Oxidative Stress and Antioxidant Response in Populations of the Czech Republic Exposed to Various Levels of Environmental Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Sampling
2.2. Air Pollution Exposure Monitoring
2.3. Quantification of Persistent Organic Pollutants
2.4. Analyses of PAH Metabolites in Urine
2.5. Cotinine Assay
2.6. Creatinine Assessment
2.7. Analyses of Antioxidant Enzyme Activities
2.7.1. Superoxide Dismutase Activity
2.7.2. Catalase Activity
2.7.3. Glutathione Peroxidase Activity
2.7.4. Oxygen Radical Absorbance Capacity (ORAC)
2.8. Analysis of Cytokines
2.9. Analysis of Oxidative Damage Markers
2.9.1. 8-oxodG ELISA
2.9.2. 15-F2t-IsoP ELISA
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verhoeven, J.I.; Allach, Y.; Vaartjes, I.C.H.; Klijn, C.J.M.; de Leeuw, F.-E. Ambient Air Pollution and the Risk of Ischaemic and Haemorrhagic Stroke. Lancet Planet. Health 2021, 5, e542–e552. [Google Scholar] [CrossRef]
- Bălă, G.-P.; Râjnoveanu, R.-M.; Tudorache, E.; Motișan, R.; Oancea, C. Air Pollution Exposure—the (in)Visible Risk Factor for Respiratory Diseases. Environ. Sci. Pollut. Res. 2021, 28, 19615–19628. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Liu, Z. Fine Particulate Matter (PM2.5) and Chronic Kidney Disease. In Reviews of Environmental Contamination and Toxicology Volume 254; de Voogt, P., Ed.; Reviews of Environmental Contamination and Toxicology; Springer International Publishing: Cham, Switzerland, 2021; Volume 254, pp. 183–215. ISBN 978-3-030-68529-4. [Google Scholar]
- Shabani, S. A Mechanistic View on the Neurotoxic Effects of Air Pollution on Central Nervous System: Risk for Autism and Neurodegenerative Diseases. Environ. Sci. Pollut. Res. 2021, 28, 6349–6373. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Outdoor Air Pollution; International Agency for Research on Cancer: Lyon, France, 2015; ISBN 978-92-832-0147-2. [Google Scholar]
- Dominski, F.H.; Lorenzetti Branco, J.H.; Buonanno, G.; Stabile, L.; Gameiro da Silva, M.; Andrade, A. Effects of Air Pollution on Health: A Mapping Review of Systematic Reviews and Meta-Analyses. Environ. Res. 2021, 201, 111487. [Google Scholar] [CrossRef] [PubMed]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; Wiley: New York, NY, USA, 1999; ISBN 978-0-471-19410-1. [Google Scholar]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. Int. J. Environ. Res. Public Health 2013, 10, 3886–3907. [Google Scholar] [CrossRef]
- Gangwar, R.S.; Bevan, G.H.; Palanivel, R.; Das, L.; Rajagopalan, S. Oxidative Stress Pathways of Air Pollution Mediated Toxicity: Recent Insights. Redox Biol. 2020, 34, 101545. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. In Chemical Agents and Related Occupations; IARC Publications: Lyon, France, 2012; Volume 100 F. [Google Scholar]
- Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicol. Sci. 2015, 145, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tan, Y.; Song, E.; Song, Y. A Critical Review of Polychlorinated Biphenyls Metabolism, Metabolites, and Their Correlation with Oxidative Stress. Chem. Res. Toxicol. 2020, 33, 2022–2042. [Google Scholar] [CrossRef]
- Nel, A. Air Pollution-Related Illness: Effects of Particles. Science 2005, 308, 804–806. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Leni, Z.; Künzi, L.; Geiser, M. Air Pollution Causing Oxidative Stress. Curr. Opin. Toxicol. 2020, 20–21, 1–8. [Google Scholar] [CrossRef]
- Arias-Pérez, R.D.; Taborda, N.A.; Gómez, D.M.; Narvaez, J.F.; Porras, J.; Hernandez, J.C. Inflammatory Effects of Particulate Matter Air Pollution. Environ. Sci. Pollut. Res. 2020, 27, 42390–42404. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, H.E.; Nadal, L.L.; Broedbaek, K.; Nielsen, P.E.; Weimann, A. Detection and Interpretation of 8-OxodG and 8-OxoGua in Urine, Plasma and Cerebrospinal Fluid. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2014, 1840, 801–808. [Google Scholar] [CrossRef]
- Chao, M.-R.; Evans, M.D.; Hu, C.-W.; Ji, Y.; Møller, P.; Rossner, P.; Cooke, M.S. Biomarkers of Nucleic Acid Oxidation—A Summary State-of-the-Art. Redox Biol. 2021, 42, 101872. [Google Scholar] [CrossRef] [PubMed]
- Ramana, K.V.; Srivastava, S.; Singhal, S.S. Lipid Peroxidation Products in Human Health and Disease 2014. Oxidative Med. Cell. Longev. 2014, 2014, 162414. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.D.; Hill, K.E.; Burk, R.F.; Nammour, T.M.; Badr, K.F.; Roberts, L.J. A Series of Prostaglandin F2-like Compounds Are Produced in Vivo in Humans by a Non-Cyclooxygenase, Free Radical-Catalyzed Mechanism. Proc. Natl. Acad. Sci. USA 1990, 87, 9383–9387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow, J.D.; Awad, J.A.; Boss, H.J.; Blair, I.A.; Roberts, L.J. Non-Cyclooxygenase-Derived Postanoids (F2-Isoprostanes) Are Formed in Situ on Phospholipids. Proc. Natl. Acad. Sci. USA 1992, 89, 10721–10725. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.Y.; Galano, J.-M.; Oger, C.; Vigor, C.; Guillaume, R.; Roy, J.; Le Guennec, J.-Y.; Durand, T.; Lee, J.C.-Y. Assessment of Isoprostanes in Human Plasma: Technical Considerations and the Use of Mass Spectrometry. Lipids 2016, 51, 1217–1229. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Rossner, P., Jr.; Svecova, V.; Schmuczerova, J.; Milcova, A.; Tabashidze, N.; Topinka, J.; Pastorkova, A.; Sram, R.J. Analysis of Biomarkers in a Czech Population Exposed to Heavy Air Pollution. Part I: Bulky DNA Adducts. Mutagenesis 2013, 28, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topinka, J.; Rossner, P., Jr.; Milcova, A.; Schmuczerova, J.; Svecova, V.; Sram, R.J. DNA Adducts and Oxidative DNA Damage Induced by Organic Extracts from PM2.5 in an Acellular Assay. Toxicol. Lett. 2011, 202, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Polachova, A.; Gramblicka, T.; Bechynska, K.; Parizek, O.; Parizkova, D.; Dvorakova, D.; Honkova, K.; Rossnerova, A.; Rossner, P.; Sram, R.J.; et al. Biomonitoring of 89 POPs in Blood Serum Samples of Czech City Policemen. Environ. Pollut. 2021, 291, 118140. [Google Scholar] [CrossRef] [PubMed]
- Langone, J.J.; Van, V.H. Radioimmunoassay of Nicotine, Cotinine, and Gamma-(3-Pyridyl)-Gamma-Oxo-N-Methylbutyramide. Methods Enzymol. 1982, 84, 628–640. [Google Scholar]
- Delanghe, J.R.; Speeckaert, M.M. Creatinine Determination According to Jaffe--What Does It Stand For? Clin. Kidney J. 2011, 4, 83–86. [Google Scholar] [CrossRef]
- Rossner, P., Jr.; Mistry, V.; Singh, R.; Sram, R.J.; Cooke, M.S. Urinary 8-Oxo-7,8-Dihydro-2’-Deoxyguanosine Values Determined by a Modified ELISA Improves Agreement with HPLC-MS/MS. Biochem. Biophys Res. Commun. 2013, 440, 725–730. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practival and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Cao, W.; Wang, X.; Li, J.; Yan, M.; Chang, C.H.; Kim, J.; Jiang, J.; Liao, Y.-P.; Tseng, S.; Kusumoputro, S.; et al. NLRP3 Inflammasome Activation Determines the Fibrogenic Potential of PM2.5 Air Pollution Particles in the Lung. J. Environ. Sci. 2022, 111, 429–441. [Google Scholar] [CrossRef]
- Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78923-919-5. Available online: https://www.intechopen.com/ (accessed on 15 March 2022).
- Ali, S.S.; Ahsan, H.; Zia, M.K.; Siddiqui, T.; Khan, F.H. Understanding Oxidants and Antioxidants: Classical Team with New Players. J. Food Biochem. 2020, 44, e13145. [Google Scholar] [CrossRef]
- Brucker, N.; Moro, A.M.; Charão, M.F.; Durgante, J.; Freitas, F.; Baierle, M.; Nascimento, S.; Gauer, B.; Bulcão, R.P.; Bubols, G.B.; et al. Biomarkers of Occupational Exposure to Air Pollution, Inflammation and Oxidative Damage in Taxi Drivers. Sci. Total Environ. 2013, 463–464, 884–893. [Google Scholar] [CrossRef]
- Kumar, J.; Monica Lind, P.; Salihovic, S.; van Bavel, B.; Lind, L.; Ingelsson, E. Influence of Persistent Organic Pollutants on Oxidative Stress in Population-Based Samples. Chemosphere 2014, 114, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Kurutas, E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, S.-H.; Chen, Y.-C.; Liao, H.-Y.; Wang, C.-J.; Chen, J.-S.; Lee, H.-L. Increased Levels of Oxidative Stress Biomarkers in Metal Oxides Nanomaterial-Handling Workers. Biomarkers 2016, 21, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Dziubla, T.; Butterfield, D.A. Oxidative Stress and Biomaterials; Academic Press; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-803270-1. [Google Scholar]
- Cao, L.; Zhou, Y.; Tan, A.; Shi, T.; Zhu, C.; Xiao, L.; Zhang, Z.; Yang, S.; Mu, G.; Wang, X.; et al. Oxidative Damage Mediates the Association between Polycyclic Aromatic Hydrocarbon Exposure and Lung Function. Environ. Health 2020, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The Health Effects of Ambient PM2.5 and Potential Mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Rossner, P., Jr.; Rossnerova, A.; Spatova, M.; Beskid, O.; Uhlirova, K.; Libalova, H.; Solansky, I.; Topinka, J.; Sram, R.J. Analysis of Biomarkers in a Czech Population Exposed to Heavy Air Pollution. Part II: Chromosomal Aberrations and Oxidative Stress. Mutagenesis 2013, 28, 97–106. [Google Scholar] [CrossRef]
- Rossner, P., Jr.; Uhlirova, K.; Beskid, O.; Rossnerova, A.; Svecova, V.; Sram, R.J. Expression of XRCC5 in Peripheral Blood Lymphocytes Is Upregulated in Subjects from a Heavily Polluted Region in the Czech Republic. Mutat. Res. 2011, 713, 76–82. [Google Scholar] [CrossRef]
- Vogel, C.F.A.; Van Winkle, L.S.; Esser, C.; Haarmann-Stemmann, T. The Aryl Hydrocarbon Receptor as a Target of Environmental Stressors—Implications for Pollution Mediated Stress and Inflammatory Responses. Redox Biol. 2020, 34, 101530. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Ngoc, D.M.; Duan, Y.-P.; Lu, Z.-B.; Wen, Z.-H.; Meng, X.-Z. Polybrominated Diphenyl Ethers (PBDEs) in PM2.5, PM10, TSP and Gas Phase in Office Environment in Shanghai, China: Occurrence and Human Exposure. PLoS ONE 2015, 10, e0119144. [Google Scholar] [CrossRef]
- Genisoglu, M.; Sofuoglu, A.; Kurt-Karakus, P.B.; Birgul, A.; Sofuoglu, S.C. Brominated Flame Retardants in a Computer Technical Service: Indoor Air Gas Phase, Submicron (PM1) and Coarse (PM10) Particles, Associated Inhalation Exposure, and Settled Dust. Chemosphere 2019, 231, 216–224. [Google Scholar] [CrossRef]
- Park, W.-H.; Jun, D.W.; Kim, J.T.; Jeong, J.H.; Park, H.; Chang, Y.-S.; Park, K.S.; Lee, H.K.; Pak, Y.K. Novel Cell-Based Assay Reveals Associations of Circulating Serum AhR-Ligands with Metabolic Syndrome and Mitochondrial Dysfunction: High Serum Dioxins in Metabolic Syndrome. BioFactors 2013, 39, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.K.; Nijmeijer, S.; Gradin, K.; Backlund, M.; Bergman, Å.; Poellinger, L.; Denison, M.S.; Van den Berg, M. Interactions of Polybrominated Diphenyl Ethers with the Aryl Hydrocarbon Receptor Pathway. Toxicol. Sci. 2006, 92, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Rogge, M.M. The Role of Impaired Mitochondrial Lipid Oxidation in Obesity. Biol. Res. For. Nurs. 2009, 10, 356–373. [Google Scholar] [CrossRef] [PubMed]
Ceske Budejovice | |||||
---|---|---|---|---|---|
Season 1 (N = 16) | Season 2 (N = 16) | ||||
Variable | Mean ± SD | Median (Min, Max) | Mean ± SD | Median (Min, Max) | p-Value |
Age (years) | 38.0 ± 6.59 | 38.0 (22.0, 48.0) | 38.4 ± 6.70 | 39.0 (22.0, 49.0) | 0.87 |
BMI (kg/m2) | 28.2 ± 3.88 | 28.1 (23.1, 41.0) | 27.9 ± 4.00 | 27.3 (22.8, 41.0) | 0.11 |
Cotinine (ng/mg creat.) | 5.66 ± 3.51 | 4.93 (1.47, 13.8) | 10.5 ± 29.1 | 3.33 (1.30, 120.0) | 0.12 |
Education (high school/university) (N) | 14/2 | 14/2 | 1.00 | ||
B[a]P (ng/m3) | 0.23 ± 0.21 | 0.17 (0.05, 0.78) | 0.33 ± 0.30 | 0.20 (0.06, 0.98) | 0.31 |
PM2.5 (µg/m3) | 7.48 ± 3.05 | 7.13 (4.85, 15.1) | 4.73 ± 2.43 | 2.65 (2.65, 7.40) | 0.14 |
Ozone (µg/m3) | 56.3 ± 9.95 | 57.4 (37.4, 65.9) | 38.6 ± 2.66 | 36.3 (36.3, 41.5) | <0.001 |
SOD (U/mL) | 7.50 ± 1.80 | 8.16 (4.31, 10.1) | 8.37 ± 3.06 | 10.0 (2.97, 12.2) | 0.052 |
CAT (U/mL) | 109.8 ± 17.7 | 109.3 (81.0, 143.0) | 77.9 ± 10.8 | 76.6 (58.8, 96.9) | <0.001 |
GPx (U/mL) | 139.2 ± 39.2 | 143.6 (25.1, 187.6) | 83.1 ± 44.8 | 81.7 (16.2, 162.3) | <0.001 |
ORAC (µM TE) | 5.03 ± 0.74 | 5.03 (4.10, 6.40) | 4.68 ± 0.67 | 4.45 (3.90, 6.05) | 0.16 |
TNF-α (pg/mL) | 62.7 ± 91.9 | 6.20 (0, 250.0) | 45.0 ± 83.8 | 1.88 (0, 250.0) | <0.01 |
IL-1β (pg/mL) | 167.4 ± 73.0 | 152.7 (61.1, 303.1) | 160.6 ± 152.9 | 108.9 (30.8, 500.0) | 0.88 |
IL-6 (pg/mL) | 7.96 ± 9.19 | 6.38 (0, 33.5) | 0.96 ± 2.11 | 0 (0, 6.58) | <0.01 |
8-oxodG (nmol/mmol creat.) | 2.11 ± 1.05 | 1.95 (0.73, 3.89) | 1.57 ± 0.73 | 1.41 (0.28, 2.73) | 0.04 |
15-F2t-IsoP (pg/mL plasma) | 34.9 ± 9.14 | 34.6 (19.8, 47.6) | 50.7 ± 10.2 | 48.6 (35.3, 75.7) | <0.001 |
Prague | |||||
---|---|---|---|---|---|
Season 1 (N = 56) | Season 2 (N = 56) | ||||
Variable | Mean ± SD | Median (Min, Max) | Mean ± SD | Median (Min, Max) | p-Value |
Age (years) | 39.5 ± 9.22 | 38.5 (23, 63) | 39.9 ± 9.25 | 39.5 (23, 64) | 0.80 |
BMI (kg/m2) | 28.5 ± 3.89 | 29.2 (19.4, 36.8) | 28.5 ± 3.80 | 29.0 (19.4, 36.8) | 0.56 |
Cotinine (ng/mg creat.) | 18.4 ± 69.9 | 5.55 (1.42, 502.4) | 21.6 ± 63.6 | 5.04 (1.49, 390.8) | 0.77 |
Education (high school/university) (N) | 43/13 | 42/14 | 1.00 | ||
B[a]P (ng/m3) | 0.23 ± 0.13 | 0.20 (0.05, 0.61) | 0.59 ± 0.32 | 0.56 (0.13, 1.67) | <0.001 |
PM2.5 (µg/m3) | 22.2 ± 9.19 | 27.1 (7.79, 32.0) | 21.7 ± 9.44 | 21.7 (11.6, 35.9 | 0.62 |
Ozone (µg/m3) | 68.2 ± 9.46 | 68.4 (6.20, 76.3) | 44.3 ± 25.0 | 58.4 (6.20, 66.3) | <0.001 |
SOD (U/mL) | 11.8 ± 7.34 | 8.91 (2.81, 31.1) | 14.0 ± 37.7 | 6.11 (2.03, 207.9) | <0.01 |
CAT (U/mL) | 88.2 ± 14.3 | 89.6 (50.4, 112.0) | 86.4 ± 18.0 | 83.6 (58.8, 157.5) | 0.15 |
GPx (U/mL) | 157.6 ± 32.8 | 153.2 (95.0, 220.1) | 124.7 ± 62.3 | 125.4 (5.36, 274.9) | <0.001 |
ORAC (µM TE) | 4.65 ± 0.73 | 4.60 (3.28, 6.43) | 4.80 ± 0.77 | 4.68 (3.28, 6.28) | 0.29 |
TNF-α (pg/mL) | 29.0 ± 60.7 | 6.34 (0, 250.0) | 25.1 ± 61.0 | 2.84 (0, 250.0) | <0.01 |
IL-1β (pg/mL) | 121.6 ± 97.5 | 90.3 (33.0, 500.0) | 194.2 ± 126.3 | 151.4 (35.8, 500.0) | <0.001 |
IL-6 (pg/mL) | 7.61 ± 10.2 | 4.32 (0, 65.7) | 11.1 ± 15.0 | 5.26 (0, 68.3) | 0.25 |
8-oxodG (nmol/mmol creat.) | 2.56 ± 1.25 | 2.37 (0.08, 6.40) | 2.79 ± 1.20 | 2.53 (0.98, 6.22) | 0.20 |
15-F2t-IsoP (pg/mL plasma) | 50.4 ± 15.0 | 48.9 (16.9, 88.6) | 45.7 ± 13.8 | 43.85 (20.6, 70.8) | 0.01 |
Ostrava | |||||
---|---|---|---|---|---|
Season 1 (N = 54) | Season 2 (N = 54) | ||||
Variable | Mean ± SD | Median (Min, Max) | Mean ± SD | Median (Min, Max) | p-Value |
Age (years) | 40.4 ± 9.37 | 42.0 (21.0, 61.0) | 40.9 ± 9.35 | 43.0 (22.0, 62.0) | 0.81 |
BMI (kg/m2) | 28.6 ± 4.12 | 28.4 (20.4, 44.8) | 28.5 ± 4.21 | 28.4 (21.1, 46.3) | 0.49 |
Cotinine (ng/mg creat.) | 8.28 ± 8.57 | 5.69 (1.66, 47.3) | 46.3 ± 243.4 | 4.56 (0.58, 1789) | 0.96 |
Education (high school/university) (N) | 50/4 | 50/4 | 1.00 | ||
B[a]P (ng/m3) | 0.43 ± 0.75 | 0.29 (0.08, 5.18) | 0.17 ± 0.15 | 0.11 (0.05, 0.68) | <0.001 |
PM2.5 (µg/m3) | 5.91 ± 1.88 | 5.70 (3.53, 9.33) | 6.84 ± 2.11 | 6.50 (4.58, 11.2) | 0.03 |
Ozone (µg/m3) | 50.1 ± 16.0 | 51.5 (5.60, 69.5) | 15.2 ± 11.1 | 10.8 (4.60, 31.4) | <0.001 |
SOD (U/mL) | 14.9 ± 8.9 | 14.1 (4.65, 69.7) | 8.39 ± 5.35 | 7.25 (2.54, 39.3) | <0.001 |
CAT (U/mL) | 96.5 ± 14.1 | 97.6 (59.0, 124.1) | 97.6 ± 17.1 | 97.4 (54.9, 139.1) | 0.72 |
GPx (U/mL) | 113.4 ± 35.2 | 11.0 (18.5, 195.0) | 81.8 ± 62.4 | 59.7 (5.03, 222.3) | <0.01 |
ORAC (µM TE) | 5.12 ± 1.07 | 4.97 (3.13, 7.71) | 4.58 ± 0.63 | 4.57 (3.21, 5.97) | 0.002 |
TNF-α (pg/mL) | 39.2 ± 73.6 | 2.98 (0, 250.0) | 33.5 ± 66.5 | 1.75 (0, 250.0) | 0.25 |
IL-1β (pg/mL) | 229.7 ± 110.2 | 204.1 (98.3, 500.0) | 173.5 ± 145.6 | 120.4 (10.4, 500.0) | <0.01 |
IL-6 (pg/mL) | 7.40 ± 5.45 | 6.13 (0, 19.5) | 62.7 ± 145.5 | 20.2 (0, 908.8) | <0.001 |
8-oxodG (nmol/mmol creat.) | 2.25 ± 1.16 | 2.27 (0.46, 6.03) | 2.24 ± 1.04 | 2.11 (0.60, 4.89) | 0.96 |
15-F2t-IsoP (pg/mL plasma) | 53.4 ± 26.1 | 45.3 (21.5, 153.6) | 52.7 ± 15.7 | 51.7 (25.2, 104.8) | 0.49 |
Variable | Season 1 (p-Value) | Season 2 (p-Value) |
---|---|---|
Personal characteristics | ||
Age | 0.61 | 0.60 |
BMI | 0.70 | 0.55 |
Cotinine | 0.45 | 0.04 |
Education | 0.07 | 0.04 |
Antioxidant response parameters | ||
SOD | <0.001 | 0.12 |
CAT | <0.001 | <0.001 |
GPx | <0.001 | <0.001 |
ORAC | 0.02 | 0.26 |
Proinflammatory response | ||
TNF-α | 0.39 | 0.74 |
IL-1β | <0.001 | 0.09 |
IL-6 | 0.48 | <0.001 |
Air pollutants | ||
B[a]P | <0.01 | <0.001 |
PM2.5 | <0.001 | <0.001 |
Ozone | <0.001 | <0.001 |
Polychlorinated biphenyls | ||
PCB 28 | 0.09 | 0.26 |
PCB 52 | <0.001 | 0.08 |
PCB 101 | 0.21 | 0.02 |
PCB 118 | 0.08 | 0.49 |
PCB 138 | 0.04 | 0.13 |
PCB 153 | 0.01 | 0.03 |
PCB 170 | <0.001 | 0.04 |
PCB 180 | <0.001 | 0.01 |
Organochlorinated pesticides | ||
o,p′-DDE | 0.01 | 0.22 |
p,p′-DDE | 0.15 | 0.19 |
o,p′-DDD | 0.12 | 0.07 |
p,p′-DDD | 0.01 | 0.04 |
o,p′-DDT | 0.02 | 0.65 |
p,p′-DDT | 0.02 | 0.10 |
HCB | 0.23 | 0.74 |
α-HCH | <0.001 | 0.26 |
β-HCH | 0.73 | 0.01 |
γ-HCH | 0.02 | 0.18 |
Brominated flame retardants | ||
BDE 47 | <0.001 | 0.01 |
BDE 99 | 0.52 | 0.11 |
BDE 100 | 0.65 | 0.91 |
BDE 153 | 0.24 | 0.08 |
BDE 154 | 1.00 | 0.86 |
BDE 183 | 0.63 | 0.48 |
BDE 209 | <0.01 | 0.12 |
Per- and polyfluoroalkylated substances | ||
PFBS | 0.54 | 0.25 |
PFH×S | <0.01 | <0.01 |
PFOS | 0.46 | 0.06 |
PFDS | 1.00 | 0.22 |
PFBA | 0.69 | 0.08 |
PFHpA | 0.04 | 0.10 |
PFOA | 0.83 | 0.31 |
PFNA | 0.05 | 0.04 |
PFDA | <0.01 | <0.001 |
PFUdA | 0.29 | <0.01 |
PFDoA | 0.09 | 0.06 |
PFTrDA | 0.21 | 0.13 |
PFTeDA | 0.17 | 0.03 |
Monohydroxylated PAH metabolites | ||
1-OH-NAP | 0.45 | <0.01 |
2-OH-NAP | 0.76 | 0.55 |
2-OH-FLUO | 0.33 | <0.01 |
1-OH-PHEN | <0.001 | <0.01 |
2-OH-PHEN | 0.02 | <0.01 |
3-OH-PHEN | <0.01 | <0.001 |
4-OH-PHEN | <0.01 | <0.01 |
9-OH-PHEN | 0.79 | 0.11 |
1-OH–pyrene | <0.001 | <0.001 |
Oxidative stress markers | ||
8-oxodG | 0.26 | <0.001 |
15-F2t-IsoP | <0.01 | 0.04 |
8-oxodG | 15-F2t-IsoP | ||||
---|---|---|---|---|---|
B *, 95% CI | p-Value | B *, 95% CI | p-Value | ||
Age | 0.01 (−0.004, 0.03) | 0.12 | Age | 0.01 (−0.32, 0.34) | 0.95 |
BMI | −0.02 (−0.06, 0.01) | 0.21 | BMI | −0.42 (−0.98, 0.13) | 0.13 |
Cotinine | 0.001 (0.00, 0.002) | 0.03 | Cotinine | −0.02 (−0.02, −0.01) | <0.001 |
Education | −0.33 (−0.81, 0.15) | 0.18 | Education | −0.07 (−6.22, 6.09) | 0.98 |
Locality | 0.04 (−0.20, 0.27) | 0.78 | Locality | 2.81 (−0.24, 5.85) | 0.07 |
SOD | 0.00 (−0.01, 0.009) | 0.98 | SOD | 0.05 (−0.09, 0.18) | 0.50 |
CAT | −0.002 (−0.01, 0.008) | 0.66 | CAT | 0.18 (0.06, 0.31) | 0.005 |
GP× | 0.003 (0.00, 0.005) | 0.05 | GPX | −0.009 (−0.04, 0.02) | 0.58 |
ORAC | −0.23 (−0.43, −0.04) | 0.02 | ORAC | −0.65 (−3.37, 2.06) | 0.64 |
TNF-α | 0.001 (−0.001, 0.003) | 0.40 | TNF-α | −0.01 (−0.05, 0.02) | 0.43 |
IL-1β | 0.00 (−0.002, 0.001) | 0.73 | IL-1β | 0.01 (−0.005, 0.03) | 0.15 |
IL-6 | 0.002 (0.001, 0.004) | <0.001 | IL-6 | 0.02 (0.008, 0.04) | 0.003 |
o,p′-DDE | −0.005 (−0.007, −0.004) | <0.001 | BDE 154 | −28.4 (−33.4, −23.5) | <0.001 |
BDE 154 | −0.97 (−1.75, −0.19) | 0.02 | BDE 99 | 3.93 (3.44, 4.43) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambroz, A.; Rossner, P., Jr.; Rossnerova, A.; Honkova, K.; Milcova, A.; Pastorkova, A.; Klema, J.; Pulkrabova, J.; Parizek, O.; Vondraskova, V.; et al. Oxidative Stress and Antioxidant Response in Populations of the Czech Republic Exposed to Various Levels of Environmental Pollutants. Int. J. Environ. Res. Public Health 2022, 19, 3609. https://doi.org/10.3390/ijerph19063609
Ambroz A, Rossner P Jr., Rossnerova A, Honkova K, Milcova A, Pastorkova A, Klema J, Pulkrabova J, Parizek O, Vondraskova V, et al. Oxidative Stress and Antioxidant Response in Populations of the Czech Republic Exposed to Various Levels of Environmental Pollutants. International Journal of Environmental Research and Public Health. 2022; 19(6):3609. https://doi.org/10.3390/ijerph19063609
Chicago/Turabian StyleAmbroz, Antonin, Pavel Rossner, Jr., Andrea Rossnerova, Katerina Honkova, Alena Milcova, Anna Pastorkova, Jiri Klema, Jana Pulkrabova, Ondrej Parizek, Veronika Vondraskova, and et al. 2022. "Oxidative Stress and Antioxidant Response in Populations of the Czech Republic Exposed to Various Levels of Environmental Pollutants" International Journal of Environmental Research and Public Health 19, no. 6: 3609. https://doi.org/10.3390/ijerph19063609
APA StyleAmbroz, A., Rossner, P., Jr., Rossnerova, A., Honkova, K., Milcova, A., Pastorkova, A., Klema, J., Pulkrabova, J., Parizek, O., Vondraskova, V., Zelenka, J., Vrzáčková, N., Schmuczerova, J., Topinka, J., & Sram, R. J. (2022). Oxidative Stress and Antioxidant Response in Populations of the Czech Republic Exposed to Various Levels of Environmental Pollutants. International Journal of Environmental Research and Public Health, 19(6), 3609. https://doi.org/10.3390/ijerph19063609