Heart Rate Variability Monitoring during a Padel Match
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Subjects
2.2. Ethical Considerations
2.3. Procedures
2.4. Materials
2.5. Data Analysis
- Time-Domain Analysis: (a) square root of differences between adjacent RR intervals (RMSsd).
- Frequency-Domain Analysis: (b) spectral analysis of the very low frequency (VLF, 0.00333–0.04 Hz), low frequency (LF, 0.04–0.15 Hz), and high frequency (HF, 0.15–0.4 Hz) ratio (LF/HF).
- Non-linear analyses: (c) non-linear metrics: the RR variability from heartbeat to short term Poincaré graph (width) (SD1), the RR variability from heartbeat to long-term Poincaré graph (length) (SD2), short-term fluctuation of the detrended fluctuation analysis (alpha-1), long-term fluctuation of the detrended fluctuation analysis (alpha-2), and the sample entropy (SampEn), which measures the regularity and complexity of a time series.
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Courel Ibanez, J.; Sanchez-Alcaraz Martinez, B.J.; Garcia Benitez, S.; Echegaray, M. Evolution of padel in Spain according to practitioners’ gender and age. Cult. Cienc. Deporte 2017, 12, 39–46. [Google Scholar] [CrossRef]
- Pradas de la Fuente, F.; González-Jurado, J.A.; García-Giménez, A.; Gallego Tobón, F.; Castellar Otín, C. Características antropométricas, de jugadores de pádel de élite: Estudio piloto. Rev. Int. Med. Cienc. Act. Física Deporte 2019, 19, 181–195. [Google Scholar] [CrossRef]
- Castillo-Rodríguez, A.; Alvero-Cruz, J.R.; Hernández-Mendo, A.; Fernández-García, J.C. Physical and physiological responses in Paddle Tennis competition. Int. J. Perform. Anal. Sport 2014, 14, 524–534. [Google Scholar] [CrossRef]
- Martínez, B.J.S.-A.; Marín, D.M.; Ibáñez, J.C.; Pérez, F.J.G.; Herrera, R.C.; García, J.D. Motivos de la práctica del pádel en relación a la edad, el nivel de juego y el género. SPORT TK-Rev. EuroAmericana Cienc. Deporte 2018, 7, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Parrón Sevilla, E.; Nestares Pleguezuelo, T.; Teresa Galván, C.d. Valoración de los hábitos de vida saludables en jugadores de pádel. Rev. Andal. Med. Deporte 2015, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Alcaraz, B.J.; Courel-Ibanez, J.; Canas, J. Groundstroke accuracy assessment in padel players according to their level of play. RICYDE-Rev. Int. Cienc. Deporte 2016, 12, 324–333. [Google Scholar] [CrossRef]
- Courel-Ibáñez, J.; Martínez, B.J.S.-A.; Cañas, J. Game performance and length of rally in professional padel players. J. Hum. Kinet. 2017, 55, 161. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Alcaraz, B.; Jiménez, V.; Muñoz, D.; Ramón-Llin, J. Diferencias en los parámetros de carga externa entre el pádel masculino y el femenino profesional. J. Sport Health Res. 2021, 13, 445–454. [Google Scholar]
- Huber, A.C.d.S.M. Uso de Medicamentos, Suplementos, Estimulantes e Fatores Associados em Praticantes de Padel. Master’s Thesis, Unisul—Universidade do sul de Santa Catarina, Tubarao, Brasil, 2014. Available online: https://repositorio.animaeducacao.com.br/handle/ANIMA/3015 (accessed on 5 March 2022).
- Parraça, J.; Manteigas, F.; Collado-Mateo, D.; Villafaina, S.; Batalha, N. Efeitos agudos de um jogo de Padel na frequência cardíaca em praticantes amadores (Estudo Piloto). In Livro de Resusmos do 8o Congresso Internacional da Actividade Física e Desporto; Escola Superior de Educação, Instituto Politécnico de Beja: Beja, Portugal, 2020; pp. 46–50. [Google Scholar]
- Oja, P.; Kelly, P.; Pedisic, Z.; Titze, S.; Bauman, A.; Foster, C.; Hamer, M.; Hillsdon, M.; Stamatakis, E. Associations of specific types of sports and exercise with all-cause and cardiovascular-disease mortality: A cohort study of 80 306 British adults. Br. J. Sports Med. 2017, 51, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Sánchez, F.S.; Cortes, R. Vascular injuries associated with paddle tennis. Paget-Schroetter Syndrome. Arch. Med. Deporte 2020, 2, 118:124. [Google Scholar]
- García–Fernández, P.; Guodemar–Pérez, J.; Ruiz-López, M.; Rodríguez-López, E.S.; García-Heras, A.; Hervás–Pérez, J.P. Epidemiología lesional en jugadores españoles de padel profesionales y amateur. Rev. Int. Med. Cienc. Act. Física Deporte 2019, 76, 641–654. [Google Scholar] [CrossRef]
- Schwerdtfeger, A.R.; Schwarz, G.; Pfurtscheller, K.; Thayer, J.F.; Jarczok, M.N.; Pfurtscheller, G. Heart rate variability (HRV): From brain death to resonance breathing at 6 breaths per minute. Clin. Neurophysiol. 2020, 131, 676–693. [Google Scholar] [CrossRef] [PubMed]
- Catai, A.M.; Pastre, C.M.; de Godoy, M.F.; da Silva, E.; de Medeiros Takahashi, A.C.; Vanderlei, L.C.M. Heart rate variability: Are you using it properly? Standardisation checklist of procedures. Braz. J. Phys. Ther. 2020, 24, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, B.; Qiu, J.; Zhang, L.; Zou, Z. Heart rate variability changes in patients with panic disorder. J. Affect. Disord. 2020, 267, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.H.; Thayer, J.F. Autonomic balance revisited: Panic anxiety and heart rate variability. J. Psychosom. Res. 1998, 44, 133–151. [Google Scholar] [CrossRef]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef]
- Paschoal, M.A.; Volanti, V.M.; Pires, C.S.; Fernandes, F.C. Variabilidade da freqüência cardíaca em diferentes faixas etárias. Braz. J. Phys. Ther. 2006, 10, 413–419. [Google Scholar] [CrossRef]
- Valenzano, A.; Moscatelli, F.; Triggiani, A.I.; Capranica, L.; De Ioannon, G.; Piacentini, M.F.; Mignardi, S.; Messina, G.; Villani, S.; Cibelli, G. Heart-rate changes after an ultraendurance swim from Italy to Albania: A case report. Int. J. Sports Physiol. Perform. 2016, 11, 407–409. [Google Scholar] [CrossRef]
- Cuzzolin, F.; Calleja-Gonzalez, J.; Jukic, I.; Kocaoglu, B.; Ostojic, S.; Rovira, M. Heart Rate Variability (HRV)–the athlete’s health and performance “Black Box”. Euroleague Play. Assoc. (ELPA) Perform. Advis. Board (PAB) Newsl. 2021, 5. Available online: https://elpa.basketball/the-athletes-health-and-performance-black-box/ (accessed on 5 March 2022).
- Leyro, T.M.; Buckman, J.F.; Bates, M.E. Theoretical implications and clinical support for heart rate variability biofeedback for substance use disorders. Curr. Opin. Psychol. 2019, 30, 92–97. [Google Scholar] [CrossRef]
- Francesco, B.; Maria Grazia, B.; Emanuele, G.; Valentina, F.; Sara, C.; Chiara, F.; Riccardo, M.; Francesco, F. Linear and nonlinear heart rate variability indexes in clinical practice. Comput. Math. Methods Med. 2012, 2012, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkikallio, T.H.; Tapanainen, J.M.; Tulppo, M.P.; Huikuri, H.V. Clinical applicability of heart rate variability analysis by methods based on nonlinear dynamics. Card. Electrophysiol. Rev. 2002, 6, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Stadnitski, T. Measuring fractality. Front. Physiol. 2012, 3, 127. [Google Scholar] [CrossRef] [Green Version]
- De Godoy, M.F. Nonlinear analysis of heart rate variability: A comprehensive review. J. Cardiol. Ther. 2016, 3, 528–533. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. -Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, J.D.; Pérez, F.J.G.; Gil, M.C.R.; Mariño, M.M.; Marín, D.M. Estudio de la carga interna en pádel amateur mediante la frecuencia cardíaca. Apunts. Educ. Física Deportes 2017, 1, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Hoffmann, B.; Flatt, A.A.; Silva, L.E.V.; Młyńczak, M.; Baranowski, R.; Dziedzic, E.; Werner, B.; Gąsior, J.S. A Pilot Study of the Reliability and Agreement of Heart Rate, Respiratory Rate and Short-Term Heart Rate Variability in Elite Modern Pentathlon Athletes. Diagnostics 2020, 10, 833. [Google Scholar] [CrossRef]
- De Rezende Barbosa, M.P.d.C.; Silva, N.T.d.; de Azevedo, F.M.; Pastre, C.M.; Vanderlei, L.C.M. Comparison of P olar® RS 800G3™ heart rate monitor with Polar® S810i™ and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin. Physiol. Funct. Imaging 2016, 36, 112–117. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological response to disorientation training in different aircraft pilots. Appl. Psychophysiol. Biofeedback 2020, 45, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Belinchon-deMiguel, P.; Clemente-Suárez, V.J. Psychophysiological, body composition, biomechanical and autonomic modulation analysis procedures in an ultraendurance mountain race. J. Med. Syst. 2018, 42, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.P.; Makikallio, T.H.; Seppänen, T.; Laukkanen, R.T.; Huikuri, H.V. Vagal modulation of heart rate during exercise: Effects of age and physical fitness. Am. J. Physiol.-Heart Circ. Physiol. 1998, 274, H424–H429. [Google Scholar] [CrossRef] [PubMed]
- Cottin, F.; Durbin, F.; Papelier, Y. Heart rate variability during cycloergometric exercise or judo wrestling eliciting the same heart rate level. Eur. J. Appl. Physiol. 2004, 91, 177–184. [Google Scholar] [CrossRef]
- Cottin, F.; Médigue, C.; Lopes, P.; Leprêtre, P.M.; Heubert, R.; Billat, V. Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. Int. J. Sports Med. 2007, 28, 287–294. [Google Scholar] [CrossRef]
- Casadei, B.; Cochrane, S.; Johnsoton, J.; Conway, J.; Sleight, P. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol. Scand. 1995, 153, 125–131. [Google Scholar] [CrossRef]
- González-Camarena, R.; Carrasco-Sosa, S.; Roman-Ramos, R.; Gaitan-Gonzalez, M.J.; Medina-Banuelos, V.; Azpiroz-Leehan, J. Effect of static and dynamic exercise on heart rate and blood pressure variabilities. Med. Sci. Sports Exerc. 2000, 32, 1719–1728. [Google Scholar] [CrossRef]
- Weippert, M.; Behrens, K.; Rieger, A.; Stoll, R.; Kreuzfeld, S. Heart rate variability and blood pressure during dynamic and static exercise at similar heart rate levels. PLoS ONE 2013, 8, e83690. [Google Scholar] [CrossRef]
- Weippert, M.; Behrens, M.; Gonschorek, R.; Bruhn, S.; Behrens, K. Muscular contraction mode differently affects autonomic control during heart rate matched exercise. Front. Physiol. 2015, 6, 156. [Google Scholar] [CrossRef] [Green Version]
- Tulppo, M.P.; Mäkikallio, T.H.; Laukkanen, R.T.; Huikuri, H.V. Differences in autonomic modulation of heart rate during arm and leg exercise. Clin. Physiol. 1999, 19, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Graham, K.S.; Davis, G.M.O. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals-A Review. Front Physiol 2017, 8, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, F.A.; Midgley, A.W.; Gonçalves, T.; Soares, P.P.; Farinatti, P. Parasympathetic reactivation after maximal CPET depends on exercise modality and resting vagal activity in healthy men. SpringerPlus 2015, 4, 100. [Google Scholar] [CrossRef] [Green Version]
- Casonatto, J.; Tinucci, T.; Dourado, A.C.; Polito, M. Cardiovascular and autonomic responses after exercise sessions with different intensities and durations. Clinics 2011, 66, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Plews, D.; Moya-Ramon, M. Training Prescription Guided by Heart Rate Variability vs. Block Periodization in Well-Trained Cyclists. J. Strength Cond. Res. 2020, 34, 1511–1518. [Google Scholar] [CrossRef]
- Hautala, A.J.; Mäkikallio, T.H.; Seppänen, T.; Huikuri, H.V.; Tulppo, M.P. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin. Physiol. Funct. Imaging 2003, 23, 215–223. [Google Scholar] [CrossRef]
- White, D.W.; Raven, P.B. Autonomic neural control of heart rate during dynamic exercise: Revisited. J. Physiol. 2014, 592, 2491–2500. [Google Scholar] [CrossRef]
- Coates, A.M.; Hammond, S.; Burr, J.F. Investigating the use of pre-training measures of autonomic regulation for assessing functional overreaching in endurance athletes. Eur. J. Sport Sci. 2018, 18, 965–974. [Google Scholar] [CrossRef]
Variables | Mean (SD) |
---|---|
Age | 37.26 (9.42) |
Height (cm) | 175.26 (5.05) |
Weight (kg) | 80.93 (12.67) |
BMI (kg/m2) | 26.26 (3.21) |
% Fat mass | 21.41 (5.94) |
Baseline | 30 min | 60 min | 90 min | Recovery | F | p-Value | η2p | |
---|---|---|---|---|---|---|---|---|
RMSsd (ms) | 39.87 ± 19.64 | 6.76 ± 7.69 | 5.96 ± 4.98 | 6.84 ± 9.31 | 15.06 ± 10.15 | 60.58 | <0.001 | 0.700 |
Alpha-1 | 1.25 ± 0.26 | 1.30 ± 0.30 | 1.21 ± 0.30 | 1.25 ± 0.30 | 1.51 ± 0.25 | 8.39 | <0.001 | 0.244 |
Alpha-2 | 0.34 ± 0.11 | 1.00 ± 0.21 | 1.05 ± 0.22 | 1.05 ± 0.24 | 0.51 ± 0.17 | 8.39 | <0.001 | 0.244 |
SD1 (ms) | 28.24 ± 13.91 | 4.78 ± 5.44 | 4.22 ± 3.53 | 4.84 ± 6.59 | 10.67 ± 7.19 | 60.57 | <0.001 | 0.700 |
SD2 (ms) | 56.06 ± 14.78 | 12.15 ± 5.74 | 10.68 ± 4.90 | 11.26 ± 6.75 | 31.70 ± 14.58 | 145.29 | <0.001 | 0.848 |
Sample Entropy | 1.68 ± 0.26 | 1.36 ± 0.25 | 1.42 ± 0.27 | 1.40 ± 0.31 | 1.06 ± 0.39 | 17.13 | <0.001 | 0.397 |
LF(Hz) (%) | 67 ± 16 | 65 ± 10 | 59 ± 15 | 58 ± 14 | 76 ± 13 | 9.061 | <0.001 | 0.266 |
VLF (Hz) (%) | 29 ± 16 | 11 ± 6 | 13 ± 6 | 13 ± 6 | 14 ± 10 | 20.162 | <0.001 | 0.446 |
HF (Hz) (%) | 5 ± 2 | 23 ± 12 | 28 ± 13 | 29 ± 15 | 9 ± 7 | 28.615 | <0.001 | 0.534 |
Ratio LF/HF | 4 ± 3 | 7 ± 3 | 6 ± 3 | 6 ± 3 | 9 ± 6 | 6.577 | <0.001 | 0.208 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parraca, J.A.; Alegrete, J.; Villafaina, S.; Batalha, N.; Fuentes-García, J.P.; Muñoz, D.; Fernandes, O. Heart Rate Variability Monitoring during a Padel Match. Int. J. Environ. Res. Public Health 2022, 19, 3623. https://doi.org/10.3390/ijerph19063623
Parraca JA, Alegrete J, Villafaina S, Batalha N, Fuentes-García JP, Muñoz D, Fernandes O. Heart Rate Variability Monitoring during a Padel Match. International Journal of Environmental Research and Public Health. 2022; 19(6):3623. https://doi.org/10.3390/ijerph19063623
Chicago/Turabian StyleParraca, Jose A., Joana Alegrete, Santos Villafaina, Nuno Batalha, Juan Pedro Fuentes-García, Diego Muñoz, and Orlando Fernandes. 2022. "Heart Rate Variability Monitoring during a Padel Match" International Journal of Environmental Research and Public Health 19, no. 6: 3623. https://doi.org/10.3390/ijerph19063623
APA StyleParraca, J. A., Alegrete, J., Villafaina, S., Batalha, N., Fuentes-García, J. P., Muñoz, D., & Fernandes, O. (2022). Heart Rate Variability Monitoring during a Padel Match. International Journal of Environmental Research and Public Health, 19(6), 3623. https://doi.org/10.3390/ijerph19063623