Rapid, Sensitive On-Site Detection of Deoxynivalenol in Cereals Using Portable and Reusable Evanescent Wave Optofluidic Immunosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrument: The Improved Evanescent Wave Optofluidic Immunosensing Platform (OIP-v2)
2.3. Reusable Fiber Optic Bio-Probe Modified by Hapten-Carrier Protein Conjugate Using the DSC-Covalent-Coupling Strategy
2.4. Preparation of Real Samples and Their Detection Using the OIP-v2 and ELISA
3. Results and Discussion
3.1. Characteristics of the DON-BSA Conjugates Modified Bio-Probe
3.2. Dose-Response Curve of DON
3.3. Selectivity of DON Immunoassay
3.4. Effect of Extraction Solvent on the Immunoassay of DON
3.5. Assay of Spiked Cereal Samples Using the OIP-v2
3.6. Simultaneous Assay of Positive Samples Using the OIP-v2 and ELISA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gerez, J.R.; Desto, S.S.; Bracarense, A.P.F.R.L. Deoxynivalenol induces toxic effects in the ovaries of pigs: An ex vivo approach. Theriogenology 2017, 90, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Meneely, J.; Fodey, T.; Armstrong, L.; Sulyok, M.; Krska, R.; Elliott, C. Rapid surface plasmon resonance immunoassay for the determination of deoxynivalenol in wheat, wheat products, and maize-based baby food. J. Agric. Food Chem. 2010, 58, 8936–8941. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.V.; Mallmann, C.A.; Mallmann, A.O.; Cocelho, R.D.; Copetti, M.V. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight. Food Sci. Technol. 2017, 37, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.Y.; Shim, W.B.; Kim, J.S.; Chung, D.H. Development of a simultaneous lateral flow strip test for the rapid and simple detection of deoxynivalenol and zearalenone. J. Food Sci. 2014, 79, M2048–M2055. [Google Scholar] [CrossRef]
- González-Jartíin, J.M.; Alfonso, A.; Rodríguez, I.; Sainz, M.J.; Vieytes, M.R.; Botana, L.M. A QuEChERS based extraction procedure coupled to UPLC-MS/MS detection for mycotoxins analysis in beer. Food Chem. 2019, 275, 703–710. [Google Scholar] [CrossRef]
- Jeyakumar, J.M.J.; Zhang, M.; Thiruvengadam, M. Determination of mycotoxins by HPLC, LC-ESI-MS/MS, and MALDI-TOF MS in Fusarium species-infected sugarcane. Microb. Pathog. 2018, 123, 98–110. [Google Scholar] [CrossRef]
- Division of Plant and Dairy Food Safety in the Center for Food Safety and Applied Nutrition; The Office of Surveillance and Compliance in the Center of Veterinary Medicine at the Food and Durg Administration. Guidence for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-Products Used for Animal Feed; Office of Food Safety: Rockville, MD, USA, 2010. [Google Scholar]
- National Health and Family Planning Committee of China. National Food Safety Standard for Mycotoxin Limits in Food-GB 2761-2017; National Standards of the People’s Republic of China: Beijing, China, 2017.
- Yan, J.; Shi, Q.; You, K.H.; Li, Y.P.; He, Q.H. Phage displayed mimotope peptide-based immunosensor for green and ultrasensitive detection of mycotoxin deoxynivalenol. J. Pharm. Biomed. Anal. 2019, 168, 94–101. [Google Scholar] [CrossRef]
- Lu, L.; Gunasekaran, S. Dual-channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta 2019, 194, 709–716. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Tan, X.C.; Lu, Z.C.; Han, H.Y. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal. Chem. 2019, 91, 3885–3892. [Google Scholar] [CrossRef]
- Joshi, S.; Segarra-Fas, A.; Peters, J.; Zuilhof, H.; van Beek, T.A.; Nielen, M.W.F. Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst 2016, 141, 1307–1318. [Google Scholar] [CrossRef]
- Zheng, H.; Ke, Y.; Yi, H.; Dai, H.; Fang, D.; Lin, Y.; Hong, Z.; Li, X. A bifunctional reagent regulated ratiometric electrochemiluminescence biosensor constructed on surfactant-assisted synthesis of TiO2 mesocrystals for the sensing of deoxynivalenol. Talanta 2018, 196, 600–607. [Google Scholar] [CrossRef]
- Fang, D.; Zheng, X.; Yi, H.; Dai, H.; Hong, Z.; Peng, Y.; Lin, Y. A H2O2-free electrochemiluminescence immunosensor constructed on all-in-one bioprobe comprised of TiO2-B supported fluoro-coumarin silicon phthalocyanine for deoxynivalenol sensing. Sens. Actuators B Chem. 2018, 283, 407–414. [Google Scholar] [CrossRef]
- Pagkali, V.; Petrou, P.S.; Makarona, E.; Peters, J.; Haasnoot, W.; Jobst, G.; Moser, I.; Gajos, K.; Budkowski, A.; Economou, A.; et al. Simultaneous determination of aflatoxin B1, fumonisin B1 and deoxynivalenol in beer samples with a label-free monolithically integrated optoelectronic biosensor. J. Hazard. Mater. 2018, 359, 445–453. [Google Scholar] [CrossRef]
- Lippolis, V.; Cervellieri, S.; Damascelli, A.; Pascale, M.; Di Gioia, A.; Longobardi, F.; De Girolamo, A. Rapid prediction of deoxynivalenol contamination in wheat bran by MOS-based electronic nose and characterization of the relevant pattern of volatile compounds. J. Sci. Food Agric. 2018, 98, 4955–4962. [Google Scholar] [CrossRef]
- Zhou, L.; Fang, S.; Liu, Y.; Yang, R.; Song, D.; Long, F.; Zhu, A. Universal and reusable hapten/antibody-mediated portable optofluidic immunosensing platform for rapid on-site detection of pathogens. Chemosphere 2018, 210, 10–18. [Google Scholar] [CrossRef]
- Song, D.; Yang, R.; Fang, S.; Liu, Y.; Liu, J.; Xu, W.; Long, F.; Zhu, A. A novel dual-color total internal reflection fluorescence detecting platform using compact optical structure and silicon-based photodetector. Talanta 2018, 196, 78–84. [Google Scholar] [CrossRef]
- Anderson, G.P.; Lingerfelt, B.M.; Taitt, C.R. Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. Sens. Lett. 2004, 2, 1–7. [Google Scholar]
- Long, F.; He, M.; Zhu, A.; Shi, H. Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples. Biosens. Bioelectron. 2009, 24, 2346–2351. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Zhao, L.; Gao, F.; Li, Y.; Ren, S. Comparative study of cation and anion ionization modes for detection of deoxynivalenol by ultra performance liquid chromatography-tandem mass spectrometry. J. Food Saf. Qual. 2017, 8, 3969–3973. [Google Scholar]
- Jue, Z. Study on Rapidly Simultaneous Detection of Deoxynivalenol and Zearalenone. China Biotechnol. 2009, 29, 82–88. [Google Scholar]
- Zhang, Y.Z. Establishment of the Direct Competition ELISA Method for Deoxynivalenol (DON). J. Food Sci. Biotechnol. 2012, 31, 28–32. [Google Scholar]
- Huang, X.Y.; Huang, T.; Li, X.J.; Huang, Z.B. Flower-like gold nanoparticles-based immunochromatographic test strip for rapid simultaneous detection of fumonisin B1 and deoxynivalenol in Chinese traditional medicine. J. Pharm. Biomed. Anal. 2019, 177, 112895. [Google Scholar] [CrossRef]
- Wei, T.; Ren, P.P.; Huang, L.L.; Ouyang, Z.C.; Wang, Z.Y. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem. 2019, 300, 125176. [Google Scholar] [CrossRef]
- Sunday, C.E.; Masikini, M.; Wilson, L.; Rassie, C.; Waryo, T.; Baker, P.G.L.; Iwuoha, E.I. Application on Gold Nanoparticles-Dotted 4-Nitrophenylazo Graphene in a Label-Free Impedimetric Deoxynivalenol Immunosensor. Sensors 2015, 15, 3854–3871. [Google Scholar] [CrossRef] [Green Version]
- Long, F.; He, M.; Shi, H.; Zhu, A. Development of evanescent wave all-fiber immunosensor for environmental water analysis. Biosens. Bioelectron. 2008, 23, 952–958. [Google Scholar] [CrossRef]
- Buśko, M.; Stuper, K.; Jeleń, H.; Góral, T.; Chmielewski, J.; Tyrakowska, B.; Perkowski, J. Comparison of volatiles profile and contents of trichothecenes group B, ergosterol, and ATP of bread wheat, durum wheat, and triticale grain naturally contaminated by mycobiota. Front. Plant Sci. 2016, 7, 1243–1251. [Google Scholar] [CrossRef] [Green Version]
- Stuper-Szablewska, J.P. Level of contamination with mycobiota and contents of mycotoxins from the group of trichotchecenes in grain of wheat, oat, barley, rye and triticale harvested in Poland in the years of 2006–2008. Ann. Agric. Environ. Med. 2017, 24, 49–55. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q.; Mi, T.; Zhao, S.; Wen, K.; Guo, L.; Mi, J.; Zhang, S.; Shi, W.; Shen, J.; et al. Dual-wavelength fluorescence polarization immunoassay to increase information content per screen: Applications for simultaneous detection of total aflatoxins and family zearalenones in maize. Food Control 2017, 87, 100–108. [Google Scholar] [CrossRef]
- Shao, Y.; Duan, H.; Guo, L.; Leng, Y.; Lai, W.; Xiong, Y. Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone. Anal. Chim. Acta 2018, 1025, 163–171. [Google Scholar] [CrossRef]
- Han, L.; Li, Y.-T.; Jiang, J.-Q.; Li, R.-F.; Fan, G.-Y.; Lv, J.-M.; Zhou, Y.; Zhang, W.-J.; Wang, Z.-L. Development of a Direct Competitive ELISA Kit for Detecting Deoxynivalenol Contamination in Wheat. Molecules 2019, 25, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Actual Sample | Spiked Concentration (μg/L) | OIP-v2 | ||
---|---|---|---|---|
Detection (μg/L) | CV/% | RSD/% | ||
Corn | 5.0 | 5.88 | 117.66 | 3.99 |
10.0 | 9.36 | 93.61 | 8.83 | |
20.0 | 21.11 | 105.56 | 4.13 | |
Wheat | 5.0 | 6.08 | 121.61 | 7.32 |
10.0 | 8.05 | 80.50 | 7.78 | |
20.0 | 19.68 | 98.42 | 3.92 | |
Pig Feed | 5.0 | 4.57 | 91.44 | 7.83 |
10.0 | 12.68 | 126.79 | 8.58 | |
20.0 | 21.41 | 107.05 | 10.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, Y.; Xu, W.; Song, D.; Han, X.; Long, F. Rapid, Sensitive On-Site Detection of Deoxynivalenol in Cereals Using Portable and Reusable Evanescent Wave Optofluidic Immunosensor. Int. J. Environ. Res. Public Health 2022, 19, 3759. https://doi.org/10.3390/ijerph19073759
Liu Y, Chen Y, Xu W, Song D, Han X, Long F. Rapid, Sensitive On-Site Detection of Deoxynivalenol in Cereals Using Portable and Reusable Evanescent Wave Optofluidic Immunosensor. International Journal of Environmental Research and Public Health. 2022; 19(7):3759. https://doi.org/10.3390/ijerph19073759
Chicago/Turabian StyleLiu, Yanping, Yuyang Chen, Wenjuan Xu, Dan Song, Xiangzhi Han, and Feng Long. 2022. "Rapid, Sensitive On-Site Detection of Deoxynivalenol in Cereals Using Portable and Reusable Evanescent Wave Optofluidic Immunosensor" International Journal of Environmental Research and Public Health 19, no. 7: 3759. https://doi.org/10.3390/ijerph19073759
APA StyleLiu, Y., Chen, Y., Xu, W., Song, D., Han, X., & Long, F. (2022). Rapid, Sensitive On-Site Detection of Deoxynivalenol in Cereals Using Portable and Reusable Evanescent Wave Optofluidic Immunosensor. International Journal of Environmental Research and Public Health, 19(7), 3759. https://doi.org/10.3390/ijerph19073759