Comparison of the Field-Based Intermittent Running Fitness Test 30-15 and the Treadmill Multistage Incremental Test for the Assessment of Cardiorespiratory Fitness in Elite Handball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.4. Field Test
2.5. Incremental Treadmill Test
2.6. Maximum Aerobic Performance, Heart Rate and Blood Sampling Testing Equipment
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šibila, M.; Vuleta, D.; Pori, P. Position-Related Differences in Volume and Intensity of Large-Scale Cyclic Movements of Male Players in Handball. Kinesiology 2004, 36, 58–68. [Google Scholar]
- Massuça, L.M.; Fragoso, I.; Teles, J. Attributes of Top Elite Team-Handball Players. J. Strength Cond. Res. 2014, 28, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Jorgen, I.; Jeffreys, I.; Stein, R. Physical characteristics and abilities of junior elite male and female handball players. J. Strength Cond. Res. 2013, 27, 302–309. [Google Scholar]
- Krüger, K.; Pilat, C.; Ückert, K.; Frech, T.; Mooren, F.C. Physical Performance Profile of Handball Players Is Related to Playing Position and Playing Class. J. Strength Cond. Res. 2014, 28, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Póvoas, S.C.A.; Ascensão, A.A.M.R.; Magalhães, J.; Seabra, A.F.; Krustrup, P.; Soares, J.M.C.; Rebelo, A.N.C. Physiological Demands of Elite Team Handball With Special Reference to Playing Position. J. Strength Cond. Res. 2014, 28, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Physiological capacity and physical testing in male elite team handball. J. Sports Med. Phys. Fit. 2015, 55, 415–429. [Google Scholar]
- Albouaini, K.; Egred, M.; Alahmar, A.; Wright, D.J. Cardiopulmonary exercise testing and its application. Postgrad. Med. J. 2007, 83, 675–682. [Google Scholar] [CrossRef]
- Pontaga, I.; Zidens, J. Comparison of Latvian Qualified Basketball and Handball Players Performance. Soc. Integr. Educ. Proc. Int. Sci. Conf. 2018, 4, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.; Sperl, B.; Bell, J.W.; von Duvillard, S.P. Testing Specific Physical Performance in Male Team Handball Players and the Relationship to General Tests in Team Sports. J. Strength Cond. Res. 2019, 33, 1056–1064. [Google Scholar] [CrossRef]
- Ghosh, A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. 2004, 11, 24–36. [Google Scholar]
- Karlsson, J.; Jacobs, I. Onset of Blood Lactage Accumulation during Muscular Exercise as a Threshold Concept. I. Theoretical considerations. Int. J. Sports Med. 1982, 3, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K. Lactate-related factors as a critical determinant of endurance. Ann. Physiol. Anthropol. 1990, 9, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Santos-Concejero, J.; Granados, C.; Irazusta, J.; Bidaurrazaga-Letona, I.; Zabala-Lili, J.; Tam, N.; Gil, S.M. OBLA is a better predictor of performance than Dmax in long and middle-distance well-trained runners. J. Sports Med. Phys. Fit. 2014, 54, 553–558. [Google Scholar]
- Figueira, T.R.; Caputo, F.; Pelarigo, J.G.; Denadai, B.S. Influence of exercise mode and maximal lactate-steady-state concentration on the validity of OBLA to predict maximal lactate-steady-state in active individuals. J. Sci. Med. Sport 2008, 11, 280–286. [Google Scholar] [CrossRef]
- Denadai, B.S.; Gomide, E.B.G.; Greco, C.C. The relationship between onset of blood lactate accumulation, critical velocity, and maximal lactate steady state in soccer players. J. Strength Cond. Res. 2005, 19, 364–368. [Google Scholar] [CrossRef]
- Buchheit, M. The 30-15 Intermittent Fitness Test: 10 year review The 30-15 Intermittent Fitness Test: 10 year review. Myorobie J. 2010, 1, 1–9. [Google Scholar]
- Kilding, A.E.; Aziz, A.R.; Teh, K.C. Measuring and predicting maximal aerobic power in international-level intermittent sport athletes. J. Sports Med. Phys. Fit. 2006, 46, 366–372. [Google Scholar]
- Chirico, E.; Tessitore, A.; Demarie, S. Physiological swimming test for water polo players in the last twenty years: A systematic review. J. Sports Med. Phys. Fit. 2021. [Google Scholar] [CrossRef]
- Léger, L.; Boucher, R. An indirect continuous running multistage field test: The Université de Montréal track test. Can. J. Appl. Sport Sci. 1980, 5, 77–84. [Google Scholar]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Thomas, C.; Dos’Santos, T.; Jones, P.A.; Comfort, P. Reliability of the 30-15 Intermittent Fitness Test in Semiprofessional Soccer Players. Int. J. Sports Physiol. Perform. 2016, 11, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Al Haddad, H.; Millet, G.P.; Lepretre, P.M.; Newton, M.; Ahmaidi, S. Cardiorespiratory and cardiac autonomic response to 30-15 IFT in team sport players. J. Strength Cond. Res. 2009, 23, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. The 30-15 Intermittent Fitness Test: Accuracy for Individualizing Interval Training of Young Intermittent Sport Players. J. Strength Cond. Res. 2008, 22, 365–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Lefebvre, B.; Laursen, P.B.; Ahmaidi, S. Reliability, Usefulness, and Validity of the 30-15 Intermittent Ice Test in Young Elite Ice Hockey Players. J. Strength Cond. Res. 2011, 25, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Hulley, S.B.; Cummings, S.R.; Browner, W.S.; Grady, D.G.; Newman, T.B. Designing Clinical Research: An Epidemiologic Approach. In Replication and Evidence Factors in Observational Studies, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1–381. [Google Scholar]
- Mohorič, U.; Šibila, M.; Štrumbelj, B. Positional differences in some physiological parameters obtained by the incremental field endurance test among elite handball players. Kinesiology 2021, 53, 3–11. [Google Scholar] [CrossRef]
- Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef]
- Poole, D.C.; Richardson, R.S. Determinants of oxygen uptake: Implications for exercise testing. Sport Med. 1997, 24, 308–320. [Google Scholar] [CrossRef]
- Rossiter, H.B.; Kowalchuk, J.M.; Whipp, B.J. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J. Appl. Physiol. 2006, 100, 764–770. [Google Scholar] [CrossRef]
- Borszcz, F.K.; Tramontin, A.F.; de Souza, K.M.; Carminatti, L.J.; Costa, V.P. Physiological Correlations With Short, Medium, and Long Cycling Time-Trial Performance. Res. Q. Exerc. Sport 2018, 89, 120–125. [Google Scholar] [CrossRef]
- Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. Comparison of the Cosmed K4b2 Portable Metabolic System in Measuring Steady-State Walking Energy Expenditure. PLoS ONE 2010, 5, e9292. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, J.E.; King, G.A.; Howley, E.T.; Bassett, J.D.R.; Ainsworth, B.E. Validation of the COSMED K4 b2 Portable Metabolic System. Endoscopy 2001, 22, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Usaj, A.; Starc, V. Blood pH and lactate kinetics in the assessment of running endurance. Int. J. Sports Med. 1996, 17, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Lovakov, A.; Agadullina, E.R. Empirically derived guidelines for effect size interpretation in social psychology. Eur. J. Soc. Psychol. 2021, 51, 485–504. [Google Scholar] [CrossRef]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Čović, N.; Jelešković, E.; Alić, H.; Rado, I.; Kafedžić, E.; Sporiš, G.; McMaster, D.T.; Milanović, Z. Reliability, validity and usefulness of 30-15 intermittent fitness test in female soccer players. Front. Physiol. 2016, 7, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeličić, M.; Ivančev, V.; Cular, D.; Čović, N.; Stojanović, E.; Scanlan, A.T.; Milanović, Z. The 30-15 Intermittent Fitness Test: A Reliable, Valid, and Useful Tool to Assess Aerobic Capacity in Female Basketball Players. Res. Q. Exerc. Sport 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Irwin, B.C.; Scorniaenchi, J.; Kerr, N.L.; Eisenmann, J.C.; Feltz, D.L. Aerobic Exercise Is Promoted when Individual Performance Affects the Group: A Test of the Kohler Motivation Gain Effect. Ann. Behav. Med. 2012, 44, 151–159. [Google Scholar] [CrossRef]
- Póvoas, S.C.A.; Krustrup, P.; Pereira, R.; Vieira, S.; Carneiro, I.; Magalhães, J.; Castagna, C. Maximal heart rate assessment in recreational football players: A study involving a multiple testing approach. Scand. J. Med. Sci. Sports 2019, 29, 1537–1545. [Google Scholar] [CrossRef]
- Girard, O.; Sciberras, P.; Habrard, M.; Hot, P.; Chevalier, R.; Millet, G. Specific incremental test in elite squash players. Br. J. Sports Med. 2005, 39, 921–926. [Google Scholar] [CrossRef]
- Girard, O.; Chevalier, R.; Leveque, F.; Micallef, J.P.; Millet, G.P. Specific incremental field test for aerobic fitness in tennis. Br. J. Sports Med. 2006, 40, 791–796. [Google Scholar] [CrossRef]
- Essén, B.; Hagenfeldt, L.; Kaijser, L. Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. J. Physiol. 1977, 265, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.J.; Delaney, J.A.; Duthie, G.; Sanctuary, C.E.; Ballard, D.A.; Hickmans, J.A.; Dascombe, B.J. Reliability and Usefulness of the 30-15 Intermittent Fitness Test in Rugby League. J. Strength Cond. Res. 2015, 29, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Basset, F.A.; Boulay, M.R. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur. J. Appl. Physiol. Occup. Physiol. 2000, 81, 214–221. [Google Scholar] [CrossRef] [PubMed]
Treadmill Test | 30-15IFT Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ∆ | PC % | Hedges’ g | LLCI | ULCI | t Value | p Value | |
VO2max (mL/kg/min) | 50.89 | 4.24 | 53.98 | 1.97 | 3.09 | 6.1 | 0.75 | (0.24 to 1.25) | 3.342 | 0.004 | |
Maximal running speed (km/h) | 16.42 | 1.26 | 19.61 | 0.92 | 3.18 | 19.4 | 2.85 | (1.82 to 3.86) | 12.669 | 0.000 | |
Maximal heart rate (bpm) | 183.95 | 8.46 | 184.84 | 9.03 | 0.89 | 0.5 | 0.20 | (−0.25 to 0.64) | 0.892 | 0.384 | |
Respiratory exchange ratio | 1.07 | 0.20 | 1.05 | 0.16 | −0.03 | −2.3 | −0.20 | (−0.64 to 0.25) | −0.900 | 0.380 | |
Maximal lactate during test (mmol/L) | 10.14 | 3.63 | 8.94 | 3.12 | −1.21 | −11.9 | −0.26 | (−0.71 to 0.19) | −1.174 | 0.256 | |
Lactate at 3 min after test | 10.24 | 2.76 | 8.61 | 3.05 | −1.63 | −16.0 | −0.53 | (−1.00 to -0.03) | −2.282 | 0.036 | |
Lactate at 5 min after test | 9.73 | 3.20 | 8.41 | 3.27 | −1.33 | −13.6 | −0.40 | (−0.86 to 0.08) | −1.724 | 0.103 | |
OBLA based on VO2max (mL/kg/min) | 42.16 | 4.83 | 47.45 | 5.63 | 5.30 | 12.6 | 0.95 | (0.40 to 1.47) | 4.210 | 0.001 | |
OBLA based on running speed (km/h) | 12.95 | 1.34 | 17.34 | 1.35 | 4.39 | 33.9 | 3.48 | (2.26 to 4.68) | 15.484 | 0.000 | |
OBLA based on HR (bpm) | 163.89 | 11.40 | 176.26 | 8.96 | 12.37 | 7.5 | 1.43 | (0.78 to 2.05) | 6.348 | 0.000 | |
OBLA based on RER | 0.90 | 0.12 | 0.97 | 0.10 | 0.06 | 7.0 | 0.76 | (0.25 to 1.25) | 3.372 | 0.003 | |
HR at 3 min after test (bpm) | 121.26 | 13.11 | 118.63 | 14.55 | −2.63 | −2.2 | −0.18 | (−0.62 to 0.27) | −0.780 | 0.446 | |
HR at 5 min after test (bpm) | 107.47 | 10.84 | 109.63 | 11.70 | 2.16 | 2.0 | 0.20 | (−0.25 to 0.64) | 0.874 | 0.394 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohoric, U.; Sibila, M.; Abazovic, E.; Jovanovic, S.; Paravlic, A.H. Comparison of the Field-Based Intermittent Running Fitness Test 30-15 and the Treadmill Multistage Incremental Test for the Assessment of Cardiorespiratory Fitness in Elite Handball Players. Int. J. Environ. Res. Public Health 2022, 19, 3535. https://doi.org/10.3390/ijerph19063535
Mohoric U, Sibila M, Abazovic E, Jovanovic S, Paravlic AH. Comparison of the Field-Based Intermittent Running Fitness Test 30-15 and the Treadmill Multistage Incremental Test for the Assessment of Cardiorespiratory Fitness in Elite Handball Players. International Journal of Environmental Research and Public Health. 2022; 19(6):3535. https://doi.org/10.3390/ijerph19063535
Chicago/Turabian StyleMohoric, Uros, Marko Sibila, Ensar Abazovic, Sasa Jovanovic, and Armin H. Paravlic. 2022. "Comparison of the Field-Based Intermittent Running Fitness Test 30-15 and the Treadmill Multistage Incremental Test for the Assessment of Cardiorespiratory Fitness in Elite Handball Players" International Journal of Environmental Research and Public Health 19, no. 6: 3535. https://doi.org/10.3390/ijerph19063535
APA StyleMohoric, U., Sibila, M., Abazovic, E., Jovanovic, S., & Paravlic, A. H. (2022). Comparison of the Field-Based Intermittent Running Fitness Test 30-15 and the Treadmill Multistage Incremental Test for the Assessment of Cardiorespiratory Fitness in Elite Handball Players. International Journal of Environmental Research and Public Health, 19(6), 3535. https://doi.org/10.3390/ijerph19063535