Assessment of Volatile Compound Transference through Firefighter Turnout Gear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.1.1. Firefighters’ Turnout Gears
2.1.2. Fire Scenes
2.2. HS-GC-IMS Analysis
2.3. Data Treatment
2.3.1. Ion Mobility Sum Spectra (IMSS)
2.3.2. Chemometric Analysis
3. Results and Discussion
3.1. Method Development
3.2. Validation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drysdale, D.D. La Química y La Física Del Fuego. In Manual de Protección Contra Incendios; Cote, A.E., Linville, J.L., Eds.; Dialnet—University of La Rioja: La Rioja, Spain, 1993; pp. 47–63. ISBN 84-7100-645-6. [Google Scholar]
- Secretaría de Salud Laboral de CCOO de Madrid. Exposición de las Bomberas y Bomberos a Sustancias Cancerígenas Durante el Trabajo, 1st ed.; Unigráficas GPS: Madrid, Spain, 2016. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Painting, Firefighting, and Shiftwork. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2010; Volume 98, pp. 9–764. ISBN 978-92-832-1598-1. [Google Scholar]
- Oliveira, M.; Slezakova, K.; Fernandes, A.; Teixeira, J.P.; Delerue-Matos, C.; Pereira, M.d.C.; Morais, S. Occupational Exposure of Firefighters to Polycyclic Aromatic Hydrocarbons in Non-Fire Work Environments. Sci. Total Environ. 2017, 592, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Laroche, E.; L’espérance, S. Cancer Incidence and Mortality among Firefighters: An Overview of Epidemiologic Systematic Reviews. Int. J. Environ. Res. Public Health 2021, 18, 2519. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe. Chapter 5.9 Polycyclic Aromatic Hydrocarbons (PAHs) General Description. In Air Quality Guidelines, 2nd ed.; WHO Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- Rodrigues Mansilha, C.; Marques, J.M.E. Water Quality Concerns Due to Forest Fires: Polycyclic Aromatic Hydrocarbons (PAH) Contamination of Groundwater From Mountain Areas Fire Effects on Soil View Project. J. Toxicol. Environ. Health Part A 2014, 77, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, S.; Wang, H.; Tao, S.; Kiyama, R. Biological Impact of Environmental Polycyclic Aromatic Hydrocarbons (EPAHs) as Endocrine Disruptors. Environ. Pollut. 2016, 213, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Wingfors, H.; Nyholm, J.R.; Magnusson, R.; Wijkmark, C.H. Impact of Fire Suit Ensembles on Firefighter PAH Exposures as Assessed by Skin Deposition and Urinary Biomarkers. Ann. Work Expo. Health 2018, 62, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bott, R.C.; Kirk, K.M.; Logan, M.B.; Reid, D.A. Diesel Particulate Matter and Polycyclic Aromatic Hydrocarbons in Fire Stations. Environ. Sci. Processes Impacts 2017, 19, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Baxter, C.S.; Hoffman, J.D.; Knipp, M.J.; Reponen, T.; Haynes, E.N. Exposure of Firefighters to Particulates and Polycyclic Aromatic Hydrocarbons. J. Occup. Environ. Hyg. 2014, 11, D85–D91. [Google Scholar] [CrossRef]
- Fent, K.W.; Eisenberg, J.; Snawder, J.; Sammons, D.; Pleil, J.D.; Stiegel, M.A.; Mueller, C.; Horn, G.P.; Dalton, J. Systemic Exposure to PAHs and Benzene in Firefighters Suppressing Controlled Structure Fires. Ann. Occup. Hyg. 2014, 58, 830–845. [Google Scholar] [CrossRef]
- Abrard, S.; Bertrand, M.; de Valence, T.; Schaupp, T. French Firefighters Exposure to Benzo[a]Pyrene after Simulated Structure Fires. Int. J. Hyg. Environ. Health 2019, 222, 84–88. [Google Scholar] [CrossRef]
- Son, S.-Y.; Bakri, I.; Muraki, S.; Tochihara, Y. Comparison of Firefighters and Non—Firefighters and the Test Methods Used Regarding the Effects of Personal Protective Equipment on Individual Mobility. Appl. Ergon. 2014, 45, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- El Aidani, R.; Dolez, P.I.; Vu-Khanh, T. Effect of Thermal Aging on the Mechanical and Barrier Properties of an E—PTFE/Nomex® Moisture Membrane Used in Firefighters’ Protective Suits. J. Appl. Polym. Sci. 2011, 121, 3101–3110. [Google Scholar] [CrossRef]
- Pleil, J.D.; Stiegel, M.A.; Fent, K.W. Exploratory Breath Analyses for Assessing Toxic Dermal Exposures of Firefighters during Suppression of Structural Burns. J. Breath Res. 2014, 8, 037107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fent, K.W.; Alexander, B.; Roberts, J.; Robertson, S.; Toennis, C.; Sammons, D.; Bertke, S.; Kerber, S.; Smith, D.; Horn, G. Contamination of Firefighter Personal Protective Equipment and Skin and the Effectiveness of Decontamination Procedures. J. Occup. Environ. Hyg. 2017, 14, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Corbally, M.A.; Williams, M.R.; Chappell, J.N.; Sigman, M.E. Detecting Chemical Vapor Diffusion through Firefighter Turnout Gear. Int. J. Environ. Res. Public Health 2021, 18, 4833. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.S. The Reactions of Ozone with Organic Compounds. Chem. Rev. 1958, 58, 925–1010. [Google Scholar] [CrossRef]
- Polanczyk, A.; Piechota-Polanczyk, A.; Dmochowska, A.; Majder-Lopatka, M.; Salamonowicz, Z. Analysis of the Effectiveness of Decontamination Fluids on the Level of Biological Contamination of Firefighter Suits. Int. J. Environ. Res. Public Health 2020, 17, 2815. [Google Scholar] [CrossRef] [Green Version]
- Lucena, M.A.M.; Zapata, F.; Mauricio, F.G.M.; Ortega-Ojeda, F.E.; Quintanilla-López, M.G.; Weber, I.T.; Montalvo, G. Evaluation of an Ozone Chamber as a Routine Method to Decontaminate Firefighters’ Ppe. Int. J. Environ. Res. Public Health 2021, 18, 10587. [Google Scholar] [CrossRef]
- Laitinen, J.; Mäkelä, M.; Mikkola, J.; Huttu, I. Fire Fighting Trainers’ Exposure to Carcinogenic Agents in Smoke Diving Simulators. Toxicol. Lett. 2010, 192, 61–65. [Google Scholar] [CrossRef]
- Keir, J.L.A.; Akhtar, U.S.; Matschke, D.M.J.; White, P.A.; Kirkham, T.L.; Chan, H.M.; Blais, J.M. Polycyclic Aromatic Hydrocarbon (PAH) and Metal Contamination of Air and Surfaces Exposed to Combustion Emissions during Emergency Fire Suppression: Implications for Firefighters’ Exposures. Sci. Total Environ. 2020, 698, 134211. [Google Scholar] [CrossRef]
- Hwang, J.; Xu, C.; Agnew, R.J.; Clifton, S.; Malone, T.R. Health Risks of Structural Firefighters from Exposure to Polycyclic Aromatic Hydrocarbons: A Systematic Review and Meta—Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4209. [Google Scholar] [CrossRef] [PubMed]
- Eiceman, G.A.; Karpas, Z.; Hill, H. Ion Mobility Spectrometry, 3rd ed.; CRC Press: Cleveland, OH, USA, 2016; ISBN 9781138199484. [Google Scholar]
- Gabelica, V.; Marklund, E. Fundamentals of Ion Mobility Spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsdorf, H.; Eiceman, G.A. Ion Mobility Spectrometry: Principles and Applications. Appl. Spectrosc. Rev. 2006, 41, 323–375. [Google Scholar] [CrossRef]
- Vautz, W.; Franzke, J.; Zampolli, S.; Elmi, I.; Liedtke, S. On the Potential of Ion Mobility Spectrometry Coupled to GC Pre—Separation—A Tutorial. Anal. Chim. Acta 2018, 1024, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.P.; Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Characterization of Arabica and Robusta Coffees by Ion Mobility Sum Spectrum. Sensors 2020, 20, 3123. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Barbero, G.F.; Palma, M. Novel Method Based on Ion Mobility Spectroscopy for the Quantification of Adulterants in Honeys. Food Control. 2020, 114, 107236. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A Screening Method Based on Headspace—Ion Mobility Spectrometry to Identify Adulterated Honey. Sensors 2019, 19, 1621. [Google Scholar] [CrossRef] [Green Version]
- Puton, J.; Namieśnik, J. Ion Mobility Spectrometry: Current Status and Application for Chemical Warfare Agents Detection. TrAC-Trends Anal. Chem. 2016, 85, 10–20. [Google Scholar] [CrossRef]
- Rearden, P.; Harrington, P.B. Rapid Screening of Precursor and Degradation Products of Chemical Warfare Agents in Soil by Solid—Phase Microextraction Ion Mobility Spectrometry (SPME–IMS). Anal. Chim. Acta 2005, 545, 13–20. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Novel Method Based on Ion Mobility Spectrometry Sum Spectrum for the Characterization of Ignitable Liquids in Fire Debris. Talanta 2019, 199, 189–194. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Barroso, C.G. Application of Headspace Gas Chromatography—Ion Mobility Spectrometry for the Determination of Ignitable Liquids from Fire Debris. Separations 2018, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Calle, J.L.P.; Ferreiro-González, M.; Aliaño-González, M.J.; Barbero, G.F.; Palma, M. Characterization of Biodegraded Ignitable Liquids by Headspace—Ion Mobility Spectrometry. Sensors 2020, 20, 6005. [Google Scholar] [CrossRef] [PubMed]
- Jaén-González, L.; Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. A Novel Method Based on Headspace—Ion Mobility Spectrometry for the Detection and Discrimination of Different Petroleum Derived Products in Seawater. Sensors 2021, 21, 2151. [Google Scholar] [CrossRef] [PubMed]
- Shinde, A.; Ormond, R.B. Development of a Headspace Sampling–Gas Chromatography–Mass Spectrometry Method for the Analysis of Fireground Contaminants on Firefighter Turnout Materials. ACS Chem. Health Saf. 2020, 27, 352–361. [Google Scholar] [CrossRef]
Drift Time (RIP Relative)/Group | Non-Exposed | FS 1 | FS 2 |
---|---|---|---|
1.200 | 6806.43 | 2855.84 | 2471.55 |
1.272 | 4770.23 | 481.89 | 1696.80 |
1.335 | 43,898.86 | 11,820.60 | 13,790.42 |
1.441 | 19,788.63 | 7004.15 | 6294.30 |
1.458 | −31,983.88 | −7892.60 | −9503.70 |
1.667 | −5272.90 | 125.29 | −1160.12 |
Constant | −3034.61 | −455.93 | −421.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliaño-González, M.J.; Montalvo, G.; García-Ruiz, C.; Ferreiro-González, M.; Palma, M. Assessment of Volatile Compound Transference through Firefighter Turnout Gear. Int. J. Environ. Res. Public Health 2022, 19, 3663. https://doi.org/10.3390/ijerph19063663
Aliaño-González MJ, Montalvo G, García-Ruiz C, Ferreiro-González M, Palma M. Assessment of Volatile Compound Transference through Firefighter Turnout Gear. International Journal of Environmental Research and Public Health. 2022; 19(6):3663. https://doi.org/10.3390/ijerph19063663
Chicago/Turabian StyleAliaño-González, María José, Gemma Montalvo, Carmen García-Ruiz, Marta Ferreiro-González, and Miguel Palma. 2022. "Assessment of Volatile Compound Transference through Firefighter Turnout Gear" International Journal of Environmental Research and Public Health 19, no. 6: 3663. https://doi.org/10.3390/ijerph19063663
APA StyleAliaño-González, M. J., Montalvo, G., García-Ruiz, C., Ferreiro-González, M., & Palma, M. (2022). Assessment of Volatile Compound Transference through Firefighter Turnout Gear. International Journal of Environmental Research and Public Health, 19(6), 3663. https://doi.org/10.3390/ijerph19063663