Primitive Reflex Factors Influence Walking Gait in Young Children: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definitions
2.3. Participants
2.4. Measurement
2.5. Spatio-Temporal Gait Parameters
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
3.1. Gait Parameters and Retained Primitive Reflexes Correlations
3.2. Gait Parameters Divided into Two Groups Due to Age and Gender
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonard, H.C.; Hill, E. Review: The impact of motor development on typical and atypical social cognition and language: A systematic review. Child Adolesc. Ment. Health 2014, 19, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Grzywniak, C. Role of early-childhood reflexes in the psychomotor development of a child, and in learning. Acta Neuropsychol. 2016, 14, 113–129. [Google Scholar]
- Goddard Blythe, S.; Duncombe, R.; Preedy, P.; Gorely, T. Neuromotor readiness for school: The primitive reflex status of young children at the start and end of their first year at school in the United Kingdom. Education 3–13 2021, 1–14. [Google Scholar] [CrossRef]
- Gieysztor, E.Z.; Choińska, A.M.; Paprocka-Borowicz, M. Persistence of primitive reflexes and associated motor problems in healthy preschool children. Arch. Med. Sci. 2018, 14, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Blythe, S.G. Movement a Child’s First, A.B.C. Early Childhood Education Redefined; Routledge: London, UK, 2018. [Google Scholar]
- Goddard, S. Neuromotor Immaturity in Children and Adults: The INPP Screening Test for Clinicians and Health Practitioners; John Wiley Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Goddard-Blythe, S. The role of primitive survival reflexes in the development of the visual system. J. Behav. Optom. 1995, 6, 31–36. [Google Scholar]
- Gieysztor, E.Z.; Sadowska, L.; Choińska, A.M.; Paprocka-Borowicz, M. Trunk rotation due to persistence of primitive reflexes in early school-age children. Adv. Clin. Exp. Med. 2018, 27, 363–366. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, N.E.; Cook, P. Stopping ADD/ADHD and Learning Disabilities: A Unique and Proven Treatment without Drugs for Eliminating ADD/ADHD and Learning Disabilities in Children and Adults; Stopping Hyperactivity LLC: Indianopolis, IN, USA, 2004. [Google Scholar]
- Konicarova, J.; Bob, P.; Raboch, J. Persisting primitive reflexes in medication-naïve girls with attention-deficit and hyperactivity disorder. Neuropsychiatr. Dis. Treat. 2013, 9, 1457–1461. [Google Scholar] [PubMed] [Green Version]
- Blythe, S.G. Releasing Educational Potential Through Movement: A Summary of Individual Studies Carried Out Using the INPP Test Battery and Developmental Exercise Programme for use in Schools with Children with Special Needs. Child Care Pract. 2006, 11, 415–432. [Google Scholar] [CrossRef]
- Blythe, S.G. Attention, Balance and Coordination: The A.B.C. of Learning Success; Wiley: Hoboken, NJ, USA, 2017; 429p. [Google Scholar]
- Bruening, D.A.; Baird, A.R.; Weaver, K.J.; Rasmussen, A.T. Whole body kinematic sex differences persist across non-dimensional gait speeds. PLoS ONE 2020, 15, e0237449. [Google Scholar]
- Deconinck, F.J.A.; De Clercq, D.; Savelsbergh, G.J.P.; Van Coster, R.; Oostra, A.; Dewitte, G.; Lenoir, M. Differences in Gait between Children with and Without Developmental Coordination Disorder. Mot. Control 2006, 10, 125–142. [Google Scholar] [CrossRef] [Green Version]
- Dziuba, A.K.; Tylkowska, M.; Jaroszczuk, S. Index of mechanical work in gait of children with cerebral palsy. Acta Bioeng. Biomech. 2014, 16, 77–87. [Google Scholar]
- Din Del, S.; Godfrey, A.; Rochester, L. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s Disease: Toward Clinical and at Home Use. IEEE J. Biomed. Health Inform. 2016, 20, 838–847. [Google Scholar] [CrossRef]
- Oudenhoven, L.M.; Booth, A.T.C.; Buizer, A.I.; Harlaar, J.; van der Krogt, M.M. How normal is normal: Consequences of stride to stride variability, treadmill walking and age when using normative paediatric gait data. Gait Posture 2019, 70, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Kolb, B.; Gibb, R. Brain plasticity and behaviour in the developing brain. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 265–276. [Google Scholar]
- Cinelli, H. Les réflexes archaïques. Sages-Femmes 2021, 20, 43–46. [Google Scholar]
- Demiy, A.; Kalemba, A.; Lorent, M.; Pecuch, A.; Wolańska, E.; Telenga, M.; Gieysztor, E.Z. A child’s perception of their developmental diffi-culties in relation to their adult assessment. Analysis of the inpp questionnaire. J. Pers. Med. 2020, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Gieysztor, E.; Pecuch, A.; Kowal, M.; Borowicz, W.; Paprocka-Borowicz, M. Pelvic Symmetry Is Influenced by Asymmetrical Tonic Neck Reflex during Young Children’s Gait. Int. J. Environ. Res. Public Health 2020, 17, 4759. [Google Scholar] [CrossRef]
- Pecuch, A.; Gieysztor, E.; Telenga, M.; Wolańska, E.; Kowal, M.; Paprocka-Borowicz, M. Primitive Reflex Activity in Relation to the Sensory Profile in Healthy Preschool Children. Int. J. Environ. Res. Public Health 2020, 17, 8210. [Google Scholar] [CrossRef]
- SankarPandi, S.K.; Baldwin, A.J.; Ray, J.; Mazzà, C. Reliability of inertial sensors in the assessment of patients with vestibular disorders: A feasibility study. BMC Ear Nose Throat Disord. 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gieysztor, E.; Kurzaj, P.; Choińska, A.; Kowal, M.; Pecuch, A.M.; Borowicz, W.; Paprocka-Borowicz, M. Perception of sensory impressions in children from music classes and their peers from general classes in Poland—A comparison. Physiother. Q. 2019, 27, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Manicolo, O.; Grob, A.; Lemola, S.; von Arx, P.H. Age-related decline of gait variability in children with attention-deficit/hyperactivity disorder: Support for the maturational delay hypothesis in gait. Gait Posture 2016, 44, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Gieysztor, E.Z.; Sadowska, L.; Choińska, A.M. The degree of primitive reflexes integration as a diagnostic tool to assess the neurological maturity of healthy preschool and early school age children. Nurs. Public Health 2017, 7, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Willson, J.D.; Dougherty, C.P.; Ireland, M.L.; Davis, I.M.C. Core Stability and Its Relationship to Lower Extremity Function and Injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, N.; McGinley, J.L.; Bradshaw, J.L.; Rinehart, N.J. An investigation of gait in children with Attention Deficit Hyper-activity Disorder: A case controlled study. Psychiatry Res. 2014, 218, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Lythgo, N.; Wilson, C.; Galea, M. Basic gait and symmetry measures for primary school-aged children and young adults whilst walking barefoot and with shoes. Gait Posture 2009, 30, 502–506. [Google Scholar] [CrossRef]
- Pavão, S.L.; dos Santos, A.N.; Woollacott, M.H.; Rocha, N.A.C.F. Assessment of postural control in children with cerebral palsy: A review. Res. Dev. Disabil. 2013, 34, 1367–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buderath, P.; Gärtner, K.; Frings, M.; Christiansen, H.; Schoch, B.; Konczak, J.; Gizewski, E.R.; Hebebrand, J.; Timmann, D. Postural and gait performance in children with attention deficit/hyperactivity disorder. Gait Posture 2009, 29, 249–254. [Google Scholar] [CrossRef]
- Moreno-Hernández, A.; Rodríguez-Reyes, G.; Quiñones-Urióstegui, I.; Núñez-Carrera, L.; Pérez-SanPablo, A.I. Temporal and spatial gait parameters analysis in non-pathological Mexican children. Gait Posture 2010, 32, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Brady, K.; Kiernan, D. Centre of pressure error with increasing gait velocity: The clinical impact on predicted inverse dynamics during gait in children with typical development. Gait Posture 2020, 82, 96–99. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mean | SD | Median | 95% CI |
---|---|---|---|---|
analysis duration (s) | 44.8 | 10.6 | 43.7 | 41.7–4.7 |
cadence (steps/min) | 136.6 | 20.7 | 132.8 | 130.7–142.6 |
velocity (m/s) | 0.8 | 0.3 | 0.8 | 0.7–0.9 |
step length (m) | 0.7 | 0.2 | 0.8 | 0.6.–0.9 |
% step length/height | 65.8 | 21.3 | 69.3 | 60–72 |
gait cycle duration (s) | ||||
left | 1.0 | 0.3 | 0.9 | 0.9–1.1 |
right | 1.0 | 0.4 | 0.9 | 0.9–1.1 |
step length (%) | ||||
left | 51.7 | 7.9 | 50.5 | 49.4–54.0 |
right | 48.3 | 7.9 | 49.5 | 46.0–50.6 |
support phase duration (%) | ||||
left | 66.7 | 4.1 | 66.4 | 65.5–67.9 |
right | 65.6 | 4.4 | 65.4 | 64.3–66.9 |
swing phase (%) | ||||
left | 33.3 | 4.1 | 33.6 | 32.1 |
right | 34.4 | 4.4 | 34.6 | 34.5 |
double support duration (%) | ||||
left | 19.4 | 21.7 | 15.7 | 33.1 |
right | 15.4 | 3.3 | 15.8 | 35.6 |
single support duration (%) | ||||
left | 34.4 | 3.9 | 34.0 | 33.3–35.5 |
right | 33.9 | 4.1 | 33.7 | 32.7–35.1 |
steps analysed | ||||
left | 9.1 | 5.1 | 8.5 | 7.6–10.5 |
right | 9.5 | 5.5 | 9.0 | 8.0–11.1 |
Reflex Parameter | Value of Influence | Gait Parameter |
---|---|---|
STNR FLX | 78% | |
ATNR R in standing | 78% | |
MORO | 67% | |
PR activity | 67% | all gait parameters |
ROMBERG open | 56% | |
crawling | 44% | |
GALANT L | 39% |
Kind of Reflex/Test | Analysis Duration | Cadence | Velocity | Step Length | % Step Length/Height |
---|---|---|---|---|---|
crawling | 0.140 | −0.318 * | −0.120 | 0.020 | 0.062 |
TLR FLX | 0.297 * | −0.236 | 0.059 | 0.181 | 0.210 |
GRASP R | 0.195 | −0.300 * | −0.147 | −0.033 | 0.045 |
Level of PR activity | 0.052 | −0.291 * | −0.009 | 0.158 | 0.122 |
Gait Parameter/Kind of Reflex | STNR EXT | GALANT R | GRASP R | GRASP L |
---|---|---|---|---|
Gait time | ||||
left | 0.130 | −0.018 | 0.286 * | 0.087 |
right | 0.137 | 0.014 | 0.238 | 0.071 |
Step length | ||||
left | 0.203 | −0.218 | 0.245 | 0.325 * |
right | −0.138 | 0.218 | −0.245 | −0.325 * |
Stance phase time | ||||
left | −0.138 | −0.094 | −0.167 | −0.166 |
right | −0.093 | −0.024 | −0.187 | −0.094 |
Swing phase time | ||||
left | 0.138 | 0.094 | 0.167 | 0.166 |
right | 0.093 | 0.024 | 0.187 | 0.094 |
Double support phase time | −0.262 | 0.172 | −0.148 | 0.006 |
Single support phase time | ||||
left | 0.162 | −0.136 | 0.156 | 0.065 |
right | 0.289 * | −0.097 | 0.083 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gieysztor, E.; Kowal, M.; Paprocka-Borowicz, M. Primitive Reflex Factors Influence Walking Gait in Young Children: An Observational Study. Int. J. Environ. Res. Public Health 2022, 19, 4070. https://doi.org/10.3390/ijerph19074070
Gieysztor E, Kowal M, Paprocka-Borowicz M. Primitive Reflex Factors Influence Walking Gait in Young Children: An Observational Study. International Journal of Environmental Research and Public Health. 2022; 19(7):4070. https://doi.org/10.3390/ijerph19074070
Chicago/Turabian StyleGieysztor, Ewa, Mateusz Kowal, and Małgorzata Paprocka-Borowicz. 2022. "Primitive Reflex Factors Influence Walking Gait in Young Children: An Observational Study" International Journal of Environmental Research and Public Health 19, no. 7: 4070. https://doi.org/10.3390/ijerph19074070
APA StyleGieysztor, E., Kowal, M., & Paprocka-Borowicz, M. (2022). Primitive Reflex Factors Influence Walking Gait in Young Children: An Observational Study. International Journal of Environmental Research and Public Health, 19(7), 4070. https://doi.org/10.3390/ijerph19074070