.; Bossuyt, H.; Frey, S.D.; Elliott, E.T.; Merckx, R.; Paustian, K. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 2001, 33, 1599–1611. [Google Scholar] [CrossRef]
- Mohanty, M.K.; Behera, B.K.; Jena, S.K.; Srikanth, S.; Mogane, C.; Samal, S.; Behera, A.A. Knowledge attitude and practice of pesticide use among agricultural workers in Puducherry, South India. J. Forensic Leg. Med. 2013, 20, 1028–1031. [Google Scholar] [CrossRef]
- Patrick, W.H., Jr.; Jugsujinda, A. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Sci. Soc. Am. J. 1992, 56, 1071–1073. [Google Scholar] [CrossRef]
- Morillas, L.; Durán, J.; Rodríguez, A.; Roales, J.; Gallardo, A.; Lovett, G.M.; Groffman, P.M. Nitrogen supply modulates the effect of changes in drying–rewetting frequency on soil C and N cycling and greenhouse gas exchange. Global Change Biol. 2015, 21, 3854–3863. [Google Scholar] [CrossRef] [PubMed]
- Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 2007, 96, 1–63. [Google Scholar]
- Ratering, S.; Conrad, R. Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Glob. Change Biol. Bioenergy 1998, 4, 397–407. [Google Scholar] [CrossRef]
- Sigren, L.K.; Lewis, S.T.; Fisher, F.M.; Sass, R.L. Effects of field drainage on soil parameters related to methane production and emission from rice paddies. Glob. Biogeochem. Cycles 1997, 11, 151–162. [Google Scholar] [CrossRef]
- Berney, M.; Greening, C.; Conrad, R.; Jacobs, W.R.; Cook, G.M. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc. Natl. Acad. Sci. USA 2014, 111, 11479–11484. [Google Scholar] [CrossRef] [Green Version]
- Köberl, M.; Müller, H.; Ramadan, E.M.; Berg, G. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS ONE 2011, 6, e24452. [Google Scholar] [CrossRef] [Green Version]
- Haney, R.L.; Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Soil C extracted with water or K2SO4: pH effect on determination of microbial biomass. Can. J. Soil Sci. 1999, 79, 529–533. [Google Scholar] [CrossRef]
- Schjønning, P.; Elmholt, S.; Christensen, B.T. (Eds.) Managing Soil Quality: Challenges in Modern Agriculture; CABI: Wallingford, UK, 2003. [Google Scholar]
- Geyer, K.M.; Altrichter, A.E.; Takacs-Vesbach, C.D.; van Horn, D.J.; Gooseff, M.N.; Barrett, J.E. Bacterial community composition of divergent soil habitats in a polar desert. FEMS Microbiol Ecol. 2014, 89, 490–494. [Google Scholar] [CrossRef]
- Kaisermann, A.; Maron, P.A.; Beaumelle, L.; Lata, J.C. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl. Soil Ecol. 2015, 86, 158–164. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhao, L.; Xu, S.J., Jr.; Liu, Y.Z.; Liu, H.Y.; Cheng, G.D. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. J. Appl. Microbiol. 2013, 114, 1054–1065. [Google Scholar] [CrossRef]
- Yi, L.; Shenjiao, Y.; Shiqing, L.; Xinping, C.; Fang, C. Growth and development of maize (Zea mays L.) in response to different field water management practices: Resource capture and use efficiency. Agric. For. Meteorol. 2010, 150, 606–613. [Google Scholar] [CrossRef]
- Bashan, Y.; Holguin, G. Azospirillum–plant relationships: Environmental and physiological advances (1990–1996). Can. J. Microbiol. 1997, 43, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Bachar, A.; Al-Ashhab, A.; Soares, M.I.M.; Sklarz, M.Y.; Angel, R.; Ungar, E.D.; Gillor, O. Soil microbial abundance and diversity along a low precipitation gradient. Microb. Ecol. 2010, 60, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.K.; Gonzalez-Quiñones, V.; Murphy, D.V.; Hinz, C.; Shaw, J.A.; Gleeson, D.B. Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microbiol. 2010, 76, 3936–3942. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xu, M.; Ali, M.E.; Zhang, W.; Duan, Y.; Li, D. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS ONE 2018, 13, e0203812. [Google Scholar] [CrossRef] [Green Version]
- Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.C. Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci. 2017, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, U.B.; Trivedi, M.; Sahu, P.K.; Paul, S.; Paul, D.; Saxena, A.K. Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil. Int. J. Environ. Res. Public Health 2020, 17, 253. [Google Scholar] [CrossRef] [Green Version]
- Sahu, P.K.; Singh, S.; Gupta, A.R.; Gupta, A.; Singh, U.B.; Manzar, N.; Bhowmik, A.; Singh, H.V.; Saxena, A.K. Endophytic bacilli from medicinal-aromatic perennial Holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biol. Control 2020, 150, 104353. [Google Scholar] [CrossRef]
- Singh, S.; Singh, U.B.; Malviya, D.; Paul, S.; Sahu, P.K.; Trivedi, M.; Paul, D.; Saxena, A.K. Seed biopriming with microbial inoculant triggers local and systemic defense responses against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.). Int. J. Environ. Res. Public Health 2020, 17, 1396. [Google Scholar] [CrossRef] [Green Version]
- Sahu, P.K.; Singh, S.; Singh, U.B.; Chakdar, H.; Sharma, P.K.; Sarma, B.K.; Teli, B.; Bajpai, R.; Bhowmik, A.; Singh, H.V.; et al. Inter-Genera Colonization of Ocimum tenuiflorum Endophytes in Tomato and Their Complementary Effects on Na+/K+ Balance, Oxidative Stress Regulation, and Root Architecture Under Elevated Soil Salinity. Front. Microbiol. 2021, 12, 744733. [Google Scholar] [CrossRef]
- Malviya, D.; Singh, U.B.; Singh, S.; Sahu, P.K.; Pandiyan, K.; Kashyap, A.S.; Manzar, N.; Sharma, P.K.; Singh, H.V.; Rai, J.P.; et al. Microbial Interactions in the Rhizosphere Contributing Crop Resilience to Biotic and Abiotic Stresses. In Rhizosphere Microbes; Springer: Singapore, 2020; pp. 1–33. [Google Scholar]
- Singh, S.; Singh, U.B.; Trivdi, M.; Malviya, D.; Sahu, P.K.; Roy, M.; Sharma, P.K.; Singh, H.V.; Manna, M.C.; Saxena, A.K. Restructuring the cellular responses: Connecting microbial intervention with ecological fitness and adaptiveness to the maize (Zea mays L.) grown in saline–sodic soil. Front. Microbiol. 2021, 11, 568325. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.C.; Sharma, S.K.; Varma, A.; Rajawat, M.V.S.; Khan, M.S.; Sharma, P.K.; Malviya, D.; Singh, U.B.; Rai, J.P.; Saxena, A.K. Modulation in Biofertilization and Biofortification of Wheat Crop by Inoculation of Zinc-Solubilizing Rhizobacteria. Front. Microbiol. 2022, 13, 777771. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. Int. J. Environ. Res. Public Health 2022, 19, 3141. https://doi.org/10.3390/ijerph19053141
Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D, et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health. 2022; 19(5):3141. https://doi.org/10.3390/ijerph19053141
Chicago/Turabian StyleGupta, Amrita, Udai B. Singh, Pramod K. Sahu, Surinder Paul, Adarsh Kumar, Deepti Malviya, Shailendra Singh, Pandiyan Kuppusamy, Prakash Singh, Diby Paul, and et al. 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review" International Journal of Environmental Research and Public Health 19, no. 5: 3141. https://doi.org/10.3390/ijerph19053141
APA StyleGupta, A., Singh, U. B., Sahu, P. K., Paul, S., Kumar, A., Malviya, D., Singh, S., Kuppusamy, P., Singh, P., Paul, D., Rai, J. P., Singh, H. V., Manna, M. C., Crusberg, T. C., Kumar, A., & Saxena, A. K. (2022). Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 19(5), 3141. https://doi.org/10.3390/ijerph19053141