Effects of Urban Vibrancy on an Urban Eco-Environment: Case Study on Wuhan City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Urban Vibrancy Indicators and Assessment
2.3. Retrieval of Eco-Environmental Indicators
2.4. Effects of Urban Vibrancy on Eco-Environment
3. Results
3.1. Urban Vibrancy Assessment
3.2. The Spatial Distribution of PM 2.5 and Land Surface Temperature
3.3. The Spatial Regression Analysis of PM 2.5 or LST vs. Urban Vibrancy Dimensions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, C.; Liu, H.; Wang, S. The coupling curve between urbanization and the eco-environment: China’s urban agglomeration as a case study. Ecol. Indic. 2021, 130, 108107. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Zhang, H.; Shi, C.; Li, G.; Peng, Z.; Ma, J.; Zhou, Y.; Zhang, L. Short-Term Exposure to Ambient Air Pollution and Asthma Mortality. Am. J. Respir. Crit. Care Med. 2019, 200, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanyal, S.; Rochereau, T.; Maesano, C.N.; Com-Ruelle, L.; Annesi-Maesano, I. Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France. Int. J. Environ. Res. Public Health 2018, 15, 2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, V.J.; Ho, M.; Kai, C.M.; Aguilera, X.; Heymann, D.; Wilder-Smith, A. Epidemic preparedness in urban settings: New challenges and opportunities. Lancet Infect. Dis. 2020, 20, 527–529. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Gehl, J. Life between Buildings: Using Public Space; Washington Island Press: Washington, DC, USA, 1971. [Google Scholar]
- Li, H.D.; Liu, Y.G.; Zhang, H.W.; Xue, B.; Li, W.L. Urban morphology in China: Dataset development and spatial pattern characterization. Sustain. Cities Soc. 2021, 71, 102981. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Lin, Y.; Xiao, L.; Zhou, J. Revitalizing historic districts: Identifying built environment predictors for street vibrancy based on urban sensor data. Cities 2021, 117, 103305. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, Y.; Li, Z.; Song, Y.; Cai, J.; Tu, W. Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study. Urban Anal. City Sci. 2020, 47, 1543–1559. [Google Scholar] [CrossRef]
- Jia, C.; Liu, Y.; Du, Y.; Huang, J.; Fei, T. Evaluation of Urban Vibrancy and Its Relationship with the Economic Landscape: A Case Study of Beijing. ISPRS Int. J. Geo-Inf. 2020, 10, 72. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, T.T.; Xia, J.Z.; Zhou, Y.L.; Lai, Y.N.; Jiang, J.C.; Li, Q.Q. Portraying the spatial dynamics of urban vibrancy using multisource urban big data. Comput. Environ. Urban Syst. 2020, 80, 101428. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, C.; Li, J.; Wang, R.; Liu, J. Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sens. 2019, 11, 959. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Chen, R.; Xie, Y.; Xu, J.; Yang, J.; Liao, W. Exploring the Impacts and Temporal Variations of Different Building Roof Types on Surface Urban Heat Island. Remote Sens. 2021, 13, 2840. [Google Scholar] [CrossRef]
- Huang, H.C.; Yang, H.L.; Deng, X.; Hao, C.; Liu, Z.F.; Liu, W.; Zeng, P. Analyzing the Influencing Factors of Urban Thermal Field Intensity Using Big-Data-Based GIS. Sustain. Cities Soc. 2020, 102024. [Google Scholar]
- Lu, S.; Huang, Y.; Shi, C.; Yang, X. Exploring the Associations Between Urban Form and Neighborhood Vibrancy: A Case Study of Chengdu, China. ISPRS Int. J. Geo-Inf. 2019, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Jensen, J.; Weng, Q.; Currit, N.; Weaver, R. Use of Local Climate Zones to investigate surface urban heat islands in Texas. GISci. Remote Sens. 2020, 57, 1083–1101. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Weng, Q.; Currit, N.; Weaver, R. Application of airborne remote sensing data on mapping local climate zones: Cases of three metropolitan areas of Texas, US. Comput. Environ. Urban Syst. 2019, 74, 175–193. [Google Scholar] [CrossRef]
- Abolghasem, A.; Ali, S.; Mehdi, A. Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city. Sustain. Cities Soc. 2018, 41, 853–864. [Google Scholar]
- Yan, C.; Wang, L.; Zhang, Q. Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China. Sustainability 2021, 13, 7724. [Google Scholar] [CrossRef]
- Mou, Y.; Song, Y.; Xu, Q.; He, Q.; Hu, A. Influence of Urban-Growth Pattern on Air Quality in China: A Study of 338 Cities. Int. J. Environ. Res. Public Health 2018, 15, 1805. [Google Scholar] [CrossRef] [Green Version]
- Salama, A.M. Coronavirus questions that will not go away: Interrogating urban and socio-spatial implications of COVID-19 measures. Emerald Open Res. 2020, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Sepe, M. Covid-19 pandemic and public spaces: Improving quality and flexibility for healthier places. Urban Des. Int 2021, 26, 159–173. [Google Scholar] [CrossRef]
- Jasiński, A. Public space or safe space—Remarks during the COVID-19 pandemic. Tech. Trans. 2020, 117, 1–10. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Tang, Z.; Li, J.; Lv, J.; Chen, Z.; Jia, K. Spatio-Temporal Change of Lake Water Extent in Wuhan Urban Agglomeration Based on Landsat Images from 1987 to 2015. Remote Sens 2017, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Song, Y.; He, Q.; Shen, F. Spatially explicit assessment on urban vitality: Case studies in Chicago and Wuhan. Sustain. Cities Soc. 2018, 40, 296–306. [Google Scholar] [CrossRef]
- Gong, L.S.; Jin, M.H.; Liu, Q.; Gong, Y.X.; Liu, Y. Identifying Urban Residents’ Activity Space at Multiple Geographic Scales Using Mobile Phone. ISPRS Int. J. Geo-Inf. 2020, 9, 241. [Google Scholar] [CrossRef]
- Liu, S.J.; Long, Y.; Zhang, L.; Liu, H. Semantic Enhancement of Human Urban Activity Chain Construction Using Mobile Phone Signaling Data. ISPRS Int. J. Geo-Inf. 2021, 10, 545. [Google Scholar] [CrossRef]
- Arhipova, I.; Berzins, G.; Brekis, E.; Binde, J.; Opmanis, M.; Erglis, A.; Ansonska, E. Mobile phone data statistics as a dynamic proxy indicator in assessing regional economic activity and human commuting patterns. Expert Syst. 2020, 37, 19. [Google Scholar] [CrossRef] [Green Version]
- Ullah Khan, N.; Wan, W.G.; Yu, S.; Muzahid, A.A.M.; Khan, S.; Hou, L.A. Study of User Activity Patterns and the Effect of Venue Types on City Dynamics Using Location-Based Social Network Data. ISPRS Int. J. Geo-Inf. 2020, 9, 733. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Wang, X.J. Exploring the effectiveness of location-based social media in modelling user activity space: A case study of Weibo. Trans. GIS 2018, 22, 930–957. [Google Scholar] [CrossRef]
- Zhu, T.; Tu, W.; Le, Y.; Zhong, C.; Zhao, T.; Li, Q.; Li, Q. Sensing urban vibrancy using geo-tagged data. Acta Geod. Cartogr. Sin. 2020, 49, 365–374. [Google Scholar]
- Zhao, Q. Measurement of Urban Innovation Driving Ability in Guangdong-Hong Kong-Macao Greater Bay Area. Stat. Obs. 2021, 22, 59–63. [Google Scholar]
- Anthony, G.Y.; Li, X. Measurement and Monitoring of Urban Sprawl in a Rapidly Growing Region Using Entropy. Photogramm. Eng. Remote Sens. 2001, 67, 83–90. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981; pp. 1–7. [Google Scholar]
- Zhang, G.; Rui, X.; Fan, Y. Critical Review of Methods to Estimate PM2.5 Concentrations within Specified Research Region. ISPRS Int. J. Geo-Inf. 2018, 7, 368. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Xiao, Z.; He, L.; Shi, Z.; Cao, Y.; Tian, Z.; Vu, T.; Liu, J. Chemical Composition and Source Apportionment of PM2. 5 in Urban Areas of Xiangtan, Central South China. Int. J. Environ. Res. Public Health 2019, 16, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, H.Z.; Du, C.; Liu, R.Y.; Qin, Q.M.; Yan, G.J.; Li, Z.L.; Meng, J.J. Atmospheric water vapor retrieval from Landsat 8 thermal infrared images. J. Geophys. Res. Atmos. 2015, 120, 1723–1738. [Google Scholar] [CrossRef]
- Du, C.; Ren, H.Z.; Qin, Q.M.; Meng, J.J.; Zhao, S.H. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Yang, L.; Kwan, M.-P.; Zuo, Z.; Qian, H.; Li, M. Do Individuals’ Activity Structures Influence Their PM2.5 Exposure Levels? Evidence from Human Trajectory Data in Wuhan City. Int. J. Environ. Res. Public Health 2021, 18, 4583. [Google Scholar] [CrossRef]
- Liu, F.; Hou, H.; Murayama, Y. Spatial Interconnections of Land Surface Temperatures with Land Cover/Use: A Case Study of Tokyo. Remote Sens. 2021, 13, 610. [Google Scholar] [CrossRef]
- Moran, P.A. A test for the serial independence of residuals. Biometrika 1950, 37, 178–181. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecthre-level cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Physica-Verlag HD: Berlin, Germany, 2014. [Google Scholar]
- Wang, T.Y.; Xun, P. “Urban Isolate Island”, Back Hillside: Spatial Analysis of Urban Village in Mountainous Region. Urban Rural Plan. Landsc. Archit. Virescence 2009, 2, 153–156. [Google Scholar]
- World Health Organization (WHO). WHO Global Air Quality Guidelines; Particulate Matter (PM 2.5and PM 10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Ministry of Environmental Protection of the People’s Republic of China (MEP). General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ); National Ambient Air Quality Standard, GB, 3095-2012; China Environmental Science Press: Beijing, China, 2012. [Google Scholar]
- Huang, S.H. Time and Exploration of Community Governance System Construction in Emerging Cities: A Case Study of Changzhou City, Jiangsu Province; Soochow University: Suzhou, China, 2014. [Google Scholar]
- Souris, M.; Demoraes, F. Improvement of Spatial Autocorrelation, Kernel Estimation, and Modelling Methods by Spatial Standardization on Distance. ISPRS Int. J. Geo-Inf. 2019, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Ye, X.; Zheng, Z.; Li, D.; Sun, L.; Li, R.; Benya, S. Modelling Polycentric Urbanization Using Multisource Big Geospatial Data. Remote Sens. 2019, 11, 310. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Wang, J.J.; Qin, B. Quantity or quality? Exploring the association between public open space and mental health in urban China. Landsc. Urban Plan. 2021, 213, 104128. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhou, Y.; Wang, F.R.; Ding, L.Y.; Love, P.E.D.; Li, S.Q. The Influence of the Built Environment on People’s Mental Health: An Empirical Classification of Causal Factors. Sustain. Cities Soc. 2021, 74, 103185. [Google Scholar] [CrossRef]
- He, G.J.; Ma, Z.G.; Wang, X.N.; Xiao, Z.; Dong, J.R. Does the improvement of regional eco-efficiency improve the residents’ health conditions: Empirical analysis from China’s provincial data. Ecol. Indic. 2021, 124, 107387. [Google Scholar] [CrossRef]
- Rosa, R.R.; Adison, A.; Francisco, D.L.B.; Daniel, R.V.; Lorena, V.; Paula, M. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar]
Dimensions | Indicators | Data Source | Year |
---|---|---|---|
Density | Population density | Census data set from local government | 2017 |
Building density | Wuhan Natural Resources and Planning Bureau | 2017 | |
Density of mobile users | Mobile phone GPS positioning requests | 2017 | |
Floor Area Ratio | Wuhan Natural Resources and Planning Bureau | 2017 | |
Road density | Wuhan Natural Resources and Planning Bureau | 2017 | |
Accessibility | Distance to school | Big data platform (Baidu API) | 2017 |
Distance to hospital | Big data platform (Baidu API) | 2017 | |
Distance to shop | Big data platform (Baidu API) | 2017 | |
Distance to bus stop | Big data platform (Baidu API) | 2017 | |
Liveability | Number of banks | Big data platform (Baidu API) | 2017 |
Number of food service sites | Big data platform (Baidu API) | 2017 | |
Number of life service sites | Big data platform (Baidu API) | 2017 | |
Number of leisure sites | Big data platform (Baidu API) | 2017 | |
Diversity | Land use diversity | National Geomatics Centre of China | 2017 |
Human activity | Inflow | Mobile phone GPS positioning requests | 2017 |
Outflow | Mobile phone GPS positioning requests | 2017 | |
Total Flow | Mobile phone GPS positioning requests | 2017 | |
Weibo check-in | Social network platform (Weibo) | 2017 |
Dimension | Density | Accessibility | Liveability | Diversity | Human Activity | Urban Vibrancy |
---|---|---|---|---|---|---|
Mean | 0.0985 | 0.865 | 0.0477 | 0.184 | 0.0932 | 0.1085 |
SD | 0.0038 | 0.0096 | 0.0043 | 0.0201 | 0.0057 | 0.002 |
Jiangan | Jianghan | Wuchang | Hongshan | Qiaokou | Qingshan | Hanyang | |
---|---|---|---|---|---|---|---|
Observation | 50 | 31 | 62 | 154 | 42 | 34 | 63 |
Density | −5.77 *** | −12.62 *** | 0.1563 | 0.4902 | −4.14 | 2.08 *** | −1.13 |
Accessibility | 0.7992 | −14.37 *** | −0.2465 | 0.3763 | −3.59 ** | 6.27 ** | −2.08 * |
Liveability | −0.0425 | 0.5554 | −3.26 | 7.14 *** | 4.77 | −1.24 | 3.08 |
Diversity | 0.6657 | −1.36 ** | −0.1600 | 0.0696 | 2.16 ** | 0.5472 * | −1.23 ** |
Human activity | 1.44 | 6.10 *** | −0.1149 | −0.1318 | 2.25 | −3.62 ** | 3.16 *** |
α | - | - | - | - | 0.0161 ** | - | - |
λ | 0.7122 *** | 0.7830 *** | 0.5963 *** | 0.7903 *** | - | 0.8571 *** | 0.5583 *** |
R2 | 0.6730 | 0.7607 | 0.4809 | 0.6991 | 0.4828 | 0.8445 | 0.4700 |
Jiangan | Jianghan | Wuchang | Hongshan | Qiaokou | Qingshan | Hanyang | |
---|---|---|---|---|---|---|---|
Observation | 207 | 143 | 206 | 316 | 175 | 83 | 141 |
Density | −4.33 ** | 5.49 * | −6.03 * | 1101 | 0.9157 | −1623 | −0.8696 |
Accessibility | 13.08 *** | 18.09 *** | 9.61 ** | 2464 *** | 1.36 | 2369 | 11.40 *** |
Liveability | 2.85 ** | −3.90 ** | −0.9617 | −1815 | 1.29 | −618 | 3.32 |
Diversity | 0.0769 | 0.032 | −4.57 *** | −1041 ** | −3.63 *** | −2144 *** | −0.4684 |
Human activity | −6.00 *** | −4.37 * | −4.50 ** | 648.82 | −0.3313 | 2961 | −3.82 |
λ | 0.5097 *** | 0.3247 *** | 0.5107 *** | 0.3027 *** | 0.6541 *** | ||
R2 | 0.3511 | 0.3746 | 0.3316 | 0.4082 | 0.2086 | 0.2161 | 0.5380 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Zeng, C.; Chang, M.; Bao, C.; Tang, M.; Xiong, F. Effects of Urban Vibrancy on an Urban Eco-Environment: Case Study on Wuhan City. Int. J. Environ. Res. Public Health 2022, 19, 3200. https://doi.org/10.3390/ijerph19063200
Yu R, Zeng C, Chang M, Bao C, Tang M, Xiong F. Effects of Urban Vibrancy on an Urban Eco-Environment: Case Study on Wuhan City. International Journal of Environmental Research and Public Health. 2022; 19(6):3200. https://doi.org/10.3390/ijerph19063200
Chicago/Turabian StyleYu, Ruijing, Chen Zeng, Mingxin Chang, Chanchan Bao, Mingsong Tang, and Feng Xiong. 2022. "Effects of Urban Vibrancy on an Urban Eco-Environment: Case Study on Wuhan City" International Journal of Environmental Research and Public Health 19, no. 6: 3200. https://doi.org/10.3390/ijerph19063200
APA StyleYu, R., Zeng, C., Chang, M., Bao, C., Tang, M., & Xiong, F. (2022). Effects of Urban Vibrancy on an Urban Eco-Environment: Case Study on Wuhan City. International Journal of Environmental Research and Public Health, 19(6), 3200. https://doi.org/10.3390/ijerph19063200