Estimating Macroinvertebrate Biomass for Stream Ecosystem Assessments
Abstract
:1. Introduction
2. Macroinvertebrate Functional Feeding Groups (FFGs)
3. Sorting, Measuring and Estimating FFG-Taxa Biomass in the Field
4. FFG Ratios as Surrogates for Directly Measured Stream Ecosystem Attributes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weswsenberg-Lund, C. Biologie der Susswasser Insecten; Gyldenalske Boghandel: Copenhagen, Denmark, 1943. [Google Scholar]
- Armitage, P.D.; Moss, D.; Wright, J.F.; Furse, M.T. The performance of a new biological water quality score system based on macroinvertebrate s over a wide range of unpolluted running water sites. Water Res. 1983, 17, 333–347. [Google Scholar] [CrossRef]
- Czeniwaska-Kuza, I. Comparing modified biological monitoring working party score system and several biological indices based on macroinvertebrates for water-quality assessment. Limnologica 2005, 35, 165–176. [Google Scholar]
- Mazor, R.D.; Rosenberg, D.M. Use of aquatic insects in bioassessment. In Aquatic Insects of North America, 5th ed.; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2019; Chapter 7; pp. 141–164. [Google Scholar]
- Cummins, K.W.; Merritt, R.W.; Andrade, P.C. The use of invertebrate functional groups to characterize ecosystem attributes in selected stream and rivers in southeast Brazil. Stud. Neotrop. Fauna Environ. 2005, 40, 69–89. [Google Scholar] [CrossRef]
- Cushing, C.E.; Cummins, K.W.; Minshall, G.W. River and Stream Ecosystems of the World: With a New Introduction; University of California Press: Berkeley, CA, USA, 2006. [Google Scholar]
- Cummins, K.W.; Merritt, R.W.; Berg, M.B. Ecology. In Aquatic Insects of North America; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2019; Chapter 6; pp. 117–140. [Google Scholar]
- Cummins, K.W. Trophic relations of aquatic insects. Annu. Rev. Entomol. 1973, 18, 183–206. [Google Scholar] [CrossRef]
- Cummins, K.W. Structure and function of stream ecosystems. BioScience 1974, 24, 631–641. [Google Scholar] [CrossRef]
- Cummins, K.W.; Klug, M.J. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 1979, 10, 147–172. [Google Scholar] [CrossRef]
- Thorp, J.H.; Rogers, D.C. (Eds.) Freshwater invertebrates. In Ecology and General Biology, 4th ed.; Academic Press: New York, NY, USA, 2015; Volume 1. [Google Scholar]
- Smith, D.G. Pennak’s Freshwater Invertebrates of the United States: Porifera to Crustacea; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. (Eds.) An Introduction to the Aquatic Insects of North America; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2019. [Google Scholar]
- Lenat, D.R.; Resh, V.H. Taxonomy and ecology—The benefits of genus- and species-level identifications. J. N. Am. Benthol. Soc. 2001, 20, 287–298. [Google Scholar] [CrossRef]
- Cummins, K.W.; Wilzbach, M.A. Field Procedures for Analysis of Functional Feeding Groups of Stream Invertebrates; Contribution 1611; Appalachian Environmental Laboratory, University of Maryland: Frostburg, MD, USA, 1995. [Google Scholar]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. Trophic relationships of macroinvertebrates. In Methods in Stream Ecology; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: New York, NY, USA, 2017; Chapter 20; Volume 1, pp. 413–433. [Google Scholar]
- Huryn, A.D.; Wallace, J.B.; Anderson, N.H. Habitat, life history, secondary production, and behavioral adaptations of aquatic insects. In An introduction to the Aquatic Insects of North America, 4th ed.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2008; Chapter 5; pp. 65–116. [Google Scholar]
- Eaton, L.E.; Lenat, D.R. Comparison of a rapid bioassessment method with North Carolina’s qualitative macroinvertebrate collection method. J. N. Am. Benthol. Soc. 1991, 10, 335–338. [Google Scholar] [CrossRef]
- Wright, J.A.; Ryan, M.M. Impact of mining and industrial pollution on stream macroinvertebrates: Importance of taxonomic resolution, water geochemistry, and EPT indices for impact detection. Hydrobiologia 2016, 172, 103–115. [Google Scholar] [CrossRef]
- Hynes, H.B.N.; Coleman, M.J. A simple method of assessing the animal production of stream benthos. Limnol. Oceanogr. 1968, 13, 569–573. [Google Scholar] [CrossRef]
- Taches, H.P.; Richoux, R.; Bornaud, R.; Usseglio-Paltera, B. Invertebres d”eau doce Systematique, Biologie, Ecologie; CNRS Editions: Paris, France, 2020. [Google Scholar]
- Benke, A.C.; Huryn, A.D. Secondary production and quantitative food webs. In Methods in Stream Ecology, 3rd ed.; Lamberti, G.A., Hauer, F.R., Eds.; Academic Press: New York, NY, USA, 2017; Volume 2, pp. 235–254. [Google Scholar]
- Cummins, K.W.; Wuycheck, J.C. Calorific equivalents for investigations in ecological energetics. Int. Ver. Theor. Angew. Limnol. Metteilung 1971, 18, 1–158. [Google Scholar]
- Benke, A.C.; Huryn, A.D.; Smock, L.A.; Wallace, J.B. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United Sates. J. N. Am. Benthol. Soc. 1999, 18, 308–343. [Google Scholar] [CrossRef] [Green Version]
- Smock, L.A. Relationships between body size and biomass of aquatic insects. Freshw. Biol. 1980, 10, 375–383. [Google Scholar] [CrossRef]
- Towers, D.J.; Henderson, I.M.; Veltman, C.J. Predicting dry weight of New Zealand aquatic macroinvertebrates from linear dimensions. N. Z. J. Mar. Freshw. Res. 1994, 28, 159–166. [Google Scholar] [CrossRef]
- Rosati, I.; Barbone, E.; Basset, A. Length-mass relationships for transitional water benthic macroinvertebrates in Mediterranean and Black Sea ecosystems. Estuar. Costal Shelf Sci. 2012, 113, 231–239. [Google Scholar] [CrossRef]
- Gonzalez, J.; Basaguren, A.; Pozo, J. Size-mass relationships of stream invertebrates in a northern Spain stream. Hydrobiologia 2002, 489, 131–137. [Google Scholar] [CrossRef]
- Basset, A.; Glazier, D.S. Resource limitation and intraspecific patterns of weight × length variation among spring detritivores. Hydrobiologia 1995, 316, 127–137. [Google Scholar] [CrossRef]
- Marchant, R.; Hynes, H.B.N. Field estimates of feeding rate for Gammarus pseudolimnaeus (Crustacea: Amphipoda) in the Credit River, Ontario. Freshw. Biol. 1981, 11, 27–36. [Google Scholar] [CrossRef]
- Howmiller, R.P. Effects of preservatives on weights of some common microbenthic invertebrates. Trans. Am. Fish. Soc. 1972, 101, 743–746. [Google Scholar] [CrossRef]
- Rosemond, A.D.; Mullholand, P.J.; Elwood, J.W. Top down and bottom up control of stream periphyton; effects of nutrients and herbivores. Ecology 1993, 74, 1264–1280. [Google Scholar] [CrossRef]
- Balfour, D.L.; Smock, L.A. Distribution, age structure, and movements of the freshwater mussel Elliptio complanata (Mollusca: Unionidae) in a freshwater stream. J. Freshw. Ecol. 1995, 10, 255–268. [Google Scholar] [CrossRef]
- Cameron, C.J.; Cameron, I.F.; Paterson, C.G. Contribution of organic shell matter to biomass estimates of unionid bivalves. Can. J. Zool. 1979, 57, 166–169. [Google Scholar] [CrossRef]
- Hanson, J.M.; Mackay, W.C.; Prepas, E.E. Population size, growth, and production of a unionid clam, Anodonta grandis simpsoniana, in a small deep, boreal forest lake in Alberta. Can. J. Zool. 1988, 66, 247–253. [Google Scholar] [CrossRef]
- Hornbach, D.J.; Deneka, T.; Payne, B.S.; Miller, A.C. Shell morphology and tissue condition of Amblema plicata (Say 1817) from the upper Mississippi River. J. Freshw. Ecol. 1996, 11, 233–240. [Google Scholar] [CrossRef]
- Huryn, A.D.; Wallace, J.B. Local geomorphology as a determinant of macrofaunal production in a mountain stream. Ecology 1987, 58, 1932–1942. [Google Scholar] [CrossRef] [PubMed]
- Rabeni, C.F. Trophic linkage between stream centrarchids and their crayfish prey. Can. J. Fish. Aquat. Sci. 1992, 49, 1714–1721. [Google Scholar] [CrossRef]
- Stelzer, R.S.; Burton, T.M. Growth and abundance of the crayfish Orconectes propinquus in a hard water and soft water stream. J. Freshw. Ecol. 1993, 8, 329–340. [Google Scholar] [CrossRef]
- Burgerr, P.; Meyer, E.J. Regression analysis of linear body dimensions vs. dry mass in stream macroinvertebrates. Arch. Hydrobiol. 1997, 139, 101–112. [Google Scholar] [CrossRef]
- Hawkins, C.P. Variation in individual growth rates and population densities of ephemerellid mayflies. Ecology 1986, 67, 1384–1395. [Google Scholar] [CrossRef]
- Jop, K.M.; Stewart, K.W. Annual stonefly (Plecoptera) production in a second order Oklahoma stream. J. N. Am. Benthol. Soc. 1987, 6, 26–34. [Google Scholar] [CrossRef]
- Lauzon, M.; Harper, P.P. Seasonal dynamics of a mayfly (Insecta, Ephemeroptera) community in a Laurential stream. Holarct. Ecol. 1988, 11, 220–234. [Google Scholar]
- Rowe, A.D.; Berill, M. The life cycles of five closely related mayfly species (Ephemeroptera Heptageniidae) coexisting in a small southern Ontario stream pool. Aquat. Insects 1989, 11, 73–80. [Google Scholar] [CrossRef]
- Wetzel, F.; Meyer, E.; Schwoerbel, J. Morphology and biomass determination of dominant mayfly larvae (Ephemeroptera) in running waters. Arch. Hydrobiol. 1990, 118, 31–46. [Google Scholar]
- Méthot, G.; Hudon, C.; Gagnon, P.; Pinel-Alloul, B.; Armellin, A.; Poirier, A.-M.T. Macroinvertebrate size-mass relationships: How specific should they be? Freshw. Sci. 2012, 31, 750–764. [Google Scholar] [CrossRef]
- Benke, A.C.; Jacobi, D.I. Production dynamics and resource utilization of snag-dwelling mayflies in a black water river. Ecology 1994, 75, 1219–1232. [Google Scholar] [CrossRef]
- McCullough, D.A.; Minshall, G.W.; Cushing, C.E. Bioenergetics of lotic filter-feeding insects, Simulium, spp. (Diptera) and Hydropsyche occidentalis (Trichoptera) and their function controlling organic transport in streams. Ecology 1979, 60, 585–596. [Google Scholar] [CrossRef]
- Meyer, E.J. The relationship between body length parameters and dry mass in running water invertebrates. Arch. Hydrobiol. 1989, 117, 181–203. [Google Scholar]
- Wallace, J.B.; Gurtz, M.E. Response of Baetis mayflies (Ephemeroptera) to catchment logging. Am. Midl. Nat. 1986, 115, 25–41. [Google Scholar] [CrossRef]
- Beezly, S. Secondary Production of Paraleptophlebia (Ephemeroptera) within Three Northern California Coastal Streams. Master’s Thesis, Humboldt State University, Arcata, CA, USA, 2006. [Google Scholar]
- Stout, B.M.; Benfield, E.; Webster, J. Effects of a forest disturbance on shredder production in southern Appalachian headwater streams. Freshw. Biol. 1993, 29, 59–69. [Google Scholar] [CrossRef]
- Eggert, S.L.; Burton, T.M. A comparison of Acroneuria lycorias (Plecoptera) production and growth in northern Michigan hard- and soft-water streams. Freshw. Biol. 1994, 32, 21–31. [Google Scholar] [CrossRef]
- Siegfried, C.A.; Knight, A.W. Aspects of the life history and growth Acroneuria California in a Sierra Foothill Stream. Ann. Entomol. Soc. Am. 1978, 71, 149–154. [Google Scholar] [CrossRef]
- Wade, S.J.; Davies, R.W. Spatial and temporal variation in the diet of a predacious stonefly (Plecoptera Perlodidiae). Freshw. Biol. 1987, 17, 109–115. [Google Scholar]
- Becker, B.; Noreti, M.S.; Calliso, M. Length-mass relationships for a typical shredder in Brazilian streams (Trichoptera) Calamoceratidae. Aquat. Insects 2009, 31, 227–234. [Google Scholar] [CrossRef]
- Jin, H.S. Life History and Production of Glossosoma Nigrior (Trichoptera, Glossosomatidae) in Two Alabama Streams with Different Geology. Master’s Thesis, University of Alabama, Tuscaloosa, AL, USA, 1995. [Google Scholar]
- Petersen, R.C. Life history and bionomics of Nigronia serricornis (Say) (Megaloptera, Corydalidae). Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1974. [Google Scholar]
- Leuven, R.S.; Brock, T.; van Druten, H.A. Effects of preservation on dry- and ash-free dry weight biomass of some aquatic common macroinvertebrates. Hydrobiologia 1985, 127, 151–159. [Google Scholar] [CrossRef]
- Edwards, R.T.; Meyer, J.L. Bacteria as a food resource for black fly larvae in a black water river. J. N. Am. Benthol. Soc. 1987, 6, 1322–1331. [Google Scholar] [CrossRef]
- Merritt, R.W.; Ross, D.H.; Larson, G.L. Influence of stream temperature and seston on the growth and production of over-wintering black flies (Diptera: Simuliidae). Ecology 1982, 63, 1322–1331. [Google Scholar] [CrossRef]
- Morin, A.; Back, C.; Chalifour, A.; Boisvert, J.; Peters, R.H. Effect of black fly ingestion and assimilation on seston transport in a Quebec lake outlet. Can. J. Fish. Aquat. Sci. 1988, 45, 705–714. [Google Scholar] [CrossRef]
- Sephton, T.W.; Paterson, C.G. Production of the chironomid Procladius bellus in an annual drawdown reservoir. Freshw. Biol. 1986, 16, 721–733. [Google Scholar] [CrossRef]
- Nolte, U. Chironomid biomass determination from larval shape. Freshw. Biol. 1990, 24, 443–451. [Google Scholar] [CrossRef]
- Dermott, R.M.; Paterson, C.G. Determining dry weight and percentage dry matter of chironomid larvae. Can. J. Zool. 1974, 52, 1243–1250. [Google Scholar] [CrossRef]
- Maier, K.J.; Kosalwat, P.; Knight, A.W. Culture of Chironomus decorus (Diptera: Chironomidae) and the effect of temperature on its life history. Environ. Entomol. 1990, 19, 1681–1688. [Google Scholar] [CrossRef]
- King, D.K.; Cummins, K.W. Autotrophic-heterotrophic community metabolism relationships of a woodland stream. J. Freshw. Ecol. 1989, 5, 205–218. [Google Scholar] [CrossRef]
- King, D.K.; Cummins, K.W. Factors affecting autotrophic-heterotrophic community metabolism relationships of a woodland stream. J. Freshw. Ecol. 1989, 5, 219–230. [Google Scholar] [CrossRef]
- Merritt, R.W.; Wallace, J.R.; Higgins, M.J.; Alexander, M.K.; Berg, M.B.; Morgan, W.T.; Cummins, K.W.; Vandeneeden, B. Procedures for the functional analysis of the Kissimmee River-floodplain ecosystem. Fla. Sci. 1996, 59, 216–274. [Google Scholar]
- Merritt, R.W.; Higgins, M.J.; Cummins, K.W.; Vandeneeden, B. The Kissimmee River-riparian marsh ecosystem, Florida: Seasonal differences in invertebrate functional feeding group relationships. In Wetlands of North America: Ecology and Management; Batzer, D.P., Rader, R.B., Wissinger, S.A., Eds.; John Wiley & Sons: New York, NY, USA, 1999; pp. 55–80. [Google Scholar]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B.; Novak, J.A.; Higgins, M.J.; Wessel, J.; Lessard, J.L. Development and application of a macroinvertebrate functional groups in the bioassessment of remnant oxbows in the Caloosahatchee River, southwest. Florida. J. N. Am. Benthol. Soc. 2002, 21, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Mattson, R.A.; Cummins, K.W.; Merritt, R.W.; McIntosh, M.; Campbell, E.; Berg, M.B.; Merritt, B.W.; Hernandez, O.; Kimbrakuskas, R. Hydrological monitoring of benthic invertebrate communities of marsh habitats in the upper and middle St. Johns River. Fla. Sci. 2014, 77, 144–161. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
Functional Feeding Group (FFG) | Food Resource Category (FRC) |
---|---|
Scrapers (SC) | Attached non-filamentous algae (especially diatoms) |
Herbivore shredders (HSH) | Rooted aquatic vascular plants |
Detrital shredders (DSH) | Leaf litter of riparian origin conditioned by hyphomycete fungi (coarse particulate organic matter or CPOM) |
Gathering collectors (GC) | Fine particulate organic matter on or in the bottom sediments (benthic fine particulate organic matter or BFPOM) |
Filtering collectors (FC) | Fine particulate organic matter in transport in the water column in the current (TFPOM) |
Predators (P) | Live invertebrate prey |
Higher Taxa | Morphology and Behavior Characteristics | FFG (Functional Feeding Group) | Coefficients and Number of Studies (n) | Taxonomic Source of Coefficients | References |
---|---|---|---|---|---|
Oligochaeta (segmented worms) | Long slender, round in cross-section, 2 lateral chaetae on both sides of each segment | Gathering collector (GC) (Y = aL, L = length) | a = 0.3657 | Oligochaeta | Cummins (unpublished) |
Crustacea (scuds amphipods) | Flat side to side, more than 6 legs, arched dorsal line of back with posterior directed spines on each segment | Scrapers (SC) | a = 0.0037 b = 3.003 n = 4 | Amphipoda: Gammaridae, Hyallela | [24,28,29,30] |
Crustacea (side swimmers amphipods) | Flat side to side, more than 6 legs, arched dorsal line of back smooth | Detrital shredders (DSH) | a = 0.0032 b = 2.948 n = 2 | Amphipoda: Gammaridae, Gammarus | [24] |
Crustacea (sow bugs) | Oval shape in dorsal view, more than 6 legs, flat top to bottom | Detrital shredders (DSH) | a = 0.0032 b = 2.948 n = 2 | Isopoda: Asellidae, Asellus | [24] |
Mollusca (snails) | Spiral-shaped shells, height greater than width, less in flat-shaped Ancylidae, retractable muscular foot | Scrapers (SC) | a = 0.0269 b = 3.003; n = 17 (Y = aHb, H = Shell height) | Gastropoda: Physidae, Pleuroceridae, Ancylidae | [24,31,32] |
Mollusca (clams) | Oval shells in side view, flat to round side to side, incurrent and excurrent siphons | Filtering collectors (FC) | a = 0.0435 b = 2.637 n = 7 Y = aWb, W = shell width | Bivalvia (=Pelecypoda): Sphaeridae, Unionidae | [24,33,34,35,36] |
Crustacea (crayfish) | Long oval shape in dorsal view, shallow arched in cross-section, first appendages large claws | Detrital shredders (DSH) | a = 0.0098 b = 3.347 n = 6 | Decapoda: Orconectes, Cambarus | [24,37,38,39] |
Ephemeroptera (riffle mayflies) | 3 (or 2) terminal long filaments, lateral abdominal gills, flat body cross-section | Scrapers (SC) | a = 0.0072 b = 2.659 n = 20 | Heptageniidae, some Ephemerellidae, Drunella, Ameletidae | Cummins (unpublished), [24,25,40,41,42,43,44,45] |
Ephemeroptera (sprawling and swimming mayflies) | 2 (or 3) terminal filaments, lateral abdominal gills, oval body cross-section | Gathering collectors (GC) | a = 0.0057 b = 2.966 n = 9 | Baetidae, Leptophlebiidae, Ephemerellidae (not Drunella). Caenidae, Siphlonuridae | Cummins (unpublished), [24,25,41,42,43,46,47,48,49,50] |
Ephemeroptera (clinging filtering mayflies) | 3 terminal long filaments, inside of front legs with long hairs used for filtering | Filtering collectors (FC) | a = 0.0105 b = 2.820 n = 3 | Isonychidae | [24,25,47,51,52] |
Plecoptera (predator stoneflies) | 2 terminal filaments, no lateral abdominal gills, color pattern, large eyes, very active | Predators (P) | a = 0.0131 b = 2.606 n = 23 | Perlidae, Perlodidae, Chloroperlidae | Cummins (unpublished), [24,42,53,54] |
Plecoptera (detritivore stoneflies) | 2 terminal filaments, no lateral abdominal gills, large or small roach-like, brown, legs and underside lighter, small eyes, sluggish | Detrital shredders (DSH) | a = 0.0140 b = 2.700 n = 9 | Pteronarcyidae, Taeniopterygidae (large). Peltoperlidae (small roach-like) | Cummins (unpublished), [42,53,54] |
Plecoptera (detritivore stoneflies) | 2 terminal filaments, no lateral abdominal gills, small, slender, uniform black/brown, small eyes, sluggish | Detrital shredders (DSH) | a = 0.0046 b = 2.676 n = 11 | Nemouridae, Capniidae, Leuctridae | [24,25,42,49,55] |
Trichoptera (small scraper caddisflies) | Small with mineral non-tapered case, may have lateral balance stones, larvae with small terminal lateral hooks | Scrapers (SC) | a = 0.0070 b = 2.410 n = 4 | Glossosomatidae, Helicopsychidae, Goeridae, Turenmatidae, some Limnephilidae (without lateral balance sticks) | Cummins (unpublished), [24,56,57] |
Trichoptera (detrital shredder caddisflies) | Organic non-tapered case, large with lateral balance sticks, or small without lateral sticks, larvae with small terminal lateral hooks | Detrital shredders (DSH) | a = 0.0033 b = 2.660 n = 8 | Most Limnephilidae, Calamoceratidae, Lepidostomatidae | Cummins (unpublished), [24,56] |
Trichoptera (gathering collector caddisflies) | Mineral and/or organic tapered or cone-shaped case, slender larvae, with small terminal lateral hooks | Gathering collectors (GC) | a = 0.0083 b = 2.149 n = 5 | Leptoceridae, Odontoceridae | Cummins (unpublished), [24,56] |
Trichoptera (net spinning caddisflies) | Fixed retreat with capture net, larvae with long curved ventrally oriented curved hooks | Filtering collectors (FC) | A0.0038 B = 3.610 n =18 | Hydropsychidae, Philopotamidae, Polycentropodidae | Cummins (unpublished), [24,25] |
Trichoptera (predator caddisflies) | Large active free living (pupa case only) larvae with stout head, long curved ventrally oriented curved hooks | Predators (P) | a = 0.0050 b = 3.083 n = 2 | Rhyacophilidae | Cummins (unpublished), [24,25] |
Coleoptera (predator beetle larvae) | Oval cross-section, large mandibles, lateral abdominal projections | Predators (P) | a = 0.0013 b = 3.300 n = 2 | Dytiscidae, Hydrophilidae | [24] |
Coleoptera (water penny beetle larvae) | Flat disc-shaped larvae, body concealed beneath broad shield of dorsal plates | Scrapers (SC) | a = 0.0123 b = 2.906 n = 1 | Psephenidae | [24] |
Coleoptera (riffle beetle larvae) | Arched cross-section retractile gills in ventral terminal posterior abdominal chamber | Gathering collectors (GC) | a = 0.0079 b = 2.879 n = 2 | Elmidae | [24] |
Coleoptera (predaceous diving beetle adults) | Hard shell elytra, hind legs modified for swimming, antennae longer than labial palps | Predators (P) | a = 0.0420 b = 2.657 n = 3 | Dytiscidae | [24] |
Coleoptera (water scavenger adult beetles) | Hard shell elytra, hind legs modified for swimming, labial palps longer than antennae | Gathering collectors (GC) | a = 0.0473 b = 2.611 n = 1 | Hydrophilidae | Cummins (unpublished) |
Coleoptera (riffle beetle adults) | Very long crawling legs | Scrapers (SC) | a = 0.0474 b = 2.681 n =2 | Elmidae | [24] |
Megaloptera (Dobsonfly larvae) | Lateral abdominal filament projections, terminal caudal hooks | Predators (P) | a = 0.0045 b = 2.935 n = 6 | Corydalidae | Cummins (unpublished), [24,58] |
Megaloptera (alderfly larvae) | Lateral abdominal filament projections, single, long terminal abdominal filament | Predators (P) | a = 0.0037 b = 2.753 n = 2 | Sialidae | [24] |
Lepidoptera (aquatic moth larvae) | Pair of abdominal prolegs on each abdominal segment with terminal semicircle of tiny hooks (crochets) | Herbivore shredders (HSH) | a = 0.0020 b = 2.807 n= 2 | Crambidae, Noctuidae | [24,59] |
Odonata (dragonfly nymphs) | Long extendible grasping labium, terminal abdominal caudal spines | Predators (P) | a = 0.0086 b = 2.821 n = 10 | Anisoptera:Aeschnidae, Libellulidae, Gomphidae, Cordulegastridae | [24] |
Odonata (damselfly nymphs) | Long extendible grasping labium, 3 terminal paddle-shaped caudal gills | Predators (P) | a = 0.0048 b = 3.256 n = 4 | Zygoptera: Agrionidae, Coenagrionidae | [25] |
Hemiptera (predaceous nymph and adult water bugs) | Long pointed piercing beak, oval in dorsal view | Predators (P) | a = 0.0234 b = 2.637 n = 3 | Belostomatidae, Veliidae, Gerridae) | [25] |
Hemiptera (water boatman nymph adult) | Short triangular beak, longer than wide in dorsa view | Scrapers (SC) | a = 0.0234 b = 2.637 n = 3 | Corixidae | [25] |
Diptera (black flies, with biting adults) | Bowling pin-shaped, complete head capsule with filtering head fans tiny hooks a tip of abdomen | Filtering collectors (FC) | a = 0.0027 b = 3.084 n = 8 | Simuliidae | [24,60,61,62] |
Diptera (Chironomidae, non-biting adult midges) | Large midge larvae, head capsule complete prolegs behind head, quadrate head equal to body width | Predators (P) | a = 0.0019 b = 2.614 n = 6 | Tanypodinae | [24,25,63] |
Diptera (Chironominae, filtering midges) | Small round head with long antennae, erect pronged tube with silk strands strung on the prongs | Filtering collectors | a = 0.0009 2.257 n = 3 | Chironominae: Tanytarsini | [24,64] |
Diptera (Chironomini, red and other midges) | Small round or longer head with very short antennae, burrowers in soft sediments | Gathering collectors (GC) | a =0.0023 b = 2.740 n = 14 | Chironominae: Chironomini Orthocladiinae, Diamesinae | [24,46,64,65,66] |
Diptera, Ceratopogonidae (‘no-see-um’ adult biting flies) | Very long needle-shaped, complete head capsule | Predators (P) | a = 0.0027 b = 2.439 n =3 | Ceratopogonidae | Cummins (unpublished), [24,25] |
Diptera, Tipulidae (crane flies) | Large robust larvae with only creeping welts, 2 terminal spiracular discs with surrounding lobes, incomplete head capsule | Detrital shredders (DSH) | a = 0.0031 b = 2.978 n = 53 | Tipulidae, Tipula, Lipsothrix | Cummins (unpublished), [24,25] |
Diptera (predaceous crane fly larvae) | Medium size slender larvae without prolegs, incomplete head capsule | Predators (P) | a = 0.0043 b = 2.632 n =8 | Tipulidae (but not Tipula), Empedidae, Tabanidae | [24] |
FFG | Taxa | Morphology and/or Behavior | Dry Biomass mg (or g) by mm Length Size Groups | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | |||
SC | MAYFLIES Heptageniidae Drunella | Wide, flat x-section nymphs, width >3 x height | 0.96 | 7.58 | 28.86 | 64.35 | 126.73 | Out of size range | |||
CADDISFLIES Limnephilidae, Uenoidae, Glossosomatidae, Helicopsychidae, Odontoceridae | Stone case, stout larvae | 5.40 | 48.32 | 174.23 | 432.81 | 876.64) | 1560.53 (1.56 g) | 2541.12 (2.54 g) | Out of size range | ||
BEETLES, WATERPENNIES Psephenidae | Flat disc-like | 0.50 | 6.12 | 26.48 | 74.84 | Out of size range | |||||
BEETLES, RIFFLE ADULTS Elmidae | Long crawling legs | 3.12 | 19.88 | Out of size range | |||||||
TRUE BUGS Corixidae | Stout triangular beak | 1.63 | 10.14 | 29.55 | Out of size range | ||||||
SNAILS and LIMPETS Physa, Juga, Ferrissia | Spiral- or dome-shaped shells | 2.95 | 18.06 | 59.63 | 139.24 | 268.76 | 459.95) | 724.43 | 42,949.4 (42.95 g) | 1519.31 (1.52 g) | |
DSH | STONEFLIES, LARGE Pteronarcyidae, Peltoperlidae | Uniform brown or black, sluggish | 1.42 | 9.95 | 31.12 | 69.90 | 130.95 | 218.69 | 337.41 | 491.23 | Out of size range |
STONEFLIES, SMALL Nemouridae, Capniidae, Leuctridae | 0.63 | 4.46 | 14.00 | 31.54 | Out of size range | ||||||
CADDISFLIES Limnephilidae, Lepidostomatidae | Organic case, stout larvae | 5.40 | 48.32 | 174.22 | 432.81 | 876.64 | 1560.53 (1.56 g) | 2541.12 (2.54 g) | Out of size range | ||
FLIES, CRANE FLIES Tipula | Incomplete head capsule, creeping welts, spiracular disc | 0.21 | 1.41 | 4.28 | 9.40 | 17.31 | 28.50 | 43.45 | 62.60 | Out of size range | |
SCUDS Gammarus | Multiple legs, flat oval x-section | 0.46 | 3.73 | 12.59 | Out of size range | ||||||
CRAYFISH | Multiple legs, round oval x-section, large claws | 2.14 | 21.79 | 80.53 | 221.70 | 467.87 | 861.29 | 1442.85 (1.44 g) | 2255.91 (2.26 g) | 33,460.19 (3.35 g) | |
GC | MAYFLIES Baetidae, Caenidae, Ephemerellidae, Leptophlebiidae | Slender round x-section width and height equal | 0.73 | 5.95 | 20.25 | 48.27 | 94.68 | Out of size range | |||
RIFFLE BEETLE LARVAE Elmidae | Small mandibles, x-section triangular to arched | 0.59 | 5.43 | 19.81 | 49.62 | Out of size range | |||||
FLIES, MIDGES Chironomini, Orthocladiinae | Round head capsule, single proleg under head | 0.20 | 1.36 | 4.14 | 9.10 | Out of size range | |||||
WORMS Oligochaeta | Segmented, no legs, 2 chaetae each side of each segment | 1.83 | 3.66 | 5.49 | 7.31 | 9.14 | 10.97 | 12.80 | 14.63 | 18.29 | |
FC | CADDISFLIES Hydropsychidae, Philopotamidae, Polycentropidae, Psychomyiidae | Capture net, long ventrally directed anal hooks | 0.43 | 3.00 | 9.29 | 20.71 | Out of size range | ||||
TRUE FLIES Tanytarsini | Case with prongs supporting capture net | 0.06 | 0.52 | 0.75 | Out of size range | ||||||
Blackflies | Filtering head fans | 0.39 | 3.28 | 11.44 | Out of size range | ||||||
CLAMS | Bivalve hard shell | 18.86 | 117.30 | 211.28 | 513.04 | 779.98 | 1314.24 (1.31 g) | Out of size range | |||
P | STONEFLIES Perlidae, Perlodidae | Color pattern, large eyes | 0.51 | 2.33 | 5.65 | 10.59 | 17.23 | 25.66 | Out of size range | ||
BEETLE LARVAE Dytiscidae Hydrophilidae | Oval x-section, large mandibles | 1.92 | 29.04 | 143.29 | 439.24 | Out of size range | |||||
BEETLE ADULTS Dytiscidae, Gyrinidae | Hard shell elytra, short palps | 3.61 | 24.46 | 74.89 | Out of size range | ||||||
CADISS FLIES Rhyacophilidae | Free living, long caudal hooks | 0.43 | 3.00 | 9.29 | 20.71 | Out of size range | |||||
DOBSONFLIES Corydalidae | Lateral filaments, caudal hooks | 0.28 | 1.47 | 3.60 | 31.72 | 60.22 | 101.67 | Out of size range | |||
ALDERFLIES Sialidae | Lateral filaments and terminal caudal filament | 0.19 | 1.76 | 6.57 | 16.72 | 34.49 | 62.34 | Out of size range | |||
DRAGONFLIES Aeschnidae, Gomphidae, Cordulegastridae, Libellulidae | Extendible labium, caudal spines | 0.65 | 4.63 | 14.48 | 35.54 | 61.03 | 101.83 | 157.13 | 228.80 | 318.71 | |
DAMSELFLIES Agrionidae, Coenagrionidae, Lestidae | Extendible labium, 3 plate-like caudal gills | 0.39 | 3.14 | 10.61 | 25.17 | 49.22 | 85.14 | 135.30 | Out of size range | ||
TRUE BUGS Belastomatidae, Gerridae | Pointed beak, fore- wings half membranous | 1.63 | 10.14 | 29.55 | 63.09 | 113.65 | 183.82 | 276.01 | 392.51 | 535.47 | |
HSH | MOTHS Crambidae. Noctuidae | Ventral and caudal prolegs with crochets | 0.29 | 2.47 | 8.66 | 21.08 | 42.02 | 73.83 | 118.93 | 179.72 | 258.30 |
Ecosystem Parameter | FFG Ratio | Stream | Threshold | Number | Assessment | Biomass | Assessment |
---|---|---|---|---|---|---|---|
Autotrophy vs. heterotrophy | SC to SH + GC = FC | Prairie | >0.75 | 0.86 | Autotrophic | 0.54 | Heterotrophic |
Jacoby | 0.11 | Heterotrophic | 0.33 | Heterotrophic | |||
Availability of CPOM to FPOM | SH to GC + FC | Prairie | >0.50 | 0.15 | Sparse food for shredders | 0.04 | Sparse food for shredders |
Jacoby | 0.16 | Sparse food for shredders | 1.95 | Abundant food for Shredders | |||
FPOM in transport availability | FC to GC | Prairie | >0.50 | 0.14 | Low food for filtering collectors | 0.28 | Low food for filtering collectors |
Jacoby | 0.24 | Low food for filtering collectors | 0.05 | Low food for filtering collectors | |||
Stream bottom stability | SC + FC to SH + GC | Prairie | >0.50 | 1.09 | Stable bottom dominates | 0.95 | Stable bottom dominates |
Jacoby | 0.32 | Stable bottom limiting | 0.35 | Stable bottom limiting | |||
Predator to prey balance | P to SC = SH = FC = GC | 0.17 | 0.10–0.15 | 0.17 | High predator abundance | 0.26 | High predator abundance |
0.06 | 0.06 | Low predator abundance | 0.12 | Normal predator abundance |
Taxonomic Group | Coefficient a (Intercept) | Coefficient b (Slope) |
---|---|---|
Order Ephemeroptera (mayfly nymphs) | ||
Heptageniidae | 0.00386 | 3.253 |
Stenonema, Stenacron | 0.00339 | 3.320 |
Ephemerellidae, Drunella | 0.001645 | 3.457 |
Order Plecoptera (stonefly nymphs) | ||
Perlidae | 0.00430 | 3.061 |
Perlodidae | 0.00281 | 3.036 |
Taeniopterygidae | 0.00251 | 3.045 |
Order Trichoptera (caddisfly larvae) | ||
Glossosomatidae | 0.00689 | 2.958 |
Limnephilidae, Dicosmoecus | 0.00230 | 3.079 |
Lepidostomatidae | 0.00293 | #.243 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cummins, K.W.; Wilzbach, M.; Kolouch, B.; Merritt, R. Estimating Macroinvertebrate Biomass for Stream Ecosystem Assessments. Int. J. Environ. Res. Public Health 2022, 19, 3240. https://doi.org/10.3390/ijerph19063240
Cummins KW, Wilzbach M, Kolouch B, Merritt R. Estimating Macroinvertebrate Biomass for Stream Ecosystem Assessments. International Journal of Environmental Research and Public Health. 2022; 19(6):3240. https://doi.org/10.3390/ijerph19063240
Chicago/Turabian StyleCummins, Kenneth W., Margaret Wilzbach, Brigitte Kolouch, and Richard Merritt. 2022. "Estimating Macroinvertebrate Biomass for Stream Ecosystem Assessments" International Journal of Environmental Research and Public Health 19, no. 6: 3240. https://doi.org/10.3390/ijerph19063240
APA StyleCummins, K. W., Wilzbach, M., Kolouch, B., & Merritt, R. (2022). Estimating Macroinvertebrate Biomass for Stream Ecosystem Assessments. International Journal of Environmental Research and Public Health, 19(6), 3240. https://doi.org/10.3390/ijerph19063240