Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China
Abstract
:1. Introduction
2. Methodology and Data
2.1. Decomposition Method
2.2. Data Sources
3. Results and Analysis
3.1. Overview of ACI Changes
3.2. Temporal Decomposition Results
3.2.1. Traditional Effects
3.2.2. Structural Shift Effects
3.2.3. Capacity Factor Effects
3.3. Spatial Decomposition Results
4. Policy Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greenhouse Gas Emissions from Energy. Available online: https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy (accessed on 10 November 2021).
- Mallapaty, S. How China could be carbon neutral by mid-century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef]
- Yang, L.; Lin, B. Carbon dioxide-emission in China’s power industry: Evidence and policy implications. Renew. Sustain. Energy Rev. 2016, 60, 258–267. [Google Scholar] [CrossRef]
- Chen, G.; Hou, F.; Li, J.; Chang, K. Decoupling analysis between carbon dioxide emissions and the corresponding driving forces by Chinese power industry. Environ. Sci. Pollut. Res. Int. 2021, 28, 2369–2378. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Wang, W.; Zhou, M. Decomposition analysis of CO2 emissions from electricity generation in China. Energy Policy 2013, 52, 159–165. [Google Scholar] [CrossRef]
- Liao, C.; Wang, S.; Zhang, Y.; Song, D.; Zhang, C. Driving forces and clustering analysis of provincial-level CO2 emissions from the power sector in China from 2005 to 2015. J. Clean. Prod. 2019, 118026. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, W.; Yao, M.; Wang, Z.; Yang, L.; Wei, W. Urban carbon emissions associated with electricity consumption in Beijing and the driving factors. Appl. Energy 2020, 275, 115425. [Google Scholar] [CrossRef]
- Ang, B.W.; Su, B. Carbon emission intensity in electricity production: A global analysis. Energy Policy 2016, 94, 56–63. [Google Scholar] [CrossRef]
- Liu, N.; Ma, Z.; Kang, J. A regional analysis of carbon intensities of electricity generation in China. Energy Econ. 2017, 67, 268–277. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, Y.; Shi, X.; Li, H.; Shi, Q.; Zhang, Z. How China’s electricity generation sector can achieve its carbon intensity reduction targets? Sci. Total Environ. 2020, 706, 135689. [Google Scholar] [CrossRef]
- Goh, T.; Ang, B.W.; Xu, X.Y. Quantifying drivers of CO2 emissions from electricity generation—Current practices and future extensions. Appl. Energy 2018, 231, 1191–1204. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Whichisthepreferredmethod? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Goh, T.; Ang, B.W.; Su, B.; Wang, H. Drivers of stagnating global carbon intensity of electricity and the way forward. Energy Policy 2018, 113, 149–156. [Google Scholar] [CrossRef]
- Ang, B.W.; Goh, T. Carbon intensity of electricity in ASEAN: Drivers; performance and outlook. Energy Policy 2016, 98, 170–179. [Google Scholar] [CrossRef]
- Oliveira-De Jesus, D.; Paulo, M.; Galvis, J.J.; Rojas-Lozano, D.; Yusta, J.M. Multitemporal LMDI index decomposition analysis to explain the changes of ACI by the power sector in Latin America and the Caribbean between 1990–2017. Energies 2020, 13, 2328. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Zhao, C.; Yuan, J. Carbon emission intensity of electricity generation in Belt and Road Initiative countries: A benchmarking analysis. Environ. Sci. Pollut. Res. Int. 2019, 26, 15057–15068. [Google Scholar] [CrossRef]
- Peng, X.; Tao, X. Decomposition of carbon intensity in electricity production: Technological innovation and structural adjustment in China’s power sector. J. Clean. Prod. 2018, 172, 805–818. [Google Scholar] [CrossRef]
- Schivley, G.; Azevedo, I.; Samaras, C. Assessing the evolution of power sector carbon intensity in the United States. Environ. Res. Lett. 2018, 13, 064018. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, Y.; Shi, X.; Zhang, Z.; Zhang, W. Structural and technological determinants of carbon intensity reduction of China’s electricity generation. Environ. Sci. Pollut. Res. Int. 2021, 28, 13469–13486. [Google Scholar] [CrossRef]
- Wang, J.; He, S.; Qiu, Y.; Liu, N.; Li, Y.; Dong, Z. Investigating driving forces of aggregate carbon intensity of electricity generation in China. Energy Policy 2018, 113, 249–257. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Q.; Li, Z.; Baležentis, T.; Zhang, Y.; Gang, L.; Streimikiene, D. Aggregate carbon intensity of China’s thermal electricity generation: The inequality analysis and nested spatial decomposition. J. Clean. Prod. 2020, 247, 119139. [Google Scholar] [CrossRef]
- Cheng, Y.; Yao, X. Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity. Renew. Sustain. Energy Rev. 2021, 135, 110157. [Google Scholar] [CrossRef]
- De Oliveira-De Jesus, P.M. Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis. Renew. Sustain. Energy Rev. 2019, 101, 516–526. [Google Scholar] [CrossRef]
- Bird, L.; Lew, D.; Milligan, M.; Carlini, E.M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Holttinen, H.; Menemenlis, N.; Orths, A.; et al. Wind and solar energy curtailment: A review of international experience. Renew. Sustain. Energy Rev. 2016, 65, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Ang, B.W.; Zhou, P.; Tay, L.P. Potential for reducing global carbon emissions from electricity production—A benchmarking analysis. Energy Policy 2011, 39, 2482–2489. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Guidelines for Provincial Greenhouse Gas Inventories (Pilot Version). Available online: http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf (accessed on 30 January 2022).
- Wang, J.; Song, C.; Yuan, R. CO2 emissions from electricity generation in China during 1997–2040: The roles of energy transition and thermal power generation efficiency. Sci. Total Environ. 2021, 773, 145026. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Ang, B.W.; Xu, X.Y.; Su, B. Multi-country comparisons of energy performance: The index decomposition analysis approach. Energy Econ. 2015, 47, 68–76. [Google Scholar] [CrossRef]
- China Electricity Council. Statistical Compilation of the China Electricity Industry; Statistics and Data Center of China Electricity Council: Beijing, China, 2020. [Google Scholar]
- Ang, B.W.; Liu, N. Handling zero values in the logarithmic mean divisia index decomposition approach. Energy Policy 2007, 35, 238–246. [Google Scholar] [CrossRef]
- Wood, R.; Lenzen, M. Zero-value problems of the logarithmic mean divisia index decomposition method. Energy Policy 2006, 34, 1326–1331. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, T.; Wang, J.; Zhang, X. Exploring the impact of transition in energy mix on the CO2 emissions from China’s power generation sector based on IDA and SDA. Environ. Sci. Pollut. Res. Int. 2021, 28, 30858–30872. [Google Scholar] [CrossRef]
- Liu, B.; Liao, S.; Cheng, C.; Chen, F.; Li, W. Hydropower curtailment in Yunnan Province; southwestern China: Constraint analysis and suggestions. Renew. Energy 2018, 121, 700–711. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Fan, X.; Cheng, Z. Hydropower development situation and prospects in China. Renew. Sustain. Energy Rev. 2018, 82, 232–239. [Google Scholar] [CrossRef]
- Full Text: Remarks by Chinese President Xi Jinping at Climate Ambition Summit. Available online: http://www.xinhuanet.com/english/2020-12/12/c_139584803.htm (accessed on 15 December 2021).
- O’Shaughnessy, E.; Cruce, J.R.; Xu, K. Too much of a good thing? Global trends in the curtailment of solar PV. Sol. Energy 2020, 208, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Qi, Y.; Dong, W.; Lu, X.; Liu, T.; Qian, S. Decomposing driving factors for wind curtailment under economic new normal in China. Appl. Energy 2018, 217, 178–188. [Google Scholar] [CrossRef]
- Chen, W.; Yang, M.; Zhang, S.; Andrews-Speed, P.; Li, W. What accounts for the China-US difference in solar PV electricity output? An LMDI analysis. J. Clean. Prod. 2019, 231, 161–170. [Google Scholar] [CrossRef]
- Wind Energy Generation, vs. Capacity (1996–2020). Available online: https://ourworldindata.org/grapher/wind-energy-consumption-vs-installed-wind-energy-capacity (accessed on 15 December 2021).
- Solar Energy Generation, vs. Capacity (1996–2020). Available online: https://ourworldindata.org/grapher/solar-pv-energy-consumption-vs-solar-pv-capacity (accessed on 15 December 2021).
- Luo, G.; Li, Y.; Tang, W.; Wei, X. Wind curtailment of China’s wind power operation: Evolution; causes and solutions. Renew. Sustain. Energy Rev. 2016, 53, 1190–1201. [Google Scholar] [CrossRef]
- National Implementation Plan for Transformation and Upgrading of Coal-Fired Power Units. Available online: https://www.ndrc.gov.cn/xwdt/tzgg/202111/t20211103_1302857.html?code=&state=123 (accessed on 15 December 2021).
Raw Coal | Oil | Natural Gas | |
---|---|---|---|
Average calorific value (kjoule/kg, kj/cu.m) | 20,908 | 41,816 | 35,585 |
Carbon content (t·C/TJ) | 26.37 | 20.08 | 15.32 |
Fraction of carbon oxidised | 95% | 98% | 99% |
Conversion factor (kgce/kg, kgce/cu.m) | 0.71 | 1.43 | 1.22 |
(106 t·CO2/tce) | 2.69 | 2.11 | 1.63 |
V(g·CO2/kWh) | 2005 | 2010 | 2015 | 2019 |
---|---|---|---|---|
Max | 1141.24 | 1030.87 | 962.72 | 936.00 |
Min | 319.37 | 207.41 | 102.66 | 84.46 |
Range | 821.97 | 823.46 | 860.06 | 851.54 |
S.D. | 219.06 | 213.22 | 242.10 | 221.49 |
Hainan | 0.64% | 0.14% | 0.70% | 8.06 | −0.03% | 0.94 | 2.41% | 2.48 |
Shaanxi | 4.62% | 2.54% | 5.38% | 13.04 | 5.33% | 4.67 | 3.28% | 1.47 |
Hebei | 7.26% | 7.84% | 7.77% | 6.64 | 7.87% | 1.60 | 0.00% | 1.00 |
Henan | 5.19% | 3.80% | 6.29% | 25.71 | 8.96% | 8.73 | 0.24% | 1.02 |
Jiangxi | 3.10% | 1.37% | 3.64% | 14.65 | 2.79% | 4.27 | 4.48% | 1.35 |
Shanxi | 5.36% | 5.98% | 6.07% | 9.80 | 7.42% | 1.87 | −0.55% | 0.91 |
Jilin | 1.35% | 2.66% | 1.66% | 39.14 | 1.44% | 1.25 | 1.78% | 1.18 |
Anhui | 6.17% | 1.31% | 7.03% | 10.36 | 1.76% | 2.01 | 1.42% | 1.19 |
Shandong | 7.97% | 6.47% | 9.23% | 12.17 | 8.07% | 1.88 | 0.00% | 1.00 |
Jiangsu | 7.32% | 4.98% | 6.61% | 3.52 | 8.02% | 2.53 | 3.96% | 2.32 |
Zhejiang | 6.59% | 0.76% | 7.29% | 8.16 | 0.71% | 1.54 | 4.40% | 1.17 |
China | 100.00% | 100.00% | 100.00% | 4.83 | 100.00% | 1.60 | 100.00% | 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Liu, Q.; Zhang, W. Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China. Int. J. Environ. Res. Public Health 2022, 19, 3471. https://doi.org/10.3390/ijerph19063471
Ma S, Liu Q, Zhang W. Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China. International Journal of Environmental Research and Public Health. 2022; 19(6):3471. https://doi.org/10.3390/ijerph19063471
Chicago/Turabian StyleMa, Shiping, Qianqian Liu, and Wenzhong Zhang. 2022. "Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China" International Journal of Environmental Research and Public Health 19, no. 6: 3471. https://doi.org/10.3390/ijerph19063471
APA StyleMa, S., Liu, Q., & Zhang, W. (2022). Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China. International Journal of Environmental Research and Public Health, 19(6), 3471. https://doi.org/10.3390/ijerph19063471