The Consumption of a Synbiotic Does Not Affect the Immune, Inflammatory, and Sympathovagal Parameters in Athletes and Sedentary Individuals: A Triple-Blinded, Randomized, Place-bo-Controlled Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Synbiotic
2.3. Experimental Design
2.4. Anthropometry
2.5. Heart Rate Variability
2.6. Blood Samples
2.7. Statistical Analysis
3. Results
3.1. Heart Rate Variability
3.2. Anthropometry
3.3. Blood Samples
4. Discussion
4.1. Synbiotic Effects on Heart Rate Variability
4.2. Synbiotic Effects on Body Composition
4.3. Synbiotic Effects on Immune/Inflammatory System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, M.P.C.R.; da Silva, A.K.F.; Bernardo, A.F.B.; de Souza, N.M.; Neto Junior, J.; Pastre, C.M.; Vanderlei, L.C.M. Influence of resistance training on cardiac autonomic modulation: Literature review. Med. Express 2014, 1, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.L.; Claassen, N.; Becker, P.; Viljoen, M. Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function. Neuropsychobiology 2019, 78, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Reynders, T.; Gidron, Y.; De Ville, J.; Bjerke, M.; Weets, I.; Van Remoortel, A.; Devolder, L.; D’haeseleer, M.; De Keyser, J.; Nagels, G. Relation between Heart Rate Variability and Disease Course in Multiple Sclerosis. J. Clin. Med. 2020, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.K. Impacts of obesity and stress on neuromuscular fatigue development and associated heart rate variability. Int. J. Obes. 2015, 39, 208–213. [Google Scholar] [CrossRef]
- Martinelli, F.S.; Chacon-Mikahil, M.P.T.; Martins, L.E.B.; Lima-Filho, E.C.; Golfetti, R.; Paschoal, M.A.; Gallo-Junior, L. Heart rate variability in athletes and nonathletes at rest and during head-up tilt. Braz. J. Med. Biol. Res. 2005, 38, 639–647. [Google Scholar] [CrossRef]
- Murray, O.; Vick, R. The Correlation Between Heart Rate Variability and Diet. FASEB J. 2016, 30, 752–754. [Google Scholar]
- Brancaccio, M.; Mennitti, C.; Cesaro, A.; Monda, E.; D’Argenio, V.; Casaburi, G.; Mazzaccara, C.; Ranieri, A.; Fimiani, F.; Barretta, F.; et al. Multidisciplinary In-Depth Investigation in a Young Athlete Suffering from Syncope Caused by Myocardial Bridge. Diagnostics 2021, 11, 2144. [Google Scholar] [CrossRef]
- Brancaccio, M.; Mennitti, C.; Cesaro, A.; Fimiani, F.; Moscarella, E.; Caiazza, M.; Gragnano, F.; Ranieri, A.; D’Alicandro, G.; Tinto, N.; et al. Dietary thiols: A potential supporting strategy against oxidative stress in heart failure and muscular damage during sports activity. Int. J. Environ. Res. 2020, 17, 9424. [Google Scholar] [CrossRef] [PubMed]
- Mennitti, C.; Brancaccio, M.; Gentile, L.; Ranieri, A.; Terracciano, D.; Cennamo, M.; La Civita, E.; Liotti, A.; D’Alicandro, G.; Mazzaccara, C.; et al. Athlete’s passport: Prevention of infections, inflammations, injuries and cardiovascular diseases. J. Clin. Med. 2020, 9, 2540. [Google Scholar] [CrossRef]
- Young, H.A.; Cousins, A.L.; Watkins, H.T.; Benton, D. Is the link between depressed mood and heart rate variability explained by disinhibited eating and diet? Biol. Psychol. 2017, 123, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, H.A.; Benton, D. Heart-rate variability: A biomarker to study the influence of nutrition on physiological and psychological health? Behav. Pharmacol. 2018, 29, 140. [Google Scholar] [CrossRef] [Green Version]
- West, N.P.; Pyne, D.B.; Peake, J.M.; Cripps, A.W. Probiotics, immunity and exercise: A review. Exerc. Immunol. Rev. 2009, 15, e26. [Google Scholar]
- Martarelli, D.; Verdenelli, M.C.; Scuri, S.; Cocchioni, M.; Silvi, S.; Cecchini, C.; Pompei, P. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr. Microbiol. 2011, 62, 1689–1696. [Google Scholar] [CrossRef]
- Quero, C.D.; Ortega, E.; Manonelles, P. Probiotics, prebiotics and synbiotics: Useful for athletes and active individuals? A systematic review. Benef. Microbes 2020, 11, 135–149. [Google Scholar]
- Sergeev, I.N.; Aljutaily, T.; Walton, G.; Huarte, E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
- Tracey, K.J. The inflammatory reflex. Nature 2002, 420, 853–859. [Google Scholar] [CrossRef]
- Quero, C.D.; Manonelles, P.; Fernández, M.; Abellán-Aynés, O.; López-Plaza, D.; Andreu-Caravaca, L.; Hinchado, M.D.; Gálvez, I.; Ortega, E. Differential Health Effects on Inflammatory, Immunological and Stress Parameters in Professional Soccer Players and Sedentary Individuals after Consuming a Synbiotic. A Triple-Blinded, Randomized, Placebo-Controlled Pilot Study. Nutrients 2021, 13, 1321. [Google Scholar] [CrossRef]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative body fat and anthropometric prediction of body density of male athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef]
- Camm, A.; Malik, M.; Bigger, J.; Breithardt, G.; Cerutti, S.; Cohen, R.; Coumel, P.; Fallen, E.; Kennedy, H.; Kleiger, R.E. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- George, K.; Whyte, G.P.; Green, D.J.; Oxborough, D.; Shave, R.E.; Gaze, D.; Somauroo, J. The endurance athletes heart: Acute stress and chronic adaptation. Br. J. Sports Med. 2012, 46, i29–i36. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Merghani, A.; Mont, L. Exercise and the heart: The good, the bad, and the ugly. Eur. Heart J. 2015, 36, 1445–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccelletti, E.; Gilardi, E.; Scaini, E.; Galiuto, L.; Persiani, R.; Biondi, A.; Basile, F.; Silveri, N.G. Heart rate variability and myocardial infarction: Systematic literature review and metanalysis. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 299–307. [Google Scholar]
- Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sport. Med. 2003, 33, 889–919. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Stanley, J.; Kilding, A.E.; Buchheit, M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sport. Med. 2013, 43, 773–781. [Google Scholar] [CrossRef]
- Alansare, A.; Alford, K.; Lee, S.; Church, T.; Jung, H.C. The effects of high-intensity interval training vs. moderate-intensity continuous training on heart rate variability in physically inactive adults. Int. J. Environ. Res. Public Health 2018, 15, 1508. [Google Scholar] [CrossRef] [Green Version]
- Migliaro, E.R.; Contreras, P.; Bech, S.; Etxagibel, A.; Castro, M.; Ricca, R.; Vicente, K. Relative influence of age, resting heart rate and sedentary life style in short-term analysis of heart rate variability. Braz. J. Med. Biol. Res. 2001, 34, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Raizada, M.K.; Joe, B.; Bryan, N.S.; Chang, E.B.; Dewhirst, F.E.; Borisy, G.G.; Galis, Z.S.; Henderson, W.; Jose, P.A.; Ketchum, C.J. Report of the National Heart, Lung, and Blood Institute Working Group on the role of microbiota in blood pressure regulation: Current status and future directions. Hypertension 2017, 70, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Furushiro, M.; Sawada, H.; Hirai, K.; Motoike, M.; Sansawa, H.; Kobayashi, S.; Watanuki, M.; Yokokura, T. Blood pressure-lowering effect of extract from Lactobacillus casei in spontaneously hypertensive rats (SHR). Agric. Biol. Chem. 1990, 54, 2193–2198. [Google Scholar] [CrossRef] [Green Version]
- Clemente, F.M.; Nikolaidis, P.T.; Martins, F.M.L.; Mendes, R.S. Weekly physical activity patterns of university students: Are athletes more active than non-athletes? Springerplus 2016, 5, 1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ipar, N.; Aydogdu, S.D.; Yildirim, G.K.; Inal, M.; Gies, I.; Vandenplas, Y.; Dinleyici, E.C. Effects of synbiotic on anthropometry, lipid profile and oxidative stress in obese children. Benef. Microbes 2015, 6, 775–781. [Google Scholar] [CrossRef]
- Prados-Bo, A.; Gómez-Martínez, S.; Nova, E.; Marcos, A. Role of probiotics in obesity management. Nutr. Hosp. 2015, 31, 10–18. [Google Scholar]
- Hütt, P.; Songisepp, E.; Rätsep, M.; Mahlapuu, R.; Kilk, K.; Mikelsaar, M. Impact of probiotic Lactobacillus plantarum TENSIA in different dairy products on anthropometric and blood biochemical indices of healthy adults. Benef. Microbes 2015, 6, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Westerterp, K.R. Exercise, energy balance and body composition. Eur. J. Clin. Nutr. 2018, 72, 1246–1250. [Google Scholar] [CrossRef]
- Kyle, U.G.; Gremion, G.; Genton, L.; Slosman, D.O.; Golay, A.; Pichard, C. Physical activity and fat-free and fat mass by bioelectrical impedance in 3853 adults. Med. Sci. Sports Exerc. 2001, 33, 576–584. [Google Scholar] [CrossRef]
- Grund, A.; Krause, H.; Kraus, M.; Siewers, M.; Rieckert, H.; Müller, M.J. Association between different attributes of physical activity and fat mass in untrained, endurance-and resistance-trained men. Eur. J. Appl. Physiol. 2001, 84, 310–320. [Google Scholar] [CrossRef]
- Firouzi, S.; Barakatun-Nisak, M.Y.; Ismail, A.; Majid, H.A.; Azmi, K.N. Role of probiotics in modulating glucose homeostasis: Evidence from animal and human studies. Int. J. Food Sci. Nutr. 2013, 64, 780–786. [Google Scholar] [CrossRef]
- Yin, Y.-N.; Yu, Q.-F.; Fu, N.; Liu, X.-W.; Lu, F.-G. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J. Gastroenterol. WJG 2010, 16, 3394. [Google Scholar] [CrossRef]
- Blankson, H.; Stakkestad, J.A.; Fagertun, H.; Thom, E.; Wadstein, J.; Gudmundsen, O. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 2000, 130, 2943–2948. [Google Scholar] [CrossRef] [PubMed]
- Aronsson, L.; Huang, Y.; Parini, P.; Korach-André, M.; Håkansson, J.; Gustafsson, J.-Å.; Pettersson, S.; Arulampalam, V.; Rafter, J. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS ONE 2010, 5, e13087. [Google Scholar] [CrossRef] [PubMed]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goete, L. Position statement part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar] [PubMed]
- Lehmann, M.J.; Lormes, W.; Opitz-Gress, A.; Steinacker, J.M.; Netzer, N.; Foster, C.; Gastmann, U. Training and overtraining: An overview and experimental results in endurance sports. J. Sports Med. Phys. Fitness 1997, 37, 7–17. [Google Scholar] [PubMed]
- Smith, L.L. Tissue trauma: The underlying cause of overtraining syndrome? J. Strength Cond. Res. 2004, 18, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 2016, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clancy, R.L.; Gleeson, M.; Cox, A.; Callister, R.; Dorrington, M.; D’este, C.; Pang, G.; Pyne, D.; Fricker, P.; Henriksson, A. Reversal in fatigued athletes of a defect in interferon γ secretion after administration of Lactobacillus acidophilus. Br. J. Sports Med. 2006, 40, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.J.; Pyne, D.B.; Saunders, P.U.; Fricker, P.A. Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes. Br. J. Sports Med. 2010, 44, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.K.; Teixeira, A.M.; Rosado, F.; Cox, M.; Costa, R.J.S. High-dose probiotic supplementation containing lactobacillus casei for 7 Days does not enhance salivary antimicrobial protein responses to exertional heat stress compared with placebo. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 150–160. [Google Scholar] [CrossRef]
- Gill, S.K.; Allerton, D.M.; Ansley-Robson, P.; Hemmings, K.; Cox, M.; Costa, R.J.S. Does short-term high dose probiotic supplementation containing lactobacillus casei attenuate exertional-heat stress induced endotoxaemia and cytokinaemia? Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Gepner, Y.; Hoffman, J.R.; Shemesh, E.; Stout, J.R.; Church, D.D.; Varanoske, A.N.; Zelicha, H.; Shelef, I.; Chen, Y.; Frankel, H. Combined effect of Bacillus coagulans GBI-30, 6086 and HMB supplementation on muscle integrity and cytokine response during intense military training. J. Appl. Physiol. 2017, 123, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamprecht, M.; Bogner, S.; Schippinger, G.; Steinbauer, K.; Fankhauser, F.; Hallstroem, S.; Schuetz, B.; Greilberger, J.F. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2012, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, N.P.; Pyne, D.B.; Cripps, A.; Christophersen, C.T.; Conlon, M.A.; Fricker, P.A. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals. Gut Microbes 2012, 3, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.D.; Suckling, C.A.; Peedle, G.Y.; Murphy, J.A.; Dawkins, T.G.; Roberts, M.G. An exploratory investigation of endotoxin levels in novice long distance triathletes, and the effects of a multi-strain probiotic/prebiotic, antioxidant intervention. Nutrients 2016, 8, 733. [Google Scholar] [CrossRef] [Green Version]
- Coman, M.M.; Verdenelli, M.C.; Silvi, S.; Cecchini, C.; Gabbianelli, R.; Amadio, E.; Orpianesi, C.; Cresci, A. Knowledge and acceptance of functional foods: A preliminary study on influence of a synbiotic fermented milk on athlete health. Int. J. Probiotics Prebiotics 2017, 12, 33–42. [Google Scholar]
- Keller, C.; Steensberg, A.; Hansen, A.K.; Fischer, C.P.; Plomgaard, P.; Pedersen, B.K. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J. Appl. Physiol. 2005, 99, 2075–2079. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.S.; Ooi, F.K.; Chen, C.K.; Muhamad, A.S. Effects of probiotics supplementation and circuit training on immune responses among sedentary young males. J. Sports Med. Phys. Fitness 2017, 58, 1102–1109. [Google Scholar] [CrossRef]
- Kazemi, A.; Soltani, S.; Ghorabi, S.; Keshtkar, A.; Daneshzad, E.; Nasri, F.; Mazloomi, S.M. Effect of probiotic and synbiotic supplementation on inflammatory markers in health and disease status: A systematic review and meta-analysis of clinical trials. Clin. Nutr. 2020, 39, 789–819. [Google Scholar] [CrossRef]
Athlete | Sedentary | |||
---|---|---|---|---|
Variable | Synbiotic (n = 7) | Placebo (n = 6) | Synbiotic (n = 7) | Placebo (n = 7) |
Age (years) | 20.6± 1.39 | 21.9 ± 2.77 | 23.04 ± 2.09 | 24.31 ± 3.94 |
Body mass (Kg) | 70.57 ± 6.75 | 73.95 ± 6.42 | 77.47 ± 13.47 | 79.81 ± 8.05 |
Height (cm) | 178.23 ± 4.78 | 180.6 ± 8.57 | 176.23 ± 4.49 | 183.97 ± 7.3 |
ANOVA (F, p, η2p) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Time Effect | Group Effect | Intake Effect | ||||||||||||
Outcome | Group | Intake | M | SD | M | SD | p | F | p | η2p | F | p | η2p | F | p | η2p |
HR (bpm) | Sedentary | Placebo | 70.75 | 11.83 | 59.51 | 13.84 | 0.461 | 0.263 | 0.613 | 0.011 | 18.02 | <0.001 | 0.439 | 0.286 | 0.598 | 0.012 |
Synbiotic | 77.46 | 5.78 | 80.30 | 15.03 | 0.532 | |||||||||||
Athlete | Placebo | 59.64 | 11.55 | 61.06 | 10.90 | 0.772 | ||||||||||
Synbiotic | 59.51 * | 13.84 | 56.58 * | 9.38 | 0.518 | |||||||||||
SDNN (ms) | Sedentary | Placebo | 88.10 | 39.53 | 97.84 | 18.95 | 0.354 | <0.001 | 0.995 | <0.001 | 4.910 | 0.037 | 0.176 | 0.818 | 0.375 | 0.034 |
Synbiotic | 60.46 | 25.65 | 57.79 | 23.97 | 0.832 | |||||||||||
Athlete | Placebo | 81.35 | 17.07 | 100.48 | 49.64 | 0.168 | ||||||||||
Synbiotic | 97.84 * | 18.95 | 93.31 * | 24.14 | 0.720 | |||||||||||
pNN50 (%) | Sedentary | Placebo | 22.19 | 19.48 | 45.46 | 21.87 | 0.811 | 0.025 | 0.877 | 0.001 | 16.173 | 0.001 | 0.413 | 0.014 | 0.907 | 0.001 |
Synbiotic | 9.87 | 8.73 | 10.89 | 11.11 | 0.874 | |||||||||||
Athlete | Placebo | 35.68 | 19.68 | 37.17 | 18.70 | 0.830 | ||||||||||
Synbiotic | 45.46 * | 21.87 | 46.51 * | 19.13 | 0.869 | |||||||||||
RMSSD (ms) | Sedentary | Placebo | 52.41 | 36.43 | 75.41 | 33.74 | 0.633 | 0.244 | 0.626 | 0.01 | 9.585 | 0.005 | 0.294 | 0.049 | 0.826 | 0.002 |
Synbiotic | 32.00 | 13.18 | 31.73 | 14.47 | 0.982 | |||||||||||
Athlete | Placebo | 62.35 | 24.76 | 73.30 | 42.24 | 0.401 | ||||||||||
Synbiotic | 75.41 * | 33.74 | 75.83 * | 29.86 | 0.972 | |||||||||||
HFln (ms2) | Sedentary | Placebo | 6.25 | 1.50 | 6.86 | 1.35 | 0.502 | 0.218 | 0.645 | 0.009 | 5.324 | 0.03 | 0.188 | 0.057 | 0.814 | 0.002 |
Synbiotic | 6.01 | 0.68 | 5.89 | 0.75 | 0.715 | |||||||||||
Athlete | Placebo | 6.77 | 0.85 | 7.22 | 1.01 | 0.241 | ||||||||||
Synbiotic | 6.86 | 1.35 | 7.10 | 0.92 | 0.489 | |||||||||||
LF/HF | Sedentary | Placebo | 4.71 | 3.15 | 3.45 | 4.28 | 0.61 | 0.136 | 0.715 | 0.006 | 0.641 | 0.431 | 0.027 | 0.107 | 0.746 | 0.005 |
Synbiotic | 2.90 | 1.98 | 3.16 | 2.09 | 0.835 | |||||||||||
Athlete | Placebo | 2.84 | 2.54 | 2.39 | 1.91 | 0.741 | ||||||||||
Synbiotic | 3.45 | 4.28 | 3.34 | 3.00 | 0.931 | |||||||||||
SS (Hz) | Sedentary | Placebo | 10.08 | 4.73 | 8.18 | 1.83 | 0.164 | 1.111 | 0.303 | 0.046 | 4.894 | 0.037 | 0.175 | 0.408 | 0.53 | 0.017 |
Synbiotic | 14.03 | 5.63 | 15.83 | 10.09 | 0.425 | |||||||||||
Athlete | Placebo | 9.78 | 1.78 | 8.81 | 3.24 | 0.689 | ||||||||||
Synbiotic | 8.18 * | 1.83 | 8.94 | 2.75 | 0.736 | |||||||||||
S/PS | Sedentary | Placebo | 0.55 | 0.71 | 0.20 | 0.14 | 0.249 | 1.354 | 0.257 | 0.056 | 5.531 | 0.028 | 0.194 | 0.108 | 0.745 | 0.005 |
Synbiotic | 0.76 | 0.48 | 1.10 | 1.43 | 0.225 | |||||||||||
Athlete | Placebo | 0.27 | 0.14 | 0.25 | 0.21 | 0.959 | ||||||||||
Synbiotic | 0.20 * | 0.14 | 0.20 | 0.11 | 1 |
ANOVA (F, p, η2p) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Time Effect | Group Effect | Intake Effect | ||||||||||||
Outcome | Group | Intake | M | SD | M | SD | p | F | p | η2p | F | p | η2p | F | p | η2p |
Body Mass (Kg) | Sedentary | Placebo | 79.81 | 8.05 | 79.97 | 8.32 | 0.698 | 8.529 | 0.008 | 0.271 | 2.981 | 0.098 | 0.115 | 0.571 | 0.458 | 0.024 |
Synbiotic | 77.47 | 13.47 | 78.24 | 14.05 | 0.066 | |||||||||||
Athlete | Placebo | 73.95 | 6.42 | 74.73 | 5.95 | 0.083 | ||||||||||
Synbiotic | 70.57 | 6.75 | 71.24 | 7.42 | 0.107 | |||||||||||
6Sk (mm) | Sedentary | Placebo | 86.11 | 29.38 | 91.39 | 29.97 | 0.27 | 11.451 | 0.003 | 0.332 | 20.46 | <0.001 | 0.471 | 0.932 | 0.344 | 0.039 |
Synbiotic | 107.41 | 58.99 | 127.43 | 65.38 | <0.001 | |||||||||||
Athlete | Placebo | 40.25 * | 6.49 | 45.73 * | 8.90 | 0.289 | ||||||||||
Synbiotic | 39.74 * | 4.70 | 41.27 * | 11.27 | 0.747 | |||||||||||
8Sk (mm) | Sedentary | Placebo | 109.94 | 37.55 | 118.68 | 41.29 | 0.107 | 18.778 | <0.001 | 0.449 | 19.772 | <0.001 | 0.462 | 0.935 | 0.344 | 0.039 |
Synbiotic | 138.50 | 74.07 | 166.26 | 86.27 | <0.001 | |||||||||||
Athlete | Placebo | 52.88 * | 9.33 | 60.50 * | 11.81 | 0.189 | ||||||||||
Synbiotic | 51.87 * | 5.35 | 53.80 * | 15.25 | 0.714 | |||||||||||
Fat (%) | Sedentary | Placebo | 16.05 | 5.44 | 16.93 | 5.55 | 0.311 | 13.962 | 0.001 | 0.378 | 18.506 | <0.001 | 0.446 | 1.019 | 0.323 | 0.042 |
Synbiotic | 20.15 | 11.26 | 24.47 | 13.44 | <0.001 | |||||||||||
Athlete | Placebo | 7.70 * | 1.08 | 8.62 * | 1.55 | 0.321 | ||||||||||
Synbiotic | 7.56 * | 0.82 | 7.87 * | 1.97 | 0.721 | |||||||||||
Muscle (%) | Sedentary | Placebo | 40.44 | 4.61 | 40.55 | 4.63 | 0.917 | 0.362 | 0.553 | 0.016 | 8.662 | 0.007 | 0.274 | 0.002 | 0.966 | <0.001 |
Synbiotic | 40.91 | 6.23 | 38.49 | 7.14 | 0.043 | |||||||||||
Athlete | Placebo | 44.20 | 1.97 | 45.60 | 5.72 | 0.264 | ||||||||||
Synbiotic | 45.79 * | 2.45 | 45.30 * | 2.08 | 0.669 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quero-Calero, C.D.; Abellán-Aynés, O.; Manonelles, P.; Ortega, E. The Consumption of a Synbiotic Does Not Affect the Immune, Inflammatory, and Sympathovagal Parameters in Athletes and Sedentary Individuals: A Triple-Blinded, Randomized, Place-bo-Controlled Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 3421. https://doi.org/10.3390/ijerph19063421
Quero-Calero CD, Abellán-Aynés O, Manonelles P, Ortega E. The Consumption of a Synbiotic Does Not Affect the Immune, Inflammatory, and Sympathovagal Parameters in Athletes and Sedentary Individuals: A Triple-Blinded, Randomized, Place-bo-Controlled Pilot Study. International Journal of Environmental Research and Public Health. 2022; 19(6):3421. https://doi.org/10.3390/ijerph19063421
Chicago/Turabian StyleQuero-Calero, Carmen Daniela, Oriol Abellán-Aynés, Pedro Manonelles, and Eduardo Ortega. 2022. "The Consumption of a Synbiotic Does Not Affect the Immune, Inflammatory, and Sympathovagal Parameters in Athletes and Sedentary Individuals: A Triple-Blinded, Randomized, Place-bo-Controlled Pilot Study" International Journal of Environmental Research and Public Health 19, no. 6: 3421. https://doi.org/10.3390/ijerph19063421
APA StyleQuero-Calero, C. D., Abellán-Aynés, O., Manonelles, P., & Ortega, E. (2022). The Consumption of a Synbiotic Does Not Affect the Immune, Inflammatory, and Sympathovagal Parameters in Athletes and Sedentary Individuals: A Triple-Blinded, Randomized, Place-bo-Controlled Pilot Study. International Journal of Environmental Research and Public Health, 19(6), 3421. https://doi.org/10.3390/ijerph19063421