Design and Preliminary Realization of a Screening and Early Warning Health Management System for Populations at High Risk for Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Health Information Collection Method
2.2. Generation Method of a Feature Database
2.3. Algorithms for the Screening and Early Warning Model
2.4. Early-Warning SMS Platform
2.5. Overall System Design Scheme
3. Results
3.1. Design of Information Collection App
3.2. SMS Early Warning Function
3.3. Design Scheme of the Health Management System Module
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deady, M.; Glozier, N.; Calvo, R.; Johnston, D.; Mackinnon, A.; Milne, D.; Choi, I.; Gayed, A.; Peters, D.; Bryant, R.; et al. Preventing depression using a smartphone app: A randomized controlled trial. Psychol. Med 2020, 52, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Hakulinen, C.; Elovainio, M.; Arffman, M.; Lumme, S.; Pirkola, S.; Keskimaki, I.; Manderbacka, K.; Bockerman, P. Mental disorders and long-term labour market outcomes: Nationwide cohort study of 2 055 720 individuals. Acta Psychiatr. Scand. 2019, 140, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Starks, H.; Shaw, J.L.; Hiratsuka, V.; Dillard, D.A.; Robinson, R. Engaging stakeholders to develop a depression management decision support tool in a tribal health system. Qual. Life Res. 2015, 24, 1097–1105. [Google Scholar] [CrossRef]
- Smith, M.; Dietrich, B.J.; Bai, E.W.; Bockholt, H.J. Vocal pattern detection of depression among older adults. Int. J. Ment. Health Nurs. 2020, 29, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Kaipainen, K.; Valkkynen, P.; Kilkku, N. Applicability of acceptance and commitment therapy-based mobile app in depression nursing. Transl. Behav. Med. 2017, 7, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, A.; Figueroa, C.A.; Hernandez-Ramos, R.; Sarkar, U.; Cemballi, A.; Gomez-Pathak, L.; Miramontes, J.; Yom-Tov, E.; Chakraborty, B.; Yan, X.; et al. mHealth app using machine learning to increase physical activity in diabetes and depression: Clinical trial protocol for the DIAMANTE Study. BMJ Open 2020, 10, e034723. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Burford, O.; Emmerton, L. Mobile Health Apps to Facilitate Self-Care: A Qualitative Study of User Experiences. PLoS ONE 2016, 11, e0156164. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; Wolpin, S.; Kim, E.; Lee, S.; Yoon, S.; An, K. Development of a user-centered health information service system for depressive symptom management. Nurs. Health Sci. 2009, 11, 185–193. [Google Scholar] [CrossRef]
- BinDhim, N.F.; Shaman, A.M.; Trevena, L.; Basyouni, M.H.; Pont, L.G.; Alhawassi, T.M. Depression screening via a smartphone app: Cross-country user characteristics and feasibility. J. Am. Med. Inform. Assoc. 2015, 22, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Gomez-de-Regil, L.; Avila-Nava, A.; Gutierrez-Solis, A.L.; Lugo, R. Mobile Apps for the Management of Comorbid Overweight/Obesity and Depression/Anxiety: A Systematic Review. J. Healthc. Eng. 2020, 2020, 9317179. [Google Scholar] [CrossRef] [Green Version]
- Yonyoucloud Platform. Available online: https://www.yyuap.com/ (accessed on 20 October 2021).
- Shinohara, S.; Toda, H.; Nakamura, M.; Omiya, Y.; Higuchi, M.; Takano, T.; Saito, T.; Tanichi, M.; Boku, S.; Mitsuyoshi, S.; et al. Evaluation of the Severity of Major Depression Using a Voice Index for Emotional Arousal. Sensors 2020, 20, 5041. [Google Scholar] [CrossRef]
- Ding, X.; Yue, X.; Zheng, R.; Bi, C.; Li, D.; Yao, G. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. J. Affect. Disord. 2019, 251, 156–161. [Google Scholar] [CrossRef] [PubMed]
- APICloud. Available online: https://www.apicloud.com/ (accessed on 20 October 2021).
- OPPO Watch Series. Available online: https://www.oppo.com/cn/accessories/oppo-watch/ (accessed on 20 October 2021).
- Islam, M.R.; Kabir, M.A.; Ahmed, A.; Kamal, A.R.M.; Wang, H.; Ulhaq, A. Depression detection from social network data using machine learning techniques. Health Inf. Sci. Syst. 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Eyben, F.; Scherer, K.R.; Schuller, B.W.; Sundberg, J.; Andre, E.; Busso, C.; Devillers, L.Y.; Epps, J.; Laukka, P.; Narayanan, S.S.; et al. The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing. IEEE Trans. Affect. Comput. 2016, 7, 190–202. [Google Scholar] [CrossRef] [Green Version]
- Mahato, S.; Goyal, N.; Ram, D.; Paul, S. Detection of Depression and Scaling of Severity Using Six Channel EEG Data. J. Med. Syst. 2020, 44, 118. [Google Scholar] [CrossRef] [PubMed]
- Razavi, R.; Gharipour, A.; Gharipour, M. Depression screening using mobile phone usage metadata: A machine learning approach. J. Am. Med. Inform. Assoc. 2020, 27, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Mollalo, A.; Rivera, K.M.; Vahedi, B. Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States. Int. J. Environ. Res. Public Health 2020, 17, 4204. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Do, W.J.; Luu, H.M.; Kim, K.H.; Choi, S.H.; Park, S.H. Artificial neural network for Slice Encoding for Metal Artifact Correction (SEMAC) MRI. Magn. Reson. Med. 2020, 84, 263–276. [Google Scholar] [CrossRef]
- Yuquan, L.; Huiwen, Z.; Wei, Z. Machine Learning Introduction to Actual Combat; Tsinghua University Press: Beijing, China, 2019; pp. 127–146. [Google Scholar]
- Hollon, S.D.; Cohen, Z.D.; Singla, D.R.; Andrews, P.W. Recent Developments in the Treatment of Depression. Behav. Ther. 2019, 50, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Kohnen, M.; Kriston, L.; Harter, M.; Dirmaier, J.; Liebherz, S. Rationale and design of a systematic review: Effectiveness and acceptance of technology-based psychological interventions in different clinical phases of depression management. BMJ Open 2019, 9, e028042. [Google Scholar] [CrossRef] [Green Version]
- Make a Better Integrated Communication Platform. Available online: https://www.feige.cn/ (accessed on 21 November 2021).
- Drissi, N.; Ouhbi, S.; Janati Idrissi, M.A.; Ghogho, M. An analysis on self-management and treatment-related functionality and characteristics of highly rated anxiety apps. Int. J. Med. Inform. 2020, 141, 104243. [Google Scholar] [CrossRef]
- Ricketts, S.; Nguyen, T.N.B.; Narasimhan, V. Screening for Depression in Pregnancy—There’s an App for That! Ann. Fam. Med. 2019, 17, 275. [Google Scholar] [CrossRef] [PubMed]
- Fan, S. App Inventor Android Mobile Application Development Practice; Tsinghua University Press: Beijing, China, 2019; pp. 1–114. [Google Scholar]
- McKay, F.H.; Cheng, C.; Wright, A.; Shill, J.; Stephens, H.; Uccellini, M. Evaluating mobile phone applications for health behaviour change: A systematic review. J. Telemed. Telecare 2018, 24, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pan, Z. A Convenient and Low-Cost Model of Depression Screening and Early Warning Based on Voice Data Using for Public Mental Health. Int. J. Environ. Res. Public Health 2021, 18, 6441. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Calhoun, V.D.; Sui, J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci. Ther. 2018, 24, 1037–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buyukkaramikli, N.C.; Rutten-van Molken, M.; Severens, J.L.; Al, M. TECH-VER: A Verification Checklist to Reduce Errors in Models and Improve Their Credibility. Pharmacoeconomics 2019, 37, 1391–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iribarren, S.J.; Brown, W., 3rd; Giguere, R.; Stone, P.; Schnall, R.; Staggers, N.; Carballo-Dieguez, A. Scoping review and evaluation of SMS/text messaging platforms for mHealth projects or clinical interventions. Int. J. Med. Inform. 2017, 101, 28–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xu, L.; Pan, Z. Design and Preliminary Realization of a Screening and Early Warning Health Management System for Populations at High Risk for Depression. Int. J. Environ. Res. Public Health 2022, 19, 3599. https://doi.org/10.3390/ijerph19063599
Chen X, Xu L, Pan Z. Design and Preliminary Realization of a Screening and Early Warning Health Management System for Populations at High Risk for Depression. International Journal of Environmental Research and Public Health. 2022; 19(6):3599. https://doi.org/10.3390/ijerph19063599
Chicago/Turabian StyleChen, Xin, Liangwen Xu, and Zhigeng Pan. 2022. "Design and Preliminary Realization of a Screening and Early Warning Health Management System for Populations at High Risk for Depression" International Journal of Environmental Research and Public Health 19, no. 6: 3599. https://doi.org/10.3390/ijerph19063599
APA StyleChen, X., Xu, L., & Pan, Z. (2022). Design and Preliminary Realization of a Screening and Early Warning Health Management System for Populations at High Risk for Depression. International Journal of Environmental Research and Public Health, 19(6), 3599. https://doi.org/10.3390/ijerph19063599