The Impact of Hepatitis C Virus, Metabolic Disturbance, and Unhealthy Behavior on Chronic Kidney Disease: A Secondary Cross-Sectional Analysis
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Questionnaires
2.3. Anthropometric Measurements and Laboratory Analysis
2.4. Serological Assays for Viral Hepatitis
2.5. Definition of Metabolic Syndrome
3. Statistical Analysis
4. Results
4.1. Characteristics of Participants
4.2. Differences between CKD and Non-CKD Groups
4.3. Potential Risks Associated with CKD
4.4. The Relationship between MetS Components and eGFR
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HCV | hepatitis C virus |
HBV | hepatitis B virus |
CKD | chronic kidney disease |
eGFR | estimated glomerular filtration rate |
HbA1c | glycosylated hemoglobin |
TG | triglyceride |
HDL | high-density lipoprotein |
WC | waist circumference |
MetS | metabolic syndrome |
AST | aspartate aminotransferase |
ALT | alanine aminotransferase |
References
- Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.; Yang, P.-M.; Huang, G.-T.; Lee, H.-S.; Sung, J.-L.; Sheu, J.-C. Estimation of seroprevalence of hepatitis B virus and hepatitis C virus in Taiwan from a large-scale survey of free hepatitis screening participants. J. Formos. Med. Assoc. 2007, 106, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Tartof, S.Y.; Hsu, J.-W.; Wei, R.; Rubenstein, K.B.; Hu, H.; Arduino, J.M.; Horberg, M.; Derose, S.F.; Qian, L.; Rodriguez, C.V. Kidney Function Decline in Patients with CKD and Untreated Hepatitis C Infection. Clin. J. Am. Soc. Nephrol. CJASN 2018, 13, 1471–1478. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Adeyemi, A.; Henry, L.; Stepanova, M.; Younossi, Z. A meta-analytic assessment of the risk of chronic kidney disease in patients with chronic hepatitis C virus infection. J. Viral Hepat. 2015, 22, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Lin, H.-Y.; Li, C.-Y.; Lee, M.-S.; Su, Y.-C. A nationwide cohort study suggests that hepatitis C virus infection is associated with increased risk of chronic kidney disease. Kidney Int. 2014, 85, 1200–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molnar, M.Z.; Alhourani, H.M.; Wall, B.M.; Lu, J.L.; Streja, E.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of hepatitis C viral infection with incidence and progression of chronic kidney disease in a large cohort of US veterans. Hepatology 2015, 61, 1495–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Chen, C.; Wang, W.; Henry, L.; Cook, R.L.; Nelson, D.R. Chronic hepatitis C virus (HCV) increases the risk of chronic kidney disease (CKD) while effective HCV treatment decreases the incidence of CKD. Hepatology 2018, 67, 492–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.H.; Yang, H.-I.; Lu, S.-N.; Jen, C.-L.; You, S.-L.; Wang, L.-Y.; Wang, C.-H.; Chen, W.J.; for the R.E.V.E.A.L.-HCV Study Group. Chronic hepatitis C virus infection increases mortality from hepatic and extrahepatic diseases: A community-based long-term prospective study. J. Infect. Dis. 2012, 206, 469–477. [Google Scholar] [PubMed] [Green Version]
- Hsu, C.-K.; Lai, T.-S.; Chen, Y.-T.; Tseng, Y.-J.; Lee, C.-C.; Chen, C.-Y.; Hsu, H.-J.; Pan, H.-C.; Chen, L.-W.; Chien, C.-H.; et al. Renal function trajectories in hepatitis C infection: Differences between renal healthy and chronic kidney disease individuals. Sci. Rep. 2021, 11, 17197. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-C.; Lee, Y.-Y.; Chen, I.-C.; Wang, S.-H.; Hsiao, C.-T.; Loke, S.-S. Age and gender differences in the relationship between hepatitis C infection and all stages of chronic kidney disease. J. Viral Hepat. 2014, 21, 706–715. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Wu, R.; Yu, G.; Sun, H.; Lv, J.; Wang, X.; Chi, X.; Gao, X.; Kong, F.; et al. Association of Hepatitis C and B Virus Infection with CKD and Impact of Hepatitis C Treatment on CKD. Sci. Rep. 2019, 9, 1910. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-L.; Hu, J.-H.; Chen, W.-T.; Lin, M.-S.; Kuo, C.-J.; Chen, S.-C.; Chien, R.-N. Interactive Impacts from Hepatitis C Virus Infection and Mixed Cryoglobulinemia on Complement Levels. Dig. Dis. Sci. 2021, 66, 2407–2416. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.L. Metabolic alterations and hepatitis C: From bench to bedside. World J. Gastroenterol. 2016, 22, 1461–1476. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.B.; Sise, M.E. The Association of Hepatitis C Infection with the Onset of CKD and Progression into ESRD. Semin. Dial. 2019, 32, 108–118. [Google Scholar] [CrossRef]
- Sise, M.E.; Chute, D.F.; Oppong, Y.; Davis, M.I.; Long, J.D.; Silva, S.T.; Rusibamayila, N.; Jean-Francois, D.; Raji, S.; Zhao, S.; et al. Direct-acting antiviral therapy slows kidney function decline in patients with Hepatitis C virus infection and chronic kidney disease. Kidney Int. 2020, 97, 193–201. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Xiong, L.; Luo, Y.; Huang, Z.; Yi, B. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients: Evidence from a meta-analysis. BMC Nephrol. 2019, 20, 398. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, B.; Sheng, L.-T.; Pan, X.-F.; Zhou, Y.; Zhu, J.; Li, X.; Yang, K.; Guo, K.; Zhang, X.; et al. Association between weight status, metabolic syndrome, and chronic kidney disease among middle-aged and elderly Chinese. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 2017–2026. [Google Scholar] [CrossRef]
- Lee, J.-J.; Lin, M.-Y.; Yang, Y.-H.; Lu, S.-N.; Chen, H.-C.; Hwang, S.-J. Association of hepatitis C and B virus infection with CKD in an endemic area in Taiwan: A cross-sectional study. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2010, 56, 23–31. [Google Scholar] [CrossRef]
- Tsui, J.I.; Vittinghoff, E.; Shlipak, M.G.; O’Hare, A.M. Relationship between hepatitis C and chronic kidney disease: Results from the Third National Health and Nutrition Examination Survey. J. Am. Soc. Nephrol. JASN 2006, 17, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Gantumur, G.; Batsaikhan, B.; Huang, C.-I.; Yeh, M.-L.; Huang, C.-F.; Lin, Y.-H.; Lin, T.-C.; Liang, P.-C.; Liu, T.-W.; Lee, J.-J.; et al. The association between hepatitis C virus infection and renal function. J. Chin. Med. Assoc.: JCMA 2021, 84, 757–765. [Google Scholar] [CrossRef]
- Chen, M.Y. The effectiveness of health promotion counseling to family caregivers. Public Health Nurs. 1999, 16, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Daily Dietary Guideline 2018 by Health Promotion Administration of Ministry of Health and Welfare. Available online: https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1208 (accessed on 16 June 2021).
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med.: J. Br. Diabet. Assoc. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Heinze, G.; Wallisch, C.; Dunkler, D. Variable selection—A review and recommendations for the practicing statistician. Biom. J. Biom. Z. 2018, 60, 431–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabrizi, F.; Donato, F.M.; Messa, P. Association Between Hepatitis C Virus and Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Ann. Hepatol. 2018, 17, 364–391. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-H.; Kee, K.-M.; Wang, J.-H.; Hsu, N.-T.; Hsiao, C.-C.; Chen, Y.; Lu, S.-N. Association between chronic viral hepatitis and metabolic syndrome in southern Taiwan: A large population-based study. Aliment. Pharmacol. Ther. 2018, 48, 993–1002. [Google Scholar] [CrossRef]
- Chaudhari, R.; Fouda, S.; Sainu, A.; Pappachan, J.M. Metabolic complications of hepatitis C virus infection. World J. Gastroenterol. 2021, 27, 1267–1282. [Google Scholar] [CrossRef]
- Kawamoto, R.; Akase, T.; Ninomiya, D.; Kumagi, T.; Kikuchi, A. Metabolic syndrome is a predictor of decreased renal function among community-dwelling middle-aged and elderly Japanese. Int. Urol. Nephrol. 2019, 51, 2285–2294. [Google Scholar] [CrossRef]
- DeBoer, M.D.; Filipp, S.L.; Musani, S.K.; Sims, M.; Okusa, M.D.; Gurka, M.J. Metabolic Syndrome Severity and Risk of CKD and Worsened GFR: The Jackson Heart Study. Kidney Blood Press. Res. 2018, 43, 555–567. [Google Scholar] [CrossRef]
- Alizadeh, S.; Ahmadi, M.; Nejad, B.G.; Djazayeri, A.; Shab-Bidar, S. Metabolic syndrome and its components are associated with increased chronic kidney disease risk: Evidence from a meta-analysis on 11 109 003 participants from 66 studies. Int. J. Clin. Pract. 2018, 72, e13201. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-Y.; Lu, F.-H.; Chang, C.-J.; Wang, R.-S.; Yang, Y.-C.; Chang, Y.-F.; Wu, J.-S. Metabolic abnormalities, but not obesity per se, associated with chronic kidney disease in a Taiwanese population. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 418–425. [Google Scholar] [CrossRef]
- Pei, G.; Tang, Y.; Tan, L.; Tan, J.; Ge, L.; Qin, W. Aerobic exercise in adults with chronic kidney disease (CKD): A meta-analysis. Int. Urol. Nephrol. 2019, 51, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Hellberg, M.; Höglund, P.; Svensson, P.; Clyne, N. Randomized Controlled Trial of Exercise in CKD-The RENEXC Study. Kidney Int. Rep. 2019, 4, 963–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraki, K.; Shibagaki, Y.; Izawa, K.P.; Hotta, C.; Wakamiya, A.; Sakurada, T.; Yasuda, T.; Kimura, K. Effects of home-based exercise on pre-dialysis chronic kidney disease patients: A randomized pilot and feasibility trial. BMC Nephrol. 2017, 18, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jhee, J.H.; Kee, Y.K.; Park, S.; Kim, H.; Park, J.T.; Han, S.H.; Kang, S.-W.; Yoo, T.-H. High-protein diet with renal hyperfiltration is associated with rapid decline rate of renal function: A community-based prospective cohort study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2020, 35, 98–106. [Google Scholar]
- Yu, L.; Morishima, C.; Ioannou, G.N. Dietary cholesterol intake is associated with progression of liver disease in patients with chronic hepatitis C: Analysis of the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis trial. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2013, 11, 1661–1666.e3. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | Non-Hepatitis | HBV | HCV | p |
---|---|---|---|---|---|
Number of subjects | 2387 | 1868 | 213 | 306 | |
Female | 1508 (63.2) | 1160 (62.1) | 138 (64.8) | 210 (68.6) | 0.079 |
Age, years | 64.1 ± 14.9 | 63.3 ± 15.6 | 61.1 ± 12.3 | 70.8 ± 10.0 | <0.001 |
Age group | <0.001 | ||||
<40 years | 213 (8.9) | 199 (10.7) | 14 (6.6) | 0 (0.0) | |
40–64 years | 838 (35.1) | 653 (35.0) | 104 (48.8) | 81 (26.5) | |
≥65 years | 1336 (56.0) | 1016 (54.4) | 95 (44.6) | 225 (73.5) | |
Education level, years | 6.0 (0.0, 12.0) | 6.0 (0.0, 12.0) | 6.0 (6.0, 12.0) | 6.0 (0.0, 6.0) | <0.001 |
Dietary habits | |||||
Intake vegetable ≥ 3 portions per day | 1592 (66.7) | 1279 (68.5) | 140 (65.7) | 173 (56.5) | <0.001 |
Intake fruit ≥ 2 portions per day | 1337 (56.0) | 1079 (57.8) | 118 (55.4) | 140 (45.8) | <0.001 |
Intake of water ≥ 1500 cc per day | 1402 (58.7) | 1139 (61.0) | 118 (55.4) | 145 (47.4) | <0.001 |
Irregular exercise | 1660 (69.5) | 1295 (69.3) | 145 (68.1) | 220 (71.9) | 0.589 |
Substance use | |||||
Smoking | 427 (17.9) | 332 (17.8) | 37 (17.4) | 58 (19.0) | 0.864 |
Betel | 221 (9.3) | 164 (8.8) | 14 (6.6) | 43 (14.1) | 0.005 |
Alcoholic drinking | 241 (10.1) | 183 (9.8) | 29 (13.6) | 29 (9.5) | 0.200 |
Data of metabolic syndrome (MetS) | |||||
Waist circumference (WC), cm | 84.8 ± 10.8 | 84.8 ± 10.9 | 84.3 ± 10.7 | 85.2 ± 10.0 | 0.611 |
Systolic blood pressure, mmHg | 134.7 ± 20.4 | 134.7 ± 20.1 | 131.6 ± 21.0 | 137.0 ± 21.2 | 0.013 |
Diastolic blood pressure, mmHg | 81.7 ± 12.4 | 81.8 ± 12.2 | 82.3 ± 13.1 | 80.4 ± 12.6 | 0.141 |
High-density lipoprotein, mg/dL | 51.0 ± 13.2 | 51.2 ± 13.0 | 52.9 ± 13.5 | 49.1 ± 13.9 | 0.004 |
Glycosylated hemoglobin, mg/dL | 6.1 ± 1.1 | 6.1 ± 1.0 | 6.0 ± 1.0 | 6.3 ± 1.3 | 0.011 |
Triglyceride, mg/dL | 113 (0, 166) | 114.0 (81, 170) | 93 (69, 139) | 118 (83, 165) | <0.001 |
MetS | 1242 (52.0) | 973 (52.1) | 89 (41.8) | 180 (58.8) | 0.001 |
Liver and renal function | |||||
ALT, U/L | 19.0 (14.0, 27.0) | 18.5 (14.0, 26.0) | 21.0 (16.0, 29.0) | 19.5 (14.0, 29.0) | <0.001 |
AST, U/L | 23.0 (19.0, 28.0) | 23.0 (19.0, 27.0) | 24.0 (20.0, 30.0) | 25.0 (20.0, 31.0) | <0.001 |
eGFR, mL/min/1.73 m2 | 84.6 ± 24.4 | 85.4 ± 24.5 | 87.8 ± 21.7 | 77.2 ± 23.7 | <0.001 |
eGFR < 60 mL/min/1.73 m2 | 342 (14.3) | 250 (13.4) | 19 (8.9) | 73 (23.9) | <0.001 |
Variable | eGFR < 60 mL/min/1.73 m2 | eGFR ≥ 60 mL/min/1.73 m2 | p |
---|---|---|---|
Number of subjects | 342 | 2045 | |
Female | 194 (56.7) | 1314 (64.3) | 0.008 |
Age, years | 74.8 ± 9.1 | 62.3 ± 15.0 | <0.001 |
Age group | <0.001 | ||
<40 years | 0 (0.0) | 213 (10.4) | |
40–64 years | 38 (11.1) | 800 (39.1) | |
≥65 years | 304 (88.9) | 1032 (50.5) | |
Education level, years | 0.0 (0.0, 6.0) | 6.0 (0.0, 12.0) | <0.001 |
Dietary habits | |||
Intake vegetable ≥ 3 portions per day | 196 (57.3) | 1396 (68.3) | <0.001 |
Intake fruit ≥ 2 portions per day | 149 (43.6) | 1188 (58.1) | <0.001 |
Intake of water ≥ 1500 cc per day | 172 (50.3) | 1230 (60.1) | 0.001 |
Irregular exercise | 257 (75.1) | 1403 (68.6) | 0.015 |
Substance use | |||
Smoking | 71 (20.8) | 356 (17.4) | 0.134 |
Betel | 41 (12.0) | 180 (8.8) | 0.060 |
Alcoholic drinking | 38 (11.1) | 203 (9.9) | 0.501 |
Data of metabolic syndrome (MetS) | |||
Waist circumference (WC), cm | 88.3 ± 10.1 | 84.2 ± 10.8 | <0.001 |
Systolic blood pressure, mmHg | 137.5 ± 21.7 | 134.2 ± 20.1 | 0.006 |
Diastolic blood pressure, mmHg | 79.2 ± 13.4 | 82.1 ± 12.1 | <0.001 |
High-density lipoprotein, mg/dL | 45.2 ± 12.7 | 52.0 ± 13.0 | <0.001 |
Glycosylated hemoglobin, mg/dL | 6.4 ± 1.2 | 6.0 ± 1.0 | <0.001 |
Triglyceride, mg/dL | 134.0 (99.0, 194.0) | 110.0 (77.0, 162.0) | <0.001 |
MetS | 233 (68.1) | 1009 (49.3) | <0.001 |
Liver and renal function | |||
ALT, U/L | 18.0 (13.0, 25.0) | 19.0 (14.0, 27.0) | 0.013 |
AST, U/L | 24.0 (19.0, 31.0) | 23.0 (19.0, 28.0) | 0.007 |
eGFR, mL/min/1.73 m2 | 46.9 ± 11.5 | 90.9 ± 19.8 | <0.001 |
HBV and HCV status | <0.001 | ||
Non-hepatitis | 250 (13.4) | 1618 (86.6) | |
HBV | 19 (8.9) | 194 (91.1) | |
HCV | 73 (23.9) | 233 (76.1) |
Explanatory Variable | Univariate Analysis | Multivariable Analysis | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Female | 0.73 (0.58–0.92) | 0.008 | ||
Age, per year | 1.09 (1.08–1.10) | <0.001 | 1.08 (1.07–1.10) | <0.001 |
Education level, per year | 0.88 (0.86–0.90) | <0.001 | ||
Intake vegetable ≥ 3 portions per day | 0.62 (0.49–0.79) | <0.001 | ||
Intake fruit ≥ 2 portions per day | 0.56 (0.44–0.70) | <0.001 | 0.79 (0.61–1.01) | 0.065 |
Intake of water ≥ 1500 cc per day | 0.67 (0.53–0.84) | 0.001 | ||
Irregular exercise | 1.38 (1.06–1.80) | 0.015 | 1.38 (1.04–1.83) | 0.027 |
Smoking | 1.24 (0.93–1.65) | 0.135 | ||
Betel | 1.41 (0.98–2.02) | 0.061 | ||
Alcoholic drinking | 1.13 (0.79–1.64) | 0.501 | ||
Waist circumference, cm | 1.04 (1.03–1.05) | <0.001 | 1.02 (1.01–1.04) | 0.001 |
Systolic blood pressure, mmHg | 1.01 (1.002–1.013) | 0.006 | ||
Diastolic blood pressure, mmHg * | 0.98 (0.97–0.99) | <0.001 | ||
High-density lipoprotein, mg/dL | 0.96 (0.95–0.97) | <0.001 | 0.97 (0.96–0.98) | <0.001 |
Glycosylated hemoglobin, mg/dL | 1.31 (1.20–1.43) | <0.001 | 1.14 (1.02–1.26) | 0.015 |
Triglyceride, mg/dL | 1.002 (1.001–1.003) | <0.001 | ||
ALT, U/L | 1.01 (0.99997–1.015) | 0.051 | ||
AST, U/L # | 0.99 (0.988–1.002) | 0.146 | ||
HBV and HCV status | ||||
Non-hepatitis | Reference | Reference | Reference | Reference |
HBV | 0.63 (0.39–1.03) | 0.068 | 0.90 (0.53–1.51) | 0.679 |
HCV | 2.03 (1.51–2.72) | <0.001 | 1.44 (1.05–1.98) | 0.025 |
Subgroup | Number of Chronic Kidney Disease (%) | OR (95% CI) of Irregular Exercise | p for Interaction | |
---|---|---|---|---|
Irregular Exercise | Adopt Regular Exercise | |||
HBV and HCV status | 0.503 | |||
Non HBV and Non HCV | 185 (14.3) | 65 (11.3) | 1.30 (0.96–1.76) | |
HBV only | 13 (9.0) | 6 (8.8) | 1.02 (0.37–2.80) | |
HCV only | 59 (26.8) | 14 (16.3) | 1.88 (0.99–3.59) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.-C.; Wu, Y.-F.; Lin, M.-S.; Lin, C.-L.; Chang, M.-L.; Chang, S.-T.; Weng, T.-C.; Chen, M.-Y. The Impact of Hepatitis C Virus, Metabolic Disturbance, and Unhealthy Behavior on Chronic Kidney Disease: A Secondary Cross-Sectional Analysis. Int. J. Environ. Res. Public Health 2022, 19, 3558. https://doi.org/10.3390/ijerph19063558
Wang P-C, Wu Y-F, Lin M-S, Lin C-L, Chang M-L, Chang S-T, Weng T-C, Chen M-Y. The Impact of Hepatitis C Virus, Metabolic Disturbance, and Unhealthy Behavior on Chronic Kidney Disease: A Secondary Cross-Sectional Analysis. International Journal of Environmental Research and Public Health. 2022; 19(6):3558. https://doi.org/10.3390/ijerph19063558
Chicago/Turabian StyleWang, Po-Chang, Yi-Fang Wu, Ming-Shyan Lin, Chun-Liang Lin, Ming-Ling Chang, Shih-Tai Chang, Tzu-Chieh Weng, and Mei-Yen Chen. 2022. "The Impact of Hepatitis C Virus, Metabolic Disturbance, and Unhealthy Behavior on Chronic Kidney Disease: A Secondary Cross-Sectional Analysis" International Journal of Environmental Research and Public Health 19, no. 6: 3558. https://doi.org/10.3390/ijerph19063558
APA StyleWang, P. -C., Wu, Y. -F., Lin, M. -S., Lin, C. -L., Chang, M. -L., Chang, S. -T., Weng, T. -C., & Chen, M. -Y. (2022). The Impact of Hepatitis C Virus, Metabolic Disturbance, and Unhealthy Behavior on Chronic Kidney Disease: A Secondary Cross-Sectional Analysis. International Journal of Environmental Research and Public Health, 19(6), 3558. https://doi.org/10.3390/ijerph19063558