Maternal Factors Affecting the Macronutrient Composition of Transitional Human Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.3.1. Structured Questionnaire Survey for Health Information
2.3.2. Human Milk Sample Collection and Analyses
2.4. Data Analysis
2.5. Ethics
3. Results
3.1. General Characteristics, Postpartum Stress, Sleep Quality, Spousal Support, and Dietary Intake of Macronutrients, Breastfeeding Assessment, HM Macronutrients and Energy
3.2. Correlation Analysis of Postpartum Stress, Sleep Quality, Spousal Support, Dietary Intake of Macronutrients, Breastfeeding Assessment, and HM Macronutrients and Energy
3.3. Maternal Factors Affecting Energy and Macronutrient Composition of Transitional HM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Henrietta, H.F.; Tedros, A.G. World Breastfeeding Week 2020 Message. 31. July. Statement/News. Available online: https://ardo.co.za/world-breastfeeding-week-2020/ (accessed on 23 January 2021).
- Horta, B.L. Breastfeeding: Investing in the Future. Breastfeed. Med. 2019, 14, 11–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, G.; Li, G.; Jiang, Y.; Hua, J.; Chu, X.; Xiong, L.; Gong, J.; Xiao, G.; Ye, X. Macronutrient content and fatty acid composition and their positional distribution in human breast milk from Zhejiang Province, China in different lactation periods. Food Sci. Nutr. 2021, 9, 6746–6761. [Google Scholar] [CrossRef] [PubMed]
- Grote, V.; Verduci, E.; Scaglioni, S.; Vecchi, F.; Contarini, G.; Giovannini, M.; Koletzko, B.; Agostoni, C. Breast milk composition and infant nutrient intakes during the first 12 months of life. Eur. J. Clin. Nutr. 2016, 70, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, W.H.; Jeong, T.W.; Park, S.Y.; Song, S.H.; Kang, N.M. Content fat and calorie of human milk is affected by interactions between maternal age and body mass index. J. Matern. Fetal Neonatal Med. 2018, 31, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Isganaitis, E.; Venditti, S.; Matthews, T.J.; Lerin, C.; Demerath, E.W.; Fields, D.A. Maternal obesity and the human milk metabolome: Associations with infant body composition and postnatal weight gain. Am. J. Clin. Nutr. 2019, 110, 111–120. [Google Scholar] [CrossRef]
- Bruun, S.; Jacobsen, L.N.; Ze, X.; Husby, S.; Ueno, H.M.; Nojiri, K.; Kobayashi, S.; Kwon, J.; Liu, X.; Yan, S.; et al. Osteopontin Levels in Human Milk Vary Across Countries and Within Lactation Period: Data from a Multicenter Study. J. Pediatric Gastroenterol. Nutr. 2018, 67, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Morrow, A.; Cline, A.; Maria, S.; McMahon, R.J.; Phillips, S.; Valentine, C. Global exploration of human milk (GEHM): A longitudinal study of human milk composition in urban populations of Mexico, China, and the United States. Breastfeed. Med. 2018, 13, A-5. [Google Scholar] [CrossRef]
- Leghi, G.E.; Netting, M.J.; Middleton, P.F.; Wlodek, M.E.; Geddes, D.T.; Muhlhausler, B.S. The impact of maternal obesity on human milk macronutrient coposition: A systemic review and meta-analysis. Nutrients 2020, 12, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Oledzka, G.; Szostak-Wegierek, D.; Weker, H.; Wesołowska, A. Maternal nutrition and body composition during breastfeeding: Association with human milk composition. Nutrients 2018, 10, 1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014, 99, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Pham, Q.; Patel, P.; Baban, B.; Yu, J.; Bhatia, J. Factors Affecting the Composition of Expressed Fresh Breast milk. Breastfeed. Med. 2020, 15, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Quinn, E.A.; Bista, K.D.; Childs, G. Milk at Altitude: Breast milk Macronutrient Composition in a High-Altitude Adapted Population of Tibetans. Am. J. Phys. Anthropol. 2020, 159, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Merser, R.T. Becoming a Mother Versus Maternal Role Attainment. J. Nurs. Scholarsh. 2004, 36, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Groer, M.W.; Davis, M.W.; Hemphill, J. Postpartum Stress: Current Concepts and the Possible Protective Role of Breastfeeding. J. Obstet. Gynecol. Neonatal Nurs. 2002, 31, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.H. Measuring postpartum stress. J. Adv. Nurs. 2004, 50, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Park, E.R.; Psaros, C.; Traeger, L.; Stagg, A.; Jacquart, J.; Willett, J.; Ecker, J.L. Development of a Postpartum Stressor Measure. Matern. Child Health J. 2015, 19, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional epidemiology: Issues and challenges. Int. J. Epidemiol. 1987, 16, 312–317. [Google Scholar] [CrossRef]
- Betts, G.M.; Lipsky, L.M.; Temmen, C.D.; Siega-Riz, A.M.; Faith, M.S.; Nansel, T.R. Poorer mental health and sleep quality are associated with greater self-reported reward-related eating during pregnancy and postpartum: An observational cohort study. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 58. [Google Scholar] [CrossRef]
- Martin, J.C.; Joham, A.E.; Mishra, G.D.; Hodge, A.M.; Moran, L.J.; Harrison, C.L. Postpartum Diet Quality: A Cross-Sectional Analysis from the Australian Longitudinal Study on Women’s Health. J. Clin. Med. 2020, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Tornese, G.; Ronfani, L.; Pavan, C.; Demarini, S.; Monasta, L.; Davanzo, D. Does the LATCH Score Assessed in the First 24 Hours After Delivery Predict Non-Exclusive Breastfeeding at Hospital Discharge? Breastfeed. Med. 2012, 7, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Kivijarvi, M.; Raiha, H.; Virtanen, S.; Lertola, K.; Piha, J. Maternal sensitivity behavior and infant crying, fussing and contented behavior: The effects of mother’s experienced social support. Scand. J. Psychol. 2004, 45, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.H.; Noh, Y.G. Impact of Parenting Stress and Husband’s Support on Breastfeeding Adaptation among Breastfeeding Mothers. Korean J. Women Health Nurs. 2017, 23, 233–242. [Google Scholar] [CrossRef]
- Lau, C. The effect of stress on lactation—Its significance for the preterm infant. Adv. Exp. Med. Biol. 2002, 503, 91–97. [Google Scholar] [PubMed]
- Soffer, G.P.; Maayan, S.; Laurence, M.; Dror, M.; Ronit, L. Impact of Maternal Anxiety on Breast milk Macronutrients Content: A Prospective Observational Study. Breastfeed. Med. 2020, 15, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Browne, P.D.; Aparicio, M.; Alba, C.; Hechler, C.; Beijers, R.; Rodríguez, J.M.; de Weerth, C. Breast milk Microbiome and Maternal Postnatal Psychosocial Distress. Front. Microbiol. 2019, 10, 2333. [Google Scholar] [CrossRef] [PubMed]
- Min, K.B.; Lee, S.M.; Eun, H.S.; Park, M.S.; Park, K.I.; Namgung, R.; Lee, C. Analysis of the Macronutrient Composition of Breast Milk from Korean Women and Growth of Infants. Korean J. Perinatol. 2012, 23, 259–265. [Google Scholar]
- National Health and Nutrition Survey. 2016. Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_01_02.do (accessed on 21 November 2020).
- Jensen, D.; Wallace, S.; Kelsay, P. LATCH: A breastfeeding charting system and documentation tool. J. Obstet. Gynecol. Neonatal Nurs. 1994, 23, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, M.; Browne, P.D.; Hechler, C.; Beijers, R.; Rodríguez, J.M.; de Weerth, C.; Fernández, L. Breast milk cortisol and immune factors over the first three postnatal months: Relations to maternal psychosocial distress. PLoS ONE 2020, 15, e0233554. [Google Scholar] [CrossRef]
- Lyons, S.; Currie, S.; Peters, S.; Lavender, T.; Smith, D.M. The association between psychological factors and breastfeeding behaviour in women with a body mass index (BMI) ≥30 kg m−2: A systematic review. Obes. Rev. 2018, 19, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Bzikowska-Jura, A.; Sobieraj, P.; Szostak-Węgierek, D.; Wesołowska, A. Impact of Infant and Maternal Factors on Energy and Macronutrient Composition of Human Milk. Nutrients 2020, 12, 2591. [Google Scholar] [CrossRef]
- Keikha, M.; Bahreynian, M.; Saleki, M.; Kelishadi, R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Systematic Review. Breastfeed. Med. 2017, 12, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.S.; Jung, J.; Kim, H.S.; Jo, A.R.; Kang, S.J.; Lee, S.W.; Yi, H.J.; Kim, J.H.; Yim, J.G.; Jung, B.M. Macronutrient composition of breast milk from Korean mothers of full term infants born at 37–42 gestational weeks. Nutr. Res. Pract. 2015, 9, 433–438. [Google Scholar] [CrossRef]
- Butte, N.F.; Stuebe, A. Patient Education: Maternal Health and Nutrition during Breastfeeding (Beyond the Basics). 2020. Available online: https://www.uptodate.com/contents/maternal-health-and-nutrition-during-breastfeeding-beyond-the-basicsutte (accessed on 22 February 2021).
- Dror, D.K.; Allen, L.H. Overview of Nutrients in Breast milk. Adv. Nutr. 2018, 9, 278–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.P.; Mooney, R.; Wieser, L.J.; Havstad, S. The LATCH Scoring System and Prediction of Breastfeeding Duration. J. Hum. Lact. 2006, 22, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Sowjanya, S.V.N.S.; Venugopalan, L. LATCH Score as a Predictor of Exclusive Breastfeeding at 6 Weeks Postpartum: A Prospective Cohort Study. Breastfeed. Med. 2018, 13, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Altuntas, N.; Kocak, M.; Akkurt, S.; Razi, H.C.; Kislal, M.F. LATCH scores and milk intake in preterm and term infants: A prospective comparative study. Breastfeed. Med. 2015, 10, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.H.; Roshan, R.; Parikh, T.; Sathe, S.; Vaidya, U.; Pandit, A. LATCH Score at Discharge: A Predictor of Weight Gain and Exclusive Breastfeeding at 6 Weeks in Term Healthy Babies. J. Pediatric Gastroenterol. Nutr. 2021, 72, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Hester, S.N.; Hustead, D.S.; Mackey, A.D.; Singhal, A.; Marriage, B.J. Is the macronutrient intake of formula fed infants greater than breast-fed infants in early infancy? J. Nutr. Metab. 2012, 2012, 891201. [Google Scholar] [CrossRef] [Green Version]
Variable | Categories | Frequency | Percent | |
---|---|---|---|---|
Education | high school or lower | 18 | 11.3 | |
college or higher | 141 | 88.7 | ||
Job | not working | 87 | 54.7 | |
working | 72 | 45.3 | ||
Monthly income (1000 won) | less than 3000 | 66 | 41.5 | |
3000 and over | 93 | 58.5 | ||
Maternal age (years) | Min = 21, Max = 45, Mean ± SD = 33.98 ± 4.35 | |||
Parity (times) | 1 | 106 | 66.7 | |
2 | 41 | 25.8 | ||
3 | 12 | 7.5 | ||
Delivery type | normal | 87 | 54.7 | |
C/S | 72 | 45.3 | ||
Feeding type | exclusive breastfeeding | 32 | 20.1 | |
mixed feeding | 127 | 79.9 | ||
Breastfeeding education | experienced | 115 | 72.3 | |
not experienced | 44 | 27.7 | ||
Breastfeeding interval (hours) | sometimes | 9 | 5.7 | |
1~2 | 19 | 11.9 | ||
2~3 | 68 | 42.8 | ||
3~4 | 50 | 31.4 | ||
over 4 | 13 | 8.2 | ||
Number of breastfeeding per day (times) | 1–4 | 44 | 27.7 | |
5–8 | 101 | 63.5 | ||
9–12 | 14 | 8.8 | ||
The first reason for Breastfeeding choice | benefits of breastfeeding | 88 | 55.3 | |
family’s recommendation | 1 | 0.6 | ||
own will | 65 | 40.8 | ||
expert’s advice | 4 | 2.5 | ||
others | 1 | 0.6 | ||
The person who most influenced breastfeeding decision | own will | 75 | 47.2 | |
husband | 31 | 19.5 | ||
mother | 43 | 27.0 | ||
doctors | 1 | 0.6 | ||
nurses | 5 | 3.1 | ||
others (parents in law, friends etc.) | 4 | 2.5 | ||
don’t know | 19 | 11.9 | ||
One breastfeeding amount | lack | 1 | 0.6 | |
appropriate | 74 | 46.7 | ||
excessive | 55 | 34.3 | ||
no response | 11 | 6.5 | ||
BMI (kg/m2) | BMI-pre Min = 15.63, Max = 31.25 Mean ± SD = 21.66 ± 2.54 | |||
BMI-full | Min = 20.45, Max = 34.89, Mean ± SD = 26.82 ± 2.57 | |||
BMI-present | Min = 9.00 Max= 31.99, Mean ± SD = 24.16 ± 2.73 |
Variables | Min | Max | Mean ± SD | Skewness | Kurtosis | |
---|---|---|---|---|---|---|
Stress | 9.00 | 27.00 | 18.54 ± 4.21 | 0.01 | −0.49 | |
Sleep quality | 13.00 | 97.00 | 55.81 ± 18.37 | −0.10 | −0.74 | |
Spouse support | 25.00 | 125.00 | 105.56 ± 15.97 | −1.30 | 3.31 | |
Dietary intake of macronutrients (%E) | carbohydrate | 35.00 | 79.00 | 56.90 ± 0.10 | −0.13 | −0.08 |
protein | 9.00 | 28.00 | 15.90 ± 0.04 | 0.99 | 1.24 | |
fat | 10.00 | 42.00 | 26.30 ± 0.07 | −0.12 | −0.10 | |
Breastfeeding assessment (LATCH) | latch | 0.00 | 2.00 | 1.30 ± 0.62 | −0.30 | −0.63 |
audible swallowing | 0.00 | 2.00 | 1.47 ± 0.59 | −0.63 | −0.55 | |
nipple type | 0.00 | 2.00 | 1.62 ± 0.60 | −1.36 | 0.81 | |
level of comfort | 0.00 | 2.00 | 1.63 ± 0.53 | −1.04 | 0.12 | |
help | 0.00 | 2.00 | 1.62 ± 0.54 | −0.97 | −0.13 | |
Macronutrients of HM | carbohydrate (g/dL) | 5.70 | 7.40 | 6.64 ± 0.27 | −0.42 | 1.46 |
protein (g/dL) | 0.50 | 2.40 | 1.32 ± 0.25 | −0.01 | 3.17 | |
fat (g/dL) | 0.80 | 7.90 | 3.45 ± 1.28 | 0.74 | 0.55 | |
energy (kcal/dL) | 33.00 | 102.00 | 63.18 ± 11.22 | 0.49 | 0.49 |
Variables | Stress | Sleep Quality | Spousal Support | Dietary Intake of Macronutrients(%E) | LATCH | HM Macronutrients | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Car. | Fat | Pro. | Fat (g/dL) | Pro. (g/dL) | Car. (g/dL) | Energy (kcal/dL) | ||||||
Stress | 1 | |||||||||||
Sleep quality | 0.34 ** | 1 | ||||||||||
Spousal support | −0.35 ** | −0.16 * | 1 | |||||||||
Dietary intake of macronutrients (%E) | Car. | 0.00 | −0.04 | 0.13 | 1 | |||||||
fat | 0.03 | 0.07 | −0.11 | −0.96 ** | 1 | |||||||
Pro. | −0.01 | −0.04 | −0.16 * | −0.86 ** | 0.73 ** | 1 | ||||||
LATCH | −0.21 ** | −0.08 | 0.26 ** | −0.01 | −0.01 | −0.04 | 1 | |||||
Macronutrients of HM | fat (g/dL) | −0.05 | 0.08 | 0.02 | 0.11 | −0.06 | −0.17 * | 0.14 | 1 | |||
Pro. (g/dL) | −0.09 | −0.09 | 0.00 | 0.02 | −0.04 | 0.06 | −0.09 | −0.10 | 1 | |||
Car. (g/dL) | 0.02 | 0.02 | −0.05 | −0.08 | 0.09 | 0.05 | −0.09 | −0.27 * | 0.21 * | 1 | ||
energy (kcal/dL) | −0.03 | 0.06 | 0.05 | 0.14 | −0.08 | −0.22 * | 0.16 * | 0.95 * | 0.02 | −0.14 | 1 |
Independent | Variable | B | SE | β | t | p | |
---|---|---|---|---|---|---|---|
(constant) | −37.21 | 33.04 | −1.13 | 0.262 | |||
Dietary intake of macronutrients | carbohydrate (%E) | 104.31 | 35.14 | 0.86 | 2.97 | 0.004 ** | |
fat (%E) | 127.31 | 48.45 | 0.77 | 2.63 | 0.010 * | ||
Breastfeeding assessment | 1.04 | 0.50 | 0.17 | 2.11 | 0.037 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryoo, C.J.; Kang, N.M. Maternal Factors Affecting the Macronutrient Composition of Transitional Human Milk. Int. J. Environ. Res. Public Health 2022, 19, 3308. https://doi.org/10.3390/ijerph19063308
Ryoo CJ, Kang NM. Maternal Factors Affecting the Macronutrient Composition of Transitional Human Milk. International Journal of Environmental Research and Public Health. 2022; 19(6):3308. https://doi.org/10.3390/ijerph19063308
Chicago/Turabian StyleRyoo, Chung Ja, and Nam Mi Kang. 2022. "Maternal Factors Affecting the Macronutrient Composition of Transitional Human Milk" International Journal of Environmental Research and Public Health 19, no. 6: 3308. https://doi.org/10.3390/ijerph19063308
APA StyleRyoo, C. J., & Kang, N. M. (2022). Maternal Factors Affecting the Macronutrient Composition of Transitional Human Milk. International Journal of Environmental Research and Public Health, 19(6), 3308. https://doi.org/10.3390/ijerph19063308