Single- and Multi-Joint Maximum Weight Lifting Relationship to Free-Fat Mass in Different Exercises for Upper- and Lower-Limbs in Well-Trained Male Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Body Composition
2.3. Strength Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fry, A.C. The role of resistance exercise intensity on muscle fiber adaptations. Sports Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Giessing, J.; Eichmann, B.; Steele, J.; Fisher, J. A comparison of low volume ‘high-intensity-training’ and high volume traditional resistance training methods on muscular performance, body composition, and subjective assessments of training. Biol. Sport 2016, 33, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Ciolac, E.G.; Rodrigues-da-Silva, J.M. Resistance training as a tool for preventing and treating musculoskeletal disorders. Sports Med. 2016, 46, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Jaric, S. Muscle strength testing: Use of normalisation for body size. Sports Med. 2002, 32, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Ratamess, A.; Alvar, A.B.; Evetoch, T.K.; Housh, T.J.; Kibler, W.B.; Kraemer, W.J.J.; Triplett, N.T. ACSM Position Stand: Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Heyward, V.H. Advanced Fitness Assessment Exercise Prescription, 3rd ed.; Human Kinetics: Champaign, IL, USA, 1997. [Google Scholar]
- Mayhew, J.L.; McCormick, T.P.; Piper, F.C.; Kurth, A.L.; Arnold, M.D. Relationships of body dimensions to strength performance in novice adolescent male powerlifters. Pediatr. Exerc. Sci. 1993, 5, 347–356. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Piper, F.C.; Ware, J.S. Anthropometric correlates with strength performance among resistance trained athletes. J. Sports Med. Phys. Fit. 1993, 33, 159–165. [Google Scholar]
- Hortobágyi, T.; Katch, F.I.; Katch, V.L.; LaChance, P.F.; Behnke, A.R. Relationships of body size, segmental dimensions, and ponderal equivalents to muscular strength in high-strength and low-strength subjects. Int. J. Sports Med. 1990, 11, 349–356. [Google Scholar] [CrossRef]
- Hetzler, R.K.; Schroeder, B.L.; Wages, J.J.; Stickley, C.D.; Kimura, I.F. Anthropometry increases 1 repetition maximum predictive ability of NFL-225 test for Division IA college football players. J. Strength Cond. Res. 2010, 24, 1429–1439. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Ball, T.E.; Ward, T.E.; Hart, C.L.; Arnold, M.D. Relationship of structural dimensions to bench press strength in college males. J. Sports Med. Phys. Fit. 1991, 31, 135–141. [Google Scholar]
- Cummings, B.; Finn, K.J. Estimation of a one repetition maximum bench press for untrained women. J. Strength Cond. Res. 1998, 12, 262–265. [Google Scholar]
- Scanlan, J.M.; Ballmann, K.L.; Mayhew, J.L.; Lantz, C.D. Anthropometric dimensions to predict 1-RM bench press in untrained females. J. Sports Med. Phys. Fit. 1999, 39, 54–60. [Google Scholar]
- Wood, L.E.; Dixon, S.; Grant, C.; Armstrong, N. Elbow flexion and extension strength relative to body or muscle size in children. Med. Sci. Sports Exerc. 2004, 36, 1977–1984. [Google Scholar] [CrossRef] [Green Version]
- Materko, W.; Neves, C.E.B.; Santos, E.L. Prediction model of a maximal repetition (1RM) based on male and female anthropometrical characteristics. Braz. J. Sports Med. 2007, 13, 27–32. [Google Scholar] [CrossRef]
- Pereira, M.I.R.; Gomes, P.S.C. Muscular strength and endurance tests: Reliability and prediction of one repetition maximum—Review and new evidences. Braz. J. Sports Med. 2003, 9, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Lemmer, J.T.; Martel, G.F.; Hurlbut, D.E.; Hurley, B.F. Age and sex differentially affect regional changes in one repetition maximum strength. J. Strength Cond. Res. 2007, 21, 731–737. [Google Scholar] [CrossRef]
- Nindl, B.C.; Harman, E.A.; Marx, J.O.; Gotshalk, L.A.; Frykman, P.N.; Lammi, E.; Palmer, C.; Kraemer, W.J. Regional body composition changes in women after 6 months of periodized physical training. J. Appl. Physiol. 2000, 88, 2251–2259. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Campillo, R.R.; Andrade, D.C.; Jara, C.C.; Olguín, C.H.; Lepin, C.A.; Izquierdo, M. Regional fat changes induced by localized muscle endurance resistance training. J. Strength Cond. Res. 2013, 27, 2219–2224. [Google Scholar] [CrossRef] [Green Version]
- Fleck, S.J.; Mattie, C.; Martensen, L.H.C. Effect of resistance and aerobic training on regional body composition in previously recreationally trained middle-aged women. Appl. Physiol. Nutr. Metab. 2006, 31, 261–270. [Google Scholar] [CrossRef]
- Pimenta, L.D.; Massini, D.A.; Santos, D.D.; Vasconcelos, C.M.T.; Simionato, A.R.; Gomes, L.A.T.; Pessôa, D.M. Bone health, muscle strength and fat-free mass: Relationships and exercise recommendations. Rev. Bra. Med. Esporte 2019, 25, 245–251. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Burke, L.M. Techniques for undertaking dual-energy X-ray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects. Int. J. Sport Nut. Exerc. Metabol. 2012, 22, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, J.L.; Prinster, J.L.; Ware, J.S.; Zimmer, D.L.; Arabas, J.R.; Bemben, M.G. Muscular endurance repetitions to predict bench press in men of different training levels. J. Sports Med. Phys. Fit. 1995, 35, 108–113. [Google Scholar]
- Baechle, T.R.; Earle, R.W. Weight Training: Steps to Success, 4th ed.; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Ferguson, C.J. An Effect size primer: A guide for clinicians and researchers. professional psychology. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.P.; Fernández, S.P. Determinación del tamaño muestral para calcular la significación del coeficiente de correlación lineal. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario Juan Canalejo. A Coruña (España) Cad Aten Primaria 2002, 9, 209–211. [Google Scholar]
- Holiday, D.B.; Ballard, J.E.; McKeown, B.C. PRESS-related statistics: Regression tools for cross-validation and case diagnostics. Med. Sci. Sports Exerc. 1995, 27, 612–620. [Google Scholar] [CrossRef]
- Malek, M.H.; Housh, T.J.; Berger, D.E.; Coburn, J.W.; Beck, T.W. A new non-exercise-based Vo2max prediction equation for aerobically trained men. J. Strength Cond. Res. 2005, 19, 559–565. [Google Scholar] [CrossRef]
- Braith, R.W.; Graves, J.E.; Leggett, S.H.; Pollock, M.L. Effect of training on the relationship between maximal and submaximal strength. Med. Sci. Sports Exerc. 1993, 25, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.M.; Gordon, T.J.; Robergs, R.A. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J. Strength Cond. Res. 2006, 20, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Hameed, U.; Rangra, P.; Shareef, M.Y.; Hussain, M.E. Reliability of 1-repetition maximum estimation for upper and lower body muscular strength measurement in untrained middle-aged Type 2 Diabetic patients. Asian J. Sports Med. 2012, 3, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Dohoney, P.; Chromiak, J.A.; Lemire, D.; Abadie, B.R.; Kovacs, C. Prediction of one repetition maximum (1-RM) strength from a 4–6 RM and a 7–10 RM submaximal strength test in healthy young adult males. J. Exerc. Physiol. 2012, 5, 54–59. [Google Scholar]
- Donges, C.E.; Duffield, R. Effects of resistance or aerobic exercise training on total and regional body composition in sedentary overweight middle-aged adults. Appl. Physiol. Nutr. Metab. 2012, 37, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoula, A.; Martin, V.; Bouchant, A.; Walrand, S.; Lavet, C.; Taillardat, M.; Maffiuletti, N.A.; Boisseau, N.; Duché, P.; Ratel, S. Knee extension strength in obese and nonobese male adolescents. Appl. Physiol. Nutr. Metab. 2012, 37, 269–275. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD | CI95% | SEM | ||
---|---|---|---|---|
Index | API (kg/m2) | 9.67 ± 1.02 | 9.30–10.06 | 0.19 |
FFM | WB (g) | 59,596.8 ± 6831.6 | 57,045.9–62,147.8 | 1247.3 |
UL (g) | 8439.0 ± 1387.8 | 7920.7–8957.2 | 253.4 | |
LL (g) | 22,316.1 ± 3064.9 | 21,171.7–23,460.6 | 559.6 | |
Areas | Arm (cm2) | 480.1 ± 45.7 | 463.0–497.1 | 8.3 |
Thigh (cm2) | 837.9 ± 95.5 | 802.2–873.6 | 17.4 | |
Exercises 1RM | AC (kg) | 44.8 ± 9.3 | 41.3–48.3 | 1.7 |
BP (kg) | 82.5 ± 21.2 | 74.6–90.7 | 3.9 | |
SR (kg) | 96.5 ± 23.2 | 87.9–105.2 | 4.2 | |
KE (kg) | 133.4 ± 29.1 | 122.5–144.2 | 5.3 | |
LC (kg) | 90.8 ± 20.7 | 83.1–98.6 | 3.8 | |
LP45 (kg) | 323.6 ± 61.5 | 300.6–346.6 | 11.2 |
Exercises | Body Composition | |||||
---|---|---|---|---|---|---|
API | Area | |||||
WB-FFM | UL-FFM | LL-FFM | Arm | Thigh | ||
AC | 0.67 ** [medium] | 0.71 ** [medium] | 0.82 ** [strong] | na | 0.60 ** [medium] | na |
BP | 0.83 ** [strong] | 0.86 ** [strong] | 0.91 ** [strong] | na | 0.73 ** [medium] | na |
SR | 0.73 ** [medium] | 0.83 ** [strong] | 0.86 ** [strong] | na | 0.76 ** [medium] | na |
KE | 0.56 ** [medium] | 0.71 ** [medium] | na | 0.74 ** [medium] | na | 0.65 ** [medium] |
LC | 0.58 ** [medium] | 0.79 ** [medium] | na | 0.77 ** [medium] | na | 0.72 ** [medium] |
LP45 | 0.60 ** [medium] | 0.68 ** [medium] | na | 0.63 ** [medium] | na | 0.50 ** [small] |
Exercise | Model | Cross-Validation | |||
---|---|---|---|---|---|
R2adj | R2p | Shrinkage | SEEp (kg) | SEEDif (%) | |
AC | 0.66 | 0.63 | 0.03 | 5.54 | +2.21 |
BP | 0.83 | 0.82 | 0.01 | 8.92 | +2.41 |
SR | 0.73 | 0.70 | 0.03 | 12.44 | +2.89 |
KE | 0.53 | 0.43 | 0.01 | 21.56 | +7.85 |
LC | 0.61 | 0.55 | 0.06 | 13.71 | +5.79 |
LP45 | 0.44 | 0.40 | 0.04 | 46.93 | +1.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massini, D.A.; Macedo, A.G.; Almeida, T.A.F.; Espada, M.C.; Santos, F.J.; Castro, E.A.; Ferreira, D.C.P.; Neiva, C.M.; Pessôa Filho, D.M. Single- and Multi-Joint Maximum Weight Lifting Relationship to Free-Fat Mass in Different Exercises for Upper- and Lower-Limbs in Well-Trained Male Young Adults. Int. J. Environ. Res. Public Health 2022, 19, 4020. https://doi.org/10.3390/ijerph19074020
Massini DA, Macedo AG, Almeida TAF, Espada MC, Santos FJ, Castro EA, Ferreira DCP, Neiva CM, Pessôa Filho DM. Single- and Multi-Joint Maximum Weight Lifting Relationship to Free-Fat Mass in Different Exercises for Upper- and Lower-Limbs in Well-Trained Male Young Adults. International Journal of Environmental Research and Public Health. 2022; 19(7):4020. https://doi.org/10.3390/ijerph19074020
Chicago/Turabian StyleMassini, Danilo A., Anderson G. Macedo, Tiago A. F. Almeida, Mário C. Espada, Fernando J. Santos, Eliane A. Castro, Daniel C. P. Ferreira, Cassiano M. Neiva, and Dalton M. Pessôa Filho. 2022. "Single- and Multi-Joint Maximum Weight Lifting Relationship to Free-Fat Mass in Different Exercises for Upper- and Lower-Limbs in Well-Trained Male Young Adults" International Journal of Environmental Research and Public Health 19, no. 7: 4020. https://doi.org/10.3390/ijerph19074020
APA StyleMassini, D. A., Macedo, A. G., Almeida, T. A. F., Espada, M. C., Santos, F. J., Castro, E. A., Ferreira, D. C. P., Neiva, C. M., & Pessôa Filho, D. M. (2022). Single- and Multi-Joint Maximum Weight Lifting Relationship to Free-Fat Mass in Different Exercises for Upper- and Lower-Limbs in Well-Trained Male Young Adults. International Journal of Environmental Research and Public Health, 19(7), 4020. https://doi.org/10.3390/ijerph19074020