Risk Factors for Brain Health in Agricultural Work: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Non-Specifical Factors Associated with Agricultural Work
3.1.1. Dementia
3.1.2. Brain Cancer
3.1.3. Parkinson’s Disease
3.2. Airborne Toluene
3.3. Dust
3.4. Farm Animals
3.5. Heavy Metals
3.6. Nicotine Exposure
3.7. Pesticides
3.7.1. Brain Cancer
3.7.2. Parkinson’s Disease
3.7.3. Other Brain Related Impacts
4. Discussion
4.1. Moderators
4.2. Pesticide and Chemical Exposures
4.3. Other Risk Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Employment in Agriculture (% of Total Employment) (Modeled ILO Estimate)|Data. Available online: https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS (accessed on 25 September 2021).
- Agricultural Safety|NIOSH|CDC. Available online: https://www.cdc.gov/niosh/topics/aginjury/default.html (accessed on 25 September 2021).
- Peters, K.E.; Gupta, S.; Stoller, N.; Mueller, B. Implications of the Aging Process: Opportunities for Prevention in the Farming Community. J. Agromed. 2008, 13, 111–118. [Google Scholar] [CrossRef]
- Hounsome, B.; Edwards, R.T.; Hounsome, N.; Edwards-Jones, G. Psychological Morbidity of Farmers and Non-farming Population: Results from a UK Survey. Community Ment. Health J. 2011, 48, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Gabbard, S.M.; Mines, R.; Perloff, J.M. A Comparison of the CPS and NAWS Surveys of Agricultural Workers. Available online: https://www.dol.gov/sites/dolgov/files/ETA/naws/pdfs/NAWS%20Research%20Report%2014.pdf (accessed on 25 September 2021).
- McCausland, J.A. Racial Capitalism, Slavery, Labour Regimes and Exploitation in the Canadian Seasonal Agricultural Workers Program. Caribb. Quilt. 2020, 5, 55–61. [Google Scholar] [CrossRef]
- Bail, K.M.; Foster, J.; Dalmida, S.G.; Kelly, U.; Howett, M.; Ferranti, E.P.; Wold, J. The Impact of Invisibility on the Health of Migrant Farmworkers in the Southeastern United States: A Case Study from Georgia. Nurs. Res. Pract. 2012, 2012, 760418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parent, M.; Steede, G. Minority Stress among Gay and Bisexual Men in Agricultural Occupations. J. Rural Soc. Sci. 2020, 35, 3. [Google Scholar]
- Gatto, N.M.; Ogata, P.; Lytle, B. Farming, Pesticides, and Brain Cancer: A 20-Year Updated Systematic Literature Review and Meta-Analysis. Cancers 2021, 13, 4477. [Google Scholar] [CrossRef] [PubMed]
- Perrin, L.; Spinosi, J.; Chaperon, L.; Kab, S.; Moisan, F.; Ebaz, A. Pesticides expenditures by farming type and incidence of Parkinson disease in farmers: A French nationwide study. Environ. Res. 2021, 197, 111161. [Google Scholar] [CrossRef]
- Tricco, A.C.; Colantonio, A.; Chipman, M.; Liss, G.; McLellan, B. Work-related deaths and traumatic brain injury. Brain Inj. 2006, 20, 719–724. [Google Scholar] [CrossRef]
- Arora, K.; Xu, L.; Bhagianadh, D. Dementia and Cognitive Decline in Older Adulthood: Are Agricultural Workers at Greater Risk? J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2021, 76, 1629–1643. [Google Scholar] [CrossRef]
- Klingelschmidt, J.; Milner, A.; Khireddine-Medouni, I.; Witt, K.; Alexopoulos, E.C.; Toivanen, S.; Lamontagne, A.D.; Chastang, J.-F.; Niedhammer, I. Suicide among agricultural, forestry, and fishery workers: A systematic literature review and meta-analysis. Scand. J. Work. Environ. Health 2018, 44, 3–15. [Google Scholar] [CrossRef]
- Torske, M.O.; Hilt, B.; Glasscock, D.; Lundqvist, P.; Krokstad, S. Anxiety and Depression Symptoms among Farmers: The HUNT Study, Norway. J. Agromed. 2016, 21, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Stallones, L.; Beseler, C.L. Assessing the connection between organophosphate pesticide poisoning and mental health: A comparison of neuropsychological symptoms from clinical observations, animal models and epidemiological studies. Cortex 2016, 74, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Kori, R.K.; Mandrah, K.; Hasan, W.; Patel, D.K.; Roy, S.K.; Yadav, R.S. Identification of markers of depression and neurotoxicity in pesticide exposed agriculture workers. J. Biochem. Mol. Toxicol. 2020, 34, e22477. [Google Scholar] [CrossRef] [PubMed]
- Lucero, B.; Muñoz-Quezada, M.T. Neurobehavioral, Neuromotor, and Neurocognitive Effects in Agricultural Workers and Their Children Exposed to Pyrethroid Pesticides: A Review. Front. Hum. Neurosci. 2021, 15, 369. [Google Scholar] [CrossRef]
- United Farm Workers Definition of Agricultural Workers. UFW 2003. Available online: https://ufw.org/Definition-of-Agricultural-Workers/ (accessed on 25 September 2021).
- Komarek, A.M.; De Pinto, A.; Smith, V.H. A review of types of risks in agriculture: What we know and what we need to know. Agric. Syst. 2020, 178, 102738. [Google Scholar] [CrossRef]
- Khan, K.; Baidya, R.; Aryal, A.; Farmer, J.; Valliant, J. Neurological and mental health outcomes among conventional and organic farmers in Indiana, USA. Ann. Agric. Environ. Med. 2018, 25, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Helmer, C.; Letenneur, L.; Rouch, I.; Richard-Harston, S.; Barberger-Gateau, P.; Fabrigoule, C.; Orgogozo, J.M.; Dartigues, J.F. Occupation during life and risk of dementia in French elderly community residents. J. Neurol. Neurosurg. Psychiatry 2001, 71, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, C.E.; Smith, K.B.; Judd, F.; Humphreys, J.S.; Fragar, L.J.; Henderson, A. Farming and Mental Health Problems and Mental Illness. Int. J. Soc. Psychiatry 2005, 51, 340–349. [Google Scholar] [CrossRef]
- Rudolphi, J. Diversity of Mental Health Issues in Agriculture. J. Agromed. 2020, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Moretto, A.; Colosio, C. Biochemical and toxicological evidence of neurological effects of pesticides: The example of Parkinson’s disease. NeuroToxicology 2011, 32, 383–391. [Google Scholar] [CrossRef]
- Baldi, I.; Cantagrel, A.; LeBailly, P.; Tison, F.; Dubroca, B.; Chrysostome, V.; Dartigues, J.-F.; Brochard, P. Association between Parkinson’s Disease and Exposure to Pesticides in Southwestern France. Neuroepidemiology 2003, 22, 305–310. [Google Scholar] [CrossRef]
- Pezzoli, G.; Cereda, E. Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 2013, 80, 2035–2041. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, A.; Khuder, S.A.; Schaub, E.A.; Shrivastava, S. A meta-analysis of Parkinson’s disease and exposure to pesticides. NeuroToxicology 2000, 21, 435–440. [Google Scholar]
- Franco, R.; Li, S.; Rodriguez-Rocha, H.; Burns, M.; Panayiotidis, M.I. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson’s disease. Chem. Interact. 2010, 188, 289–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Maele-Fabry, G.; Hoet, P.; Vilain, F.; Lison, D. Occupational exposure to pesticides and Parkinson’s disease: A systematic review and meta-analysis of cohort studies. Environ. Int. 2012, 46, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.; Al Zayadi, A.; Guzman, A. Occupational and environmental risk factors of adult primary brain cancers: A systematic review. Int. J. Occup. Environ. Med. 2011, 2, 82–111. [Google Scholar]
- Quach, P.; El Sherif, R.; Gomes, J.; Krewksi, D. A systematic review of the risk factors associated with the onset and progression of primary brain tumours. NeuroToxicology 2017, 61, 214–232. [Google Scholar] [CrossRef] [PubMed]
- Alavanja, M.C.R.; Hoppin, J.A.; Kamel, F. Health Effects of Chronic Pesticide Exposure: Cancer and Neurotoxicity. Annu. Rev. Public Health 2004, 25, 155–197. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Kurland, L.T. Brain tumor and exposure to pesticides in humans: A review of the epidemiologic data. J. Neurol. Sci. 1995, 132, 110–121. [Google Scholar] [CrossRef]
- Khuder, S.A.; Mutgi, A.B.; Schaub, E.A. Meta-Analyses of Brain Cancer and Farming. Am. J. Ind. Med. 1998, 34, 252–260. [Google Scholar] [CrossRef]
- Takahashi, N.; Hashizume, M. A systematic review of the influence of occupational organophosphate pesticides exposure on neurological impairment. BMJ Open 2014, 4, e004798. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Iglesias, V.P.; Muñoz, M.P.; Cornejo, C.A.; Achu, E.; Baumert, B.; Hanchey, A.; Concha, C.; Brito, A.M.; et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. Int. J. Occup. Environ. Health 2016, 22, 68–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer-Baron, M.; Knapp, G.; Schäper, M.; van Thriel, C. Meta-analysis on occupational exposure to pesticides—Neurobehavioral impact and dose–response relationships. Environ. Res. 2015, 136, 234–245. [Google Scholar] [CrossRef]
- Moser, V.C. Animal models of chronic pesticide neurotoxicity. Hum. Exp. Toxicol. 2007, 26, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Burzynska, A.Z.; Jiao, Y.; Ganster, D.C. Adult-Life Occupational Exposures: Enriched Environment or a Stressor for the Aging Brain? Work. Aging Retire. 2018, 5, 3–23. [Google Scholar] [CrossRef]
- Mirmiran, M.; Van Gool, W.; Van Haaren, F.; Polak, C.E. Chapter 28 Environmental influences on brain and behavior in aging and Alzheimer’s disease. In Progress in Brain Research; Swaab, D.F., Fliers, E., Mirmiran, M., Van Gool, W.A., Van Haaren, F., Eds.; Aging of the Brain and Alzheimer’s Disease; Elsevier: Amsterdam, The Netherlands, 1986; Volume 70, pp. 443–459. [Google Scholar] [CrossRef]
- Nilsson, K. Interventions to reduce injuries among older workers in agriculture: A review of evaluated intervention projects. Work 2016, 55, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheets, L.P.; Li, A.A.; Minnema, D.J.; Collier, R.H.; Creek, M.R.; Peffer, R.C. A critical review of neonicotinoid insecticides for developmental neurotoxicity. Crit. Rev. Toxicol. 2015, 46, 153–190. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Tu, Y.; Song, Y.; Yang, G.; You, M. The relationship between pesticide exposure during critical neurodevelopment and autism spectrum disorder: A narrative review. Environ. Res. 2022, 203, 111902. [Google Scholar] [CrossRef]
- González-Alzaga, B.; Lacasaña, M.; Aguilar-Garduño, C.; Rodríguez-Barranco, M.; Ballester, F.; Rebagliato, M.; Hernández, A. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol. Lett. 2014, 230, 104–121. [Google Scholar] [CrossRef]
- Dórea, J.G. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. Environ. Res. 2020, 192, 110199. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.; Barr, D.B.; Steenland, K.; Levy, K.; Ryan, P.B.; Iglesias, V.; Alvarado, S.; Concha, C.; Rojas, E.; et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. NeuroToxicology 2013, 39, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Jurewicz, J.; Hanke, W. Prenatal and Childhood Exposure to Pesticides and Neurobehavioral Development: Review of Epidemiological Studies. Int. J. Occup. Med. Environ. Health 2008, 21, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Beghdadli, B.; Ghomari, O.; Hamimed, M.E.A.; Azza, A.; Edjekouane, I.; Ider, M.; Baraka, F.; Abdi, L.; Taleb, A.; Benabadji, S.; et al. Occupational and Environmental Risk Factors of Parkinson’s Disease: A Case-Control Study in Western Algeria. Arch. Mal. Prof. L’Environ. 2016, 77, 21–26. [Google Scholar] [CrossRef]
- Miranda-Filho, A.L.; Monteiro, G.T.R.; Meyer, A. Brain cancer mortality among farm workers of the State of Rio de Janeiro, Brazil: A population-based case–control study, 1996–2005. Int. J. Hyg. Environ. Health 2012, 215, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wei, X.; Yang, W.; Reynolds, G.P. Agricultural work and reduced circulating uric acid are both associated with initial hospital admission for Parkinson’s disease. J. Neural Transm. 2019, 127, 779–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heineman, E.F.; Gao, Y.-T.; Dosemeci, M.; McLaughlin, J.K. Occupational Risk Factors for Brain Tumors Among Women in Shanghai, China. J. Occup. Environ. Med. 1995, 37, 288–293. [Google Scholar] [CrossRef]
- Tuchsen, F.; Jensen, A.A. Agricultural Work and the Risk of Parkinson’s Disease in Denmark, 1981–1993. Scand. J. Work Environ. Health 2000, 26, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Vlaar, T.; Kab, S.; Schwaab, Y.; Frery, N.; Elbaz, A.; Moisan, F. Association of Parkinson’s disease with industry sectors: A French nationwide incidence study. Eur. J. Epidemiol. 2018, 33, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Kab, S.; Spinosi, J.; Chaperon, L.; Dugravot, A.; Singh-Manoux, A.; Moisan, F.; Elbaz, A. Agricultural activities and the incidence of Parkinson’s disease in the general French population. Eur. J. Epidemiol. 2017, 32, 203–216. [Google Scholar] [CrossRef]
- Samkange-Zeeb, F.; Schlehofer, B.; Schüz, J.; Schlaefer, K.; Berg-Beckhoff, G.; Wahrendorf, J.; Blettner, M. Occupation and risk of glioma, meningioma and acoustic neuroma: Results from a German case–control study (Interphone Study Group, Germany). Cancer Epidemiol. 2010, 34, 55–61. [Google Scholar] [CrossRef]
- Kyrozis, A.; Ghika, A.; Stathopoulos, P.; Vassilopoulos, D.; Trichopoulos, D.; Trichopoulou, A. Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur. J. Epidemiol. 2013, 28, 67–77. [Google Scholar] [CrossRef]
- Schlehofer, B.; Hettinger, I.; Ryan, P.; Blettner, M.; Preston-Martin, S.; Little, J.; Arslan, A.; Ahlbom, A.; Giles, G.; Howe, G.R.; et al. Occupational risk factors for low grade and high grade glioma: Results from an international case control study of adult brain tumours. Int. J. Cancer 2005, 113, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, P.; Foddis, R.; Cristaudo, A. High risk of brain tumors in farmers: A mini-review of the literature, and report of the results of a case control study. Clin. Ter 2017, 168, E290–E292. [Google Scholar] [CrossRef]
- Rocca, W.A.; Anderson, D.W.; Meneghini, F.; Grigoletto, F.; Morgante, L.; Reggio, A.; Savettieri, G.; Di Perri, R. Occupation, education, and Parkinson’s disease: A case-control study in an Italian population. Mov. Disord. 1996, 11, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Zorzon, M.; Capus, L.; Pellegrino, A.; Cazzato, G.; Zivadinov, R. Familial and environmental risk factors in Parkinson’s disease: A case-control study in north-east Italy. Acta Neurol. Scand. 2002, 105, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Preston-Martin, S.; Lewis, S.; Winkelmann, R.; Borman, B.; Auld, J.; Pearce, N. Descriptive epidemiology of primary cancer of the brain, cranial nerves, and cranial meninges in New Zealand, 1948–88. Cancer Causes Control 1993, 4, 529–538. [Google Scholar] [CrossRef]
- Skeie, G.; Muller, B.; Haugarvoll, K.; Larsen, J.; Tysnes, O. Differential effect of environmental risk factors on postural instability gait difficulties and tremor dominant Parkinson’s disease. Mov. Disord. 2010, 25, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M. Clinical Features and Risk Factors of Parkinson’s Disease in a Population of Khyber Pakhtunkhwa, Pakistan: A Case-Control Study. Neurodegener. Dis. 2020, 19, 211–217. [Google Scholar] [CrossRef]
- Cocco, P.; Dosemeci, M.; Heineman, E.F. Occupational Risk Factors for Cancer of the Central Nervous System: A Case-Control Study on Death Certificates from 24 US States. Am. J. Ind. Med. 1998, 33, 247–255. [Google Scholar] [CrossRef]
- Kirkey, K.L.; Johnson, C.C.; Rybicki, B.A.; Peterson, E.L.; Kortsha, G.X.; Gorell, J.M. Occupational categories at risk for Parkinson’s disease. Am. J. Ind. Med. 2001, 39, 564–571. [Google Scholar] [CrossRef]
- Zheng, T.; Cantor, K.P.; Zhang, Y.; Keim, S.; Lynch, C.F. Occupational Risk Factors for Brain Cancer: A Population-Based Case-Control Study in Iowa. J. Occup. Environ. Med. 2001, 43, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Demers, P.; Vaughn, T.; Schommer, R. Occupation, Socioeconomic-Status, and Brain-Tumor Mortality: A Death Certificate-Based-Control Study. J. Occup. Environ. Med. 1991, 33, 1001–1006. [Google Scholar]
- Firestone, J.A.; Lundin, J.I.; Powers, K.M.; Smith-Weller, T.; Franklin, G.M.; Swanson, P.D.; Longstreth, W.; Checkoway, H. Occupational factors and risk of Parkinson’s disease: A population-based case–control study. Am. J. Ind. Med. 2009, 53, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Narayan, S.; Liew, Z.; Bronstein, J.M.; Ritz, B. Occupational pesticide use and Parkinson’s disease in the Parkinson Environment Gene (PEG) study. Environ. Int. 2017, 107, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Dick, S.; Semple, S.; Dick, F.; Seaton, A. Occupational titles as risk factors for Parkinson’s disease. Occup. Med. 2006, 57, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Yoo, C.-I.; Sim, C.S.; Kim, H.K.; Kim, J.W.; Jeon, B.S.; Kim, K.-R.; Bang, O.-Y.; Lee, W.-Y.; Yi, Y.; et al. Occupations and Parkinson’s Disease: A Multi-Center Case-Control Study in South Korea. NeuroToxicology 2005, 26, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Seidler, A.; Hellenbrand, W.; Robra, B.-P.; Vieregge, P.; Nischan, P.; Joerg, J.; Oertel, W.H.; Ulm, G.; Schneider, E. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: A case-control study in Germany. Neurology 1996, 46, 1275. [Google Scholar] [CrossRef]
- Behari, M.; Srivastava, A.K.; Das, R.R.; Pandey, R. Risk factors of Parkinson’s disease in Indian patients. J. Neurol. Sci. 2001, 190, 49–55. [Google Scholar] [CrossRef]
- Chatti, S.; Debbabi, F.; Guesmi, H.; El Maalel, O.; Baccouche, N.; Krifa, H.; Mrizak, N. Étude de l’exposition professionnelle chez les patients atteints de tumeurs cérébrales primitives malignes. Arch. Mal. Prof. L’Environ. 2007, 68, 572–578. [Google Scholar] [CrossRef]
- Li, X.; Sundquist, J.; Sundquist, K. Socioeconomic and occupational groups and Parkinson’s disease: A nationwide study based on hospitalizations in Sweden. Int. Arch. Occup. Environ. Health 2008, 82, 235–241. [Google Scholar] [CrossRef]
- Park, J.; Yoo, C.-I.; Sim, C.S.; Kim, J.-W.; Yi, Y.; Jung, K.Y.; Chung, S.-E.; Kim, Y. Occupations and Parkinson’s Disease: A Case-Control Study in South Korea. Ind. Health 2004, 42, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Soares, M.V.; Charão, M.F.; Jacques, M.T.; dos Santos, A.L.A.; Luchese, C.; Pinton, S.; Ávila, D.S. Airborne toluene exposure causes germline apoptosis and neuronal damage that promotes neurobehavioural changes in Caenorhabditis elegans. Environ. Pollut. 2019, 256, 113406. [Google Scholar] [CrossRef] [PubMed]
- Massey, N.; Puttachary, S.; Bhat, S.M.; Kanthasamy, A.G.; Charavaryamath, C. HMGB1-RAGE Signaling Plays a Role in Organic Dust-Induced Microglial Activation and Neuroinflammation. Toxicol. Sci. 2019, 169, 579–592. [Google Scholar] [CrossRef]
- Ménégoz, F.; Little, J.; Colonna, M.; Arslan, A.; Preston-Martin, S.; Schlehofer, B.; Blettner, M.; Howe, G.; Ryan, P.; Giles, G.; et al. Contacts with animals and humans as risk factors for adult brain tumours. An international case–control study. Eur. J. Cancer 2002, 38, 696–704. [Google Scholar] [CrossRef]
- Gandhi, S.; Felini, M.J.; Ndetan, H.; Cardarelli, K.; Jadhav, S.; Faramawi, M.; Johnson, E.S. A Pilot Case-Cohort Study of Brain Cancer in Poultry and Control Workers. Nutr. Cancer 2014, 66, 343–350. [Google Scholar] [CrossRef]
- Siejka, D.; Taylor, B.; Ponsonby, A.-L.; Dwyer, T.; van der Mei, I. Association between exposure to farm animals and pets and risk of Multiple Sclerosis. Mult. Scler. Relat. Disord. 2016, 10, 53–56. [Google Scholar] [CrossRef]
- Valery, P.C.; Lucas, R.; Williams, D.B.; Pender, M.; Chapman, C.; Coulthard, A.; Dear, K.; Dwyer, T.; Kilpatrick, T.; McMichael, A.J.; et al. Occupational Exposure and Risk of Central Nervous System Demyelination. Am. J. Epidemiol. 2013, 177, 954–961. [Google Scholar] [CrossRef]
- Kuopio, A.-M.; Marttila, R.J.; Helenius, H.; Rinne, U.K. Environmental risk factors in Parkinson’s disease. Mov. Disord. 1999, 14, 928–939. [Google Scholar] [CrossRef]
- Palzes, V.A.; Sagiv, S.K.; Baker, J.M.; Rojas-Valverde, D.; Gutiérrez-Vargas, R.; Winkler, M.S.; Fuhrimann, S.; Staudacher, P.; Menezes-Filho, J.A.; Reiss, A.L.; et al. Manganese exposure and working memory-related brain activity in smallholder farmworkers in Costa Rica: Results from a pilot study. Environ. Res. 2019, 173, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, G.; Rao, S.V.; Muralidhara; Rajini, P.S. Whey protein isolate enrichment attenuates manganese-induced oxidative stress and neurotoxicity in Drosophila melanogaster: Relevance to Parkinson’s disease. Biomed. Pharmacother. 2017, 95, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Huang, C.-Y.; Huang, C.-C. Occupational Neurotoxic Diseases in Taiwan. Saf. Health Work 2012, 3, 257–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, B.S.; Larsen, E.H.; Ladefoged, O.; Lam, H.R. Subchronic, Low-Level Intraperitoneal Injections of Manganese (IV) Oxide and Manganese (II) Chloride Affect Rat Brain Neurochemistry. Int. J. Toxicol. 2017, 36, 239–251. [Google Scholar] [CrossRef]
- Arnal, N.; Dominici, L.; de Tacconi, M.J.; Marra, C.A. Copper-induced alterations in rat brain depends on route of overload and basal copper levels. Nutrition 2014, 30, 96–106. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, Z.; Zhang, H.; Zhao, Y.; Chai, Z. Neurotoxicological Evaluation of Long-Term Lanthanum Chloride Exposure in Rats. Toxicol. Sci. 2008, 103, 354–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurienti, P.J.; Burdette, J.H.; Talton, J.; Pope, C.N.; Summers, P.; Walker, F.; Quandt, S.A.; Lyday, R.G.; Chen, H.; Howard, T.D.; et al. Brain Anatomy in Latino Farmworkers Exposed to Pesticides and Nicotine. J. Occup. Environ. Med. 2016, 58, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, M.; Laurienti, P.J.; Quandt, S.A.; Talton, J.; Pope, C.N.; Summers, P.; Burdette, J.H.; Chen, H.; Liu, J.; Howard, T.D.; et al. The impacts of pesticide and nicotine exposures on functional brain networks in Latino immigrant workers. NeuroToxicology 2017, 62, 138–150. [Google Scholar] [CrossRef]
- Imam, A.; Sulaiman, N.A.; Oyewole, A.L.; Chengetanai, S.; Williams, V.; Ajibola, M.I.; Folarin, R.O.; Muhammad, A.S.; Shittu, S.-T.T.; Ajao, M.S. Chlorpyrifos- and Dichlorvos-Induced Oxidative and Neurogenic Damage Elicits Neuro-Cognitive Deficits and Increases Anxiety-Like Behavior in Wild-Type Rats. Toxics 2018, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.R.; Cintra, W.M.; Aracava, Y.; Maciel, C.M.; Castro, N.G.; Albuquerque, E.X. Spine Density and Dendritic Branching Pattern of Hippocampal CA1 Pyramidal Neurons in Neonatal Rats Chronically Exposed to the Organophosphate Paraoxon. NeuroToxicology 2004, 25, 481–494. [Google Scholar] [CrossRef]
- Nieradko-Iwanicka, B.; Borzęcki, A. The 28-day exposure to fenpropathrin decreases locomotor activity and reduces activity of antioxidant enzymes in mice brains. Pharmacol. Rep. 2016, 68, 495–501. [Google Scholar] [CrossRef]
- Naughton, S.X.; Terry, A.V. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018, 408, 101–112. [Google Scholar] [CrossRef]
- Gasmi, S.; Kebieche, M.; Rouabhi, R.; Touahria, C.; Lahouel, A.; Lakroun, Z.; Henine, S.; Soulimani, R. Alteration of membrane integrity and respiratory function of brain mitochondria in the rats chronically exposed to a low dose of acetamiprid. Environ. Sci. Pollut. Res. 2017, 24, 22258–22264. [Google Scholar] [CrossRef] [PubMed]
- Baldi, I.; De Graaf, L.; Bouvier, G.; Gruber, A.; Loiseau, H.; Meryet-Figuiere, M.; Rousseau, S.; Fabbro-Peray, P.; Lebailly, P. Occupational exposure to pesticides and central nervous system tumors: Results from the CERENAT case–control study. Cancer Causes Control 2021, 32, 773–782. [Google Scholar] [CrossRef]
- Piel, C.; Pouchieu, C.; Tual, S.; Migault, L.; LeMarchand, C.; Carles, C.; Boulanger, M.; Gruber, A.; Rondeau, V.; Marcotullio, E.; et al. Central nervous system tumors and agricultural exposures in the prospective cohort AGRICAN. Int. J. Cancer 2017, 141, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Piel, C.; Pouchieu, C.; Migault, L.; Béziat, B.; Boulanger, M.; Bureau, M.; Carles, C.; Grüber, A.; Lecluse, Y.; Rondeau, V.; et al. Increased risk of central nervous system tumours with carbamate insecticide use in the prospective cohort AGRICAN. Int. J. Epidemiol. 2019, 48, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Musicco, M.; Sant, M.; Molinari, S.; Filippini, G.; Gatta, G.; Berrino, F. A case-control study of brain gliomas and occupational exposure to chemical carcinogens: The risk to farmers. Am. J. Epidemiol. 1988, 128, 778–785. [Google Scholar] [CrossRef]
- Bhat, A.R.; Wani, M.A.; Kirmani, A.R.; Raina, T.H. Pesticides and brain cancer linked in orchard farmers of Kashmir. Indian J. Med. Paediatr. Oncol. 2010, 31, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Matias, A.C.; Manieri, T.M.; Cipriano, S.S.; Carioni, V.M.; Nomura, C.S.; Machado, C.M.; Cerchiaro, G. Diethyldithiocarbamate induces apoptosis in neuroblastoma cells by raising the intracellular copper level, triggering cytochrome c release and caspase activation. Toxicol. Vitr. 2012, 27, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Babu, H.S.; Jayaraman, P.; Aarthy, P. Effect of Spark EC 36 [Combination Pesticide] on the AchEase Activity in Plasma and Brain of Wistar Rats. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 475–479. [Google Scholar]
- Saoudi, M.; Salem, R.B.S.-B.; Ben Salem, M.; Brahmi, N.; Badraoui, R.; Nasri, M.; El Feki, A. Beneficial effects of crataegus oxyacantha extract on neurobehavioral deficits and brain tissue damages induced by an insecticide mixture of deltamethrin and chlorpyrifos in adult wistar rats. Biomed. Pharmacother. 2019, 114, 108795. [Google Scholar] [CrossRef]
- Martinez-Larrañaga, M.R.; Anadón, A.; Martínez, M.A.; Martínez, M.; Castellano, V.J.; Díaz, M.J. 5-HT loss in rat brain by type II pyrethroid insecticides. Toxicol. Ind. Health 2003, 19, 147–155. [Google Scholar] [CrossRef]
- Ben Amara, I.; Soudani, N.; Hakim, A.; Troudi, A.; Zeghal, K.M.; Boudawara, T.; Zeghal, N. Selenium and vitamin E, natural antioxidants, protect rat cerebral cortex against dimethoate-induced neurotoxicity. Pestic. Biochem. Physiol. 2011, 101, 165–174. [Google Scholar] [CrossRef]
- Penatzer, J.A.; Prince, N.; Miller, J.V.; Newman, M.; Lynch, C.; Hobbs, G.R.; Boyd, J.W. Corticosterone and chlorpyrifos oxon exposure elicits spatiotemporal MAPK phosphoprotein signaling in a mouse brain. Food Chem. Toxicol. 2021, 155, 112421. [Google Scholar] [CrossRef]
- Mattsson, J.; Wilmer, J.; Shankar, M.; Berdasco, N.; Crissman, J.; Maurissen, J.; Bond, D. Single-dose and 13-week repeated-dose neurotoxicity screening studies of chlorpyrifos insecticide. Food Chem. Toxicol. 1996, 34, 393–405. [Google Scholar] [CrossRef]
- Souza, M.F.; Medeiros, K.A.A.; Lins, L.C.; Bispo, J.M.; Gois, A.M.; Freire, M.A.M.; Marchioro, M.; Santos, J.R. Intracerebroventricular injection of deltamethrin increases locomotion activity and causes spatial working memory and dopaminergic pathway impairment in rats. Brain Res. Bull. 2019, 154, 1–8. [Google Scholar] [CrossRef]
- Nielsen, B.S.; Larsen, E.H.; Ladefoged, O.; Lam, H.R. Neurotoxic effect of maneb in rats as studied by neurochemical and immunohistochemical parameters. Environ. Toxicol. Pharmacol. 2006, 21, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Meme, S.; Calas, A.-G.; Montécot, C.; Richard, O.; Gautier, H.; Gefflaut, T.; Doan, B.T.; Même, W.; Pichon, J.; Beloeil, J.-C. MRI Characterization of Structural Mouse Brain Changes in Response to Chronic Exposure to the Glufosinate Ammonium Herbicide. Toxicol. Sci. 2009, 111, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Grigoryan, H.; Lockridge, O. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: Implications for neurotoxicity. Toxicol. Appl. Pharmacol. 2009, 240, 143–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katić, A.; Kašuba, V.; Kopjar, N.; Lovaković, B.T.; Čermak, A.M.M.; Mendaš, G.; Micek, V.; Milić, M.; Pavičić, I.; Pizent, A.; et al. Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats. Chem. Interact. 2021, 338, 109287. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Souders, C.L.; Pena-Delgado, C.J.; Nguyen, K.T.; Kroyter, N.; El Ahmadie, N.; Aristizabal-Henao, J.J.; Bowden, J.A.; Martyniuk, C.J. Neurotoxicity assessment of triazole fungicides on mitochondrial oxidative respiration and lipids in differentiated human SH-SY5Y neuroblastoma cells. NeuroToxicology 2020, 80, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Moisan, F.; Spinosi, J.; Delabre, L.; Gourlet, V.; Mazurie, J.-L.; Bénatru, I.; Goldberg, M.; Weisskopf, M.G.; Imbernon, E.; Tzourio, C.; et al. Association of Parkinson’s Disease and Its Subtypes with Agricultural Pesticide Exposures in Men: A Case–Control Study in France. Environ. Health Perspect. 2015, 123, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Dutheil, F.; Beaune, P.; Tzourio, C.; Loriot, M.-A.; Elbaz, A. Interaction between ABCB1 and Professional Exposure to Organochlorine Insecticides in Parkinson Disease. Arch. Neurol. 2010, 67, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, T.; Dalvie, M.A.; Holtman, Z.; Vorster, A.A.; Ramesar, R.S.; London, L. DNA variants and organophosphate neurotoxicity among emerging farmers in the Western Cape of South Africa. Am. J. Ind. Med. 2017, 61, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Parrón, T.; Requena, M.; Hernández, A.F.; Alarcón, R. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol. Appl. Pharmacol. 2011, 256, 379–385. [Google Scholar] [CrossRef]
- Liou, H.H.; Tsai, M.C.; Chen, C.J.; Jeng, J.S.; Chang, Y.C.; Chen, S.Y.; Chen, R.C. Environmental risk factors and Parkinson’s disease. Neurology 1997, 48, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Frigerio, R.; Sanft, K.R.; Grossardt, B.R.; Peterson, B.J.; Elbaz, A.; Bower, J.H.; Ahlskog, J.E.; De Andrade, M.; Maraganore, D.M.; Rocca, W.A. Chemical exposures and Parkinson’s disease: A population-based case–control study. Mov. Disord. 2006, 21, 1688–1692. [Google Scholar] [CrossRef] [PubMed]
- Ritz, B.R.; Manthripragada, A.D.; Costello, S.; Lincoln, S.J.; Farrer, M.J.; Cockburn, M.; Bronstein, J. Dopamine Transporter Genetic Variants and Pesticides in Parkinson’s Disease. Environ. Health Perspect. 2009, 117, 964–969. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.D.; Ross, G.W.; White, L.R.; Sanderson, W.T.; Burchfiel, C.M.; Kashon, M.; Sharp, D.S.; Masaki, K.H.; Curb, J.D.; Petrovitch, H. Environmental, life-style, and physical precursors of clinical Parkinson’s disease: Recent findings from the Honolulu-Asia Aging Study. J. Neurol. 2003, 250, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Go, R.C.P.; Corley, M.J.; Ross, G.W.; Petrovitch, H.; Masaki, K.H.; Maunakea, A.K.; He, Q.; Tiirikainen, M.I. Genome-wide epigenetic analyses in Japanese immigrant plantation workers with Parkinson’s disease and exposure to organochlorines reveal possible involvement of glial genes and pathways involved in neurotoxicity. BMC Neurosci. 2020, 21, 31. [Google Scholar] [CrossRef]
- Liew, Z.; Wang, A.; Bronstein, J.; Ritz, B. Job Exposure Matrix (JEM)-Derived Estimates of Lifetime Occupational Pesticide Exposure and the Risk of Parkinson’s Disease. Arch. Environ. Occup. Health 2014, 69, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Gorell, J.M.; Peterson, E.L.; Rybicki, B.A.; Johnson, C.C. Multiple risk factors for Parkinson’s disease. J. Neurol. Sci. 2004, 217, 169–174. [Google Scholar] [CrossRef]
- Wang, A.; Costello, S.; Cockburn, M.; Zhang, X.; Bronstein, J.; Ritz, B. Parkinson’s disease risk from ambient exposure to pesticides. Eur. J. Epidemiol. 2011, 26, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Rojas, C.; Zhuang, D.; Jimenez-Carrion, P.; Silva, I.; O’Callaghan, J.P.; Lu, L.; Zhao, W.; Mulligan, M.K.; Williams, R.W.; Jones, B.C. Systems Genetics and Systems Biology Analysis of Paraquat Neurotoxicity in BXD Recombinant Inbred Mice. Toxicol. Sci. 2020, 176, 137–146. [Google Scholar] [CrossRef]
- Venkatesan, D.; Iyer, M.; Wilson, R.; Lakshmipathy, G.; Vellingiri, B. The association between multiple risk factors, clinical correlations and molecular insights in Parkinson’s disease patients from Tamil Nadu population, India. Neurosci. Lett. 2021, 755, 135903. [Google Scholar] [CrossRef] [PubMed]
- Gorell, J.M.; Johnson, C.C.; Rybicki, B.A.; Peterson, E.L.; Richardson, R.J. The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998, 50, 1346–1350. [Google Scholar] [CrossRef]
- Hancock, D.B.; Martin, E.R.; Mayhew, G.M.; Stajich, J.M.; Jewett, R.; Stacy, M.A.; Scott, B.L.; Vance, J.M.; Scott, W.K. Pesticide exposure and risk of Parkinson’s disease: A family-based case-control study. BMC Neurol. 2008, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Elbaz, A.; Levecque, C.; Clavel, J.; Vidal, J.-S.; Richard, F.; Corrèze, J.-R.; Delemotte, B.; Amouyel, P.; Alpérovitch, A.; Chartier-Harlin, M.-C.; et al. S18Y polymorphism in the UCH-L1 gene and Parkinson’s disease: Evidence for an age-dependent relationship. Mov. Disord. 2002, 18, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Baldi, I.; LeBailly, P.; Mohammed-Brahim, B.; Letenneur, L.; Dartigues, J.-F.; Brochard, P. Neurodegenerative Diseases and Exposure to Pesticides in the Elderly. Am. J. Epidemiol. 2003, 157, 409–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seneff, S.; Swanson, N.; Li, C. Aluminum and Glyphosate Can Synergistically Induce Pineal Gland Pathology: Connection to Gut Dysbiosis and Neurological Disease. Agric. Sci. 2015, 06, 42–70. [Google Scholar] [CrossRef] [Green Version]
- Jimenez Venegas, L.; Quilodran Peredo, J.; Miranda Olivares, J.P.; Rodriguez Bustos, H. Effect of a Single Doses Intraperitoneal of Cypermethrin in Brain Somatosensory Area of Mice CF-1. Int. J. Morphol. 2008, 26, 19–26. [Google Scholar]
- Peiris-John, R.; Ruberu, D.K.; Wickremasinghe, A.R.; Smit, L.A.; Van Der Hoek, W. Effects of Occupational Exposure to Organophosphate Pesticides on Nerve and Neuromuscular Function. J. Occup. Environ. Med. 2002, 44, 352–357. [Google Scholar] [CrossRef]
- Piel, C.; Pouchieu, C.; Carles, C.; Béziat, B.; Boulanger, M.; Bureau, M.; Busson, A.; Grüber, A.; Lecluse, Y.; Migault, L.; et al. Agricultural exposures to carbamate herbicides and fungicides and central nervous system tumour incidence in the cohort AGRICAN. Environ. Int. 2019, 130, 104876. [Google Scholar] [CrossRef]
- Viel, J.-F.; Challier, B.; Pitard, A.; Pobel, D. Brain Cancer Mortality among French Farmers: The Vineyard Pesticide Hypothesis. Arch. Environ. Health Int. J. 1998, 53, 65–70. [Google Scholar] [CrossRef]
- Provost, D.; Cantagrel, A.; Jaffre, A.; Lebailly, P.; Loyant, V.; Brochard, P.; Baldi, I. Brain Tumors and Exposure to Pesticides: A Case-Control Study in South-Western France. Environ. Risques Sante 2007, 6, 410–411. [Google Scholar]
- Pilkington, A.; Buchanan, D.; Jamal, G.A.; Gillham, R.; Hansen, S.; Kidd, M.; Hurley, J.F.; A Soutar, C. An epidemiological study of the relations between exposure to organophosphate pesticides and indices of chronic peripheral neuropathy and neuropsychological abnormalities in sheep farmers and dippers. Occup. Environ. Med. 2001, 58, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Kab, S.; Moisan, F.; Elbaz, A. Farming and incidence of motor neuron disease: French nationwide study. Eur. J. Neurol. 2017, 24, 1191–1195. [Google Scholar] [CrossRef]
- Thetkathuek, A.; Jaidee, W.; Saowakhontha, S.; Ekburanawat, W. Neuropsychological Symptoms among Workers Exposed to Toluene and Xylene in Two Paint Manufacturing Factories in Eastern Thailand. Adv. Prev. Med. 2015, 2015, 183728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumchev, K.; Gilbey, S.; Mead-Hunter, R.; Selvey, L.; Netto, K.; Mullins, B. Agricultural Dust Exposures and Health and Safety Practices among Western Australian Wheatbelt Farmers during Harvest. Int. J. Environ. Res. Public Health 2019, 16, 5009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Lee, J.-G.; Yoon, J.-H.; Lee, J.-H. Relationship between occupational dust exposure levels and mental health symptoms among Korean workers. PLoS ONE 2020, 15, e0228853. [Google Scholar] [CrossRef]
- Rocha, G.; Lini, R.S.; Barbosa, F.; Batista, B.L.; Souza, V.C.D.O.; Nerilo, S.B.; Bando, E.; Mossini, S.A.G.; Nishiyama, P. Exposure to heavy metals due to pesticide use by vineyard farmers. Int. Arch. Occup. Environ. Health 2014, 88, 875–880. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saravi, S.S.S.; Dehpour, A.R. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. Life Sci. 2016, 145, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.F.; González-Alzaga, B.; López-Flores, I.; Lacasaña, M. Systematic reviews on neurodevelopmental and neurodegenerative disorders linked to pesticide exposure: Methodological features and impact on risk assessment. Environ. Int. 2016, 92–93, 657–679. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.T.; Levy, L.S. Parkinson’s disease and pesticide exposure—A new assessment. Crit. Rev. Toxicol. 2013, 43, 515–534. [Google Scholar] [CrossRef]
- Laske, C.; Wormstall, H.; Einsiedler, K.; Buchkremer, G. Alzheimer’s Disease with Secondary Parkinson’s Syndrome. Case Report of a Patient with Dementia and Parkinson’s Syndrome after Long-Term Occupational Exposure to In-secticides, Herbicides, and Pesticides. Nervenarzt 2004, 75, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.M.; McManus, I.; Harrison, V.; Mason, O. Neurobehavioral problems following low-level exposure to organophosphate pesticides: A systematic and meta-analytic review. Crit. Rev. Toxicol. 2013, 43, 21–44. [Google Scholar] [CrossRef]
- Binukumar, B.K.; Gill, K.D. Cellular and molecular mechanisms of dichlorvos neurotoxicity: Cholinergic, nonchlolinergic, cell signaling, gene expression and therapeutic aspects. Indian J. Exp. Biol. 2010, 48, 697–709. [Google Scholar]
- Ritz, B.; Costello, S. Geographic Model and Biomarker-Derived Measures of Pesticide Exposure and Parkinson’s Disease. Ann. N. Y. Acad. Sci. 2006, 1076, 378–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency. Paraquat Dichloride. Available online: https://www.epa.gov/ingredients-used-pesticide-products/paraquat-dichloride (accessed on 3 December 2021).
- Richter, F.; Gabby, L.; McDowell, K.A.; Mulligan, C.; De La Rosa, K.; Sioshansi, P.C.; Mortazavi, F.; Cely, I.; Ackerson, L.C.; Tsan, L.; et al. Effects of decreased dopamine transporter levels on nigrostriatal neurons and paraquat/maneb toxicity in mice. Neurobiol. Aging 2017, 51, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2809–2820. [Google Scholar] [CrossRef]
- Mughal, M.A.Z. Rural urbanization, land, and agriculture in Pakistan. Asian Geogr. 2019, 36, 81–91. [Google Scholar] [CrossRef]
- Steinhübel, L.; von Cramon-Taubadel, S. Somewhere in between Towns, Markets and Jobs—Agricultural Intensification in the Rural–Urban Interface. J. Dev. Stud. 2021, 57, 669–694. [Google Scholar] [CrossRef]
- Tiesman, H.M.; Konda, S.; Bell, J.L. The Epidemiology of Fatal Occupational Traumatic Brain Injury in the U.S. Am. J. Prev. Med. 2011, 41, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Findings from the National Agricultural Workers Survey (NAWS) 2013–2014. Available online: https://www.dol.gov/sites/dolgov/files/ETA/naws/pdfs/NAWS_Research_Report_12.pdf (accessed on 25 September 2021).
- Census of Agriculture—Farm Demographics Highlights|USDA—National Agricultural Statistics Service. Available online: https://www.nass.usda.gov/Publications/Highlights/2014/Farm_Demographics/index.php (accessed on 28 August 2020).
- Simpson, I.H.; Wilson, J.; Young, K. The Sexual Division of Farm Household Labor: A Replication and Extension. Rural Sociol. 1988, 55, 145–165. [Google Scholar]
- Villarejo, D.; McCurdy, S.A. The California Agricultural Workers Health Survey. J. Agric. Saf. Health 2008, 14, 135–146. [Google Scholar] [CrossRef]
- Vayro, C.; Brownlow, C.; Ireland, M.; March, S. ‘Farming is not Just an Occupation [but] a Whole Lifestyle’: A Qualitative Examination of Lifestyle and Cultural Factors Affecting Mental Health Help-Seeking in Australian Farmers. Sociol. Rural. 2020, 60, 151–173. [Google Scholar] [CrossRef]
- Alterman, T.; Steege, A.L.; Li, J.; Petersen, M.R.; Muntaner, C. Ethnic, Racial, and Gender Variations in Health among Farm Operators in the United States. Ann. Epidemiol. 2008, 18, 179–186. [Google Scholar] [CrossRef]
- Petterson, S.; Williams, I.C.; Hauenstein, E.J.; Rovnyak, V.; Merwin, E. Race and Ethnicity and Rural Mental Health Treatment. J. Health Care Poor Underserved 2009, 20, 662–677. [Google Scholar] [CrossRef]
- Agarwal, S. A Clinical, Biochemical, Neurobehavioral, and Sociopsychological Study of 190 Patients Admitted to Hospital as a Result of Acute Organophosphorus Poisoning. Environ. Res. 1993, 62, 63–70. [Google Scholar] [CrossRef]
- Faria, N.M.X.; Fassa, A.G.; Meucci, R.; Fiori, N.S.; Miranda, V.I. Occupational exposure to pesticides, nicotine and minor psychiatric disorders among tobacco farmers in southern Brazil. NeuroToxicology 2014, 45, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Bunn, T.L.; Liu, Y.; Lee, K.; Robertson, M.; Yu, L. Farmer exposure to organic solvents during the maintenance and repair of farm machinery: A pilot study. Am. J. Ind. Med. 2009, 52, 973–981. [Google Scholar] [CrossRef]
- Golbabaei, F.; Dehghani, F.; Saatchi, M.; Zakerian, S.A. Evaluation of occupational exposure to different levels of mixed organic solvents and cognitive function in the painting unit of an automotive industry. Health Promot. Perspect. 2018, 8, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chepesiuk, R. Where the chips fall: Environmental health in the semiconductor industry. Environ. Health Perspect. 1999, 107, A452–7. [Google Scholar] [CrossRef] [PubMed]
- Soulage, C.; Perrin, D.; Berenguer, P.; Pequignot, J. Sub-chronic exposure to toluene at 40ppm alters the monoamine biosynthesis rate in discrete brain areas. Toxicology 2004, 196, 21–30. [Google Scholar] [CrossRef]
- Rueda-Ruzafa, L.; Cruz, F.; Roman, P.; Cardona, D. Gut microbiota and neurological effects of glyphosate. NeuroToxicology 2019, 75, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wiley, N.C.; Dinan, T.G.; Ross, R.P.; Stanton, C.; Clarke, G.; Cryan, J.F. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. J. Anim. Sci. 2017, 95, 3225–3246. [Google Scholar] [CrossRef] [PubMed]
- Abbaoui, A.; Tamegart, L.; Gamrani, H. Animal Models of Intoxication by Metal Elements: A Focus on Neurobehavioral Injuries. Methods Mol. Biol. 2019, 2011, 133–142. [Google Scholar] [CrossRef]
- Chang, Y.; Lee, J.-J.; Seo, J.-H.; Song, H.-J.; Kim, J.-H.; Bae, S.-J.; Ahn, J.-H.; Park, S.-J.; Jeong, K.S.; Kwon, Y.J.; et al. Altered working memory process in the manganese-exposed brain. NeuroImage 2010, 53, 1279–1285. [Google Scholar] [CrossRef]
- Seo, J.; Chang, Y.; Jang, K.E.; Park, J.W.; Kim, Y.-T.; Park, S.-J.; Jeong, K.S.; Kim, A.; Kim, S.H.; Kim, Y. Altered executive function in the welders: A functional magnetic resonance imaging study. Neurotoxicology Teratol. 2016, 56, 26–34. [Google Scholar] [CrossRef]
- Costa, C.; García-Lestón, J.; Costa, S.; Coelho, P.; Silva, S.; Pingarilho, M.S.P.; Valdiglesias, V.; Mattei, F.; Dall’Armi, V.; Bonassi, S.; et al. Is organic farming safer to farmers’ health? A comparison between organic and traditional farming. Toxicol. Lett. 2014, 230, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Scarth, R.D.; Stallones, L.; Zwerling, C.; Burmeister, L.F. The prevalence of depressive symptoms and risk factors among Iowa and Colorado farmers. Am. J. Ind. Med. 2000, 37, 382–389. [Google Scholar] [CrossRef]
- Khan, N.; Kennedy, A.; Cotton, J.; Brumby, S. A Pest to Mental Health? Exploring the Link between Exposure to Agrichemicals in Farmers and Mental Health. Int. J. Environ. Res. Public Health 2019, 16, 1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, I.; Patil, G.; Berget, B.; Ihlebæk, C.; Gonzalez, M.T. Mental health rehabilitation in a care farm context: A descriptive review of Norwegian intervention studies. Work J. Prev. Assess. Rehabil. 2016, 53, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Borgi, M.; Collacchi, B.; Correale, C.; Marcolin, M.; Tomasin, P.; Grizzo, A.; Orlich, R.; Cirulli, F. Social farming as an innovative approach to promote mental health, social inclusion and community engagement. Ann. Dell Ist. Super. Di Sanita 2020, 56, 206–214. [Google Scholar] [CrossRef]
- Borgi, M.; Marcolin, M.; Tomasin, P.; Correale, C.; Venerosi, A.; Grizzo, A.; Orlich, R.; Cirulli, F. Nature-Based Interventions for Mental Health Care: Social Network Analysis as a Tool to Map Social Farms and their Response to Social Inclusion and Community Engagement. Int. J. Environ. Res. Public Health 2019, 16, 3501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burzynska, A.Z.; Ganster, D.C.; Fanning, J.; Salerno, E.; Gothe, N.P.; Voss, M.W.; McAuley, E.; Kramer, A.F. Occupational Physical Stress Is Negatively Associated with Hippocampal Volume and Memory in Older Adults. Front. Hum. Neurosci. 2020, 14, 266. [Google Scholar] [CrossRef] [PubMed]
- Haruyama, K.; Yokomichi, H.; Yamagata, Z. Farm working experience could reduce late-life dependency duration among Japanese older adults. Medicine 2020, 99, e22248. [Google Scholar] [CrossRef] [PubMed]
Number of Studies | Risk Factor | Relevance to the Brain | Study Types | Findings | Demographics |
---|---|---|---|---|---|
33 | Non-Specific Factors Associated with Agricultural Work/Farming [12,21,25,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76] | Brain Cancer [49,51,55,57,58,61,64,66,67,74] Parkinson’s Disease [21,25,48,50,52,53,54,56,59,60,62,63,65,68,69,70,71,72,73,75,76] Alzheimer’s Disease [25] Dementia [12] | Case-Control [48,49,51,53,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,71,72,73,75,76] Longitudinal [12,21,52,62] Cohort [25,50,74] | Agricultural occupations are generally associated with increased risk for brain cancer, Parkinson’s Disease, and Alzheimer’s. Disagreements in studies could be related to lack of information about duration of occupation, or lack of contending for important moderating factors like sex, race, age, and type of work. | Usually males and females ages 20–85, as well as mostly White participants. |
1 | Airborne Toluene [77] | GABAergic Neurons/Pathways [77] Cholinergic [77] Neurons/Pathways [77] | Animal [77] | Airborne toluene was associated with changes in the fluorescence intensity and morphology of GABAergic and cholinergic neurons in C. elegans. | NA |
1 | Dust [78] | 1 Glial Cells [78] | Animal [78] | Organic dust from an agricultural work site activated HMGB1-RAGE signaling axis in C. elegans to induce a neuroinflammatory response in glial cells. | NA |
5 | Farm Animals Exposure [79,80,81,82,83] | Brain Cancer [79,80] Multiple Sclerosis [81,82] Parkinson’s Disease [83] | Case-Control [79,80,81,82,83] | Results were mixed with three studies finding associations between exposure to farm animals and adverse brain-health effects, one of which found the association only for women, and two studies did not find an association. | Usually males and females aged 20–60. One study included adults 60–80. |
6 | Heavy Metals [84,85,86,87,88,89] | Dorsolateral Prefrontal Cortex [84] Cholinergic Neurons/Pathways [85] Dopaminergic Neurons/Pathways [85,87] Hippocampus [88,89] Parkinson’s Disease [86] Striatum [87] | Human Imaging [84] Animal [85,87,88,89] Epidemiological [86] | Five of the six articles found an association between heavy metal exposure and adverse brain impacts. | Usually males only due to availability of data and participants. |
2 | Nicotine Exposure [90,91] | Dorsolateral Prefrontal Cortex [90] Putamen [90] Cerebellum [90] Functional Networks [91] | Neuroimaging [90,91] | Farmworkers exposed to nicotine plants had greater gray matter signal in putamen and cerebellum and lower gray matter signal in frontal and temporal lobes and differences in functional networks associated with biomarkers of nicotine exposure. | Latino males ages 30–70. |
57 | Pesticides | Amygdala [92,93] Antioxidant enzyme activity [94] Axonal transport [95] Brain Mitochondria [96] Brain Cancer [97,98,99,100,101,102] Cholinergic Neurons/Pathways [103] Cerebellum [90,104] Cerebral Cortex [104,105,106,107,108] Dopaminergic Neurons/Pathways [109,110] Functional Networks [91] Glutaminergic Neurons/Pathways [111] Glial Cells [111] Hippocampus [92,93,105,111] Neuronal Tubulin [112] Oxidative Stress [113,114] Parkinson’s Disease [25,50,54,60,63,83,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132] Pineal Gland [133] Somatosensory Cortex [111,134,135] Striatum [105] | Animal [92,93,94,95,96,103,104,105,106,107,108,109,110,111,112,113,127,134] Case-Control [60,63,83,97,100,101,115,116,119,120,121,125,126,130,131,132,136,137,138] Cohort [50,54,98,99,122,124,128,129,132] Cross-Sectional [117,139] Ecological [118] Human Imaging [90,91] Longitudinal [133,135] Molecular Cellular [102,114,123] | Pesticides are generally associated with negative impacts on brain health. Moderating factors like sex, race, duration of exposure, and migrant status may be important considerations for future research. | The age groups studied in this area tend to be slightly older with most average ages in the 40s to 60s. |
Relevance to the Brain | Agricultural Occupations | Airborne Toluene | Dust | Farm Animals | Heavy Metals | Nicotine Exposure | Pesticides |
---|---|---|---|---|---|---|---|
Brain Cancer | |||||||
Alzheimer’s Disease | |||||||
Parkinson’s Disease (Nigrostriatal Region) | |||||||
Dementia | |||||||
GABAergic Neurons/Pathways | |||||||
Cholinergic Neurons/Pathways | |||||||
Glutaminergic Neurons/Pathways | |||||||
Dopaminergic Cells/Pathways | |||||||
Neuronal Tubulin | |||||||
Antioxidant enzyme activity | |||||||
Glial Cells | |||||||
Somatosensory Cortex | |||||||
Amygdala | |||||||
Pineal Gland | |||||||
Putamen | |||||||
Hippocampus | |||||||
Striatum | |||||||
Cerebellum | |||||||
Multiple Sclerosis | |||||||
Dorsolateral Prefrontal Cortex | |||||||
Functional Networks | |||||||
Oxidative Stress | |||||||
Cerebral Cortex |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sturm, E.T.; Castro, C.; Mendez-Colmenares, A.; Duffy, J.; Burzynska, A.Z.; Stallones, L.; Thomas, M.L. Risk Factors for Brain Health in Agricultural Work: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 3373. https://doi.org/10.3390/ijerph19063373
Sturm ET, Castro C, Mendez-Colmenares A, Duffy J, Burzynska AZ, Stallones L, Thomas ML. Risk Factors for Brain Health in Agricultural Work: A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(6):3373. https://doi.org/10.3390/ijerph19063373
Chicago/Turabian StyleSturm, Emily Terese, Colton Castro, Andrea Mendez-Colmenares, John Duffy, Agnieszka (Aga) Z. Burzynska, Lorann Stallones, and Michael L. Thomas. 2022. "Risk Factors for Brain Health in Agricultural Work: A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 6: 3373. https://doi.org/10.3390/ijerph19063373
APA StyleSturm, E. T., Castro, C., Mendez-Colmenares, A., Duffy, J., Burzynska, A. Z., Stallones, L., & Thomas, M. L. (2022). Risk Factors for Brain Health in Agricultural Work: A Systematic Review. International Journal of Environmental Research and Public Health, 19(6), 3373. https://doi.org/10.3390/ijerph19063373