Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- Pulmonary embolism diagnosed by scintigraphy.
- Absolute and relative contraindication to cardiopulmonary stress test or exercise training [12].
- Severe exercise intolerance, significant cardiac arrhythmia or ischemia during low-intensity exercise, severe pulmonary hypertension.
- Severe pulmonary disease (e.g., chronic obstructive pulmonary disease, severe COVID-19-related symptoms, severe asthma).
- Recent cardiovascular events (cardiac decompensation, angioplasty or cardiac surgery less than 4 weeks; valvular heart disease requiring surgical correction, myopericarditis, unstable ventricular rhythm disturbances despite treatment).
- Kidney failure requiring dialysis.
- Heart failure (NYHA III or IV).
2.3. Interventional Methods
2.3.1. Measurements and Outcomes
2.3.2. Primary Outcome: Cardiorespiratory Fitness
2.3.3. Secondary Outcomes: Functional and Respiratory Capacity, Quality of Life
2.3.4. Tertiary Outcomes: Coagulation, Inflammatory and Antioxidant Profile and Brain Health
2.4. Cardiopulmonary-Rehabilitation Program
2.5. Research Plan
3. Data analysis
3.1. Sample-Size Calculation
3.2. Statistical Analysis
3.3. Blinding
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6MWT | 6-min walking test |
ANCOVA | covariance analysis model |
COVID-19 | Coronavirus Disease 2019 |
CPET | cardiopulmonary exercise testing |
FEV1 | forced expiratory volume in one second |
fNIRS | functional near-infrared spectroscopy |
FVC | forced vital capacity |
IVC | inspiratory vital capacity |
MHICC | Montreal Health Innovations Coordinating Centre |
MoCA | Montreal Cognitive Assessment |
PCR | polymerase chain reaction |
PEF | peak expiratory flow |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SF-36 | 36-item short-form |
SPIRIT | Standard Protocol Items-Recommendations for Interventional Trials guidelines |
STS | Sit-to-Stand test |
TUG | timed up-and-go test |
References
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Kalhan, A.; Kalra, S. Long term complications and rehabilitation of COVID-19 patients. J. Pak. Med. Assoc. 2020, 70 (Suppl. 3), S131–S135. [Google Scholar] [CrossRef] [PubMed]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw. Open 2021, 4, e2036142. [Google Scholar] [CrossRef] [PubMed]
- Carfi, A.; Bernabei, R.; Landi, F.; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- ElBini Dhouib, I. Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2. Drug Discov. Ther. 2021, 14, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Rehabilitation management of patients with COVID-19: Lessons learned from the first experience in China. Eur. J. Phys. Rehabil. Med. 2020, 56, 335–338. [Google Scholar] [CrossRef]
- Lerum, T.V.; Aaløkken, T.M.; Brønstad, E.; Aarli, B.; Ikdahl, E.; Lund, K.M.A.; Durheim, M.T.; Rodriguez, J.R.; Meltzer, C.; Tonby, K.; et al. Dyspnoea, lung function and CT findings 3 months after hospital admission for COVID-19. Eur. Respir. J. 2021, 57, 2003448. [Google Scholar] [CrossRef] [PubMed]
- Sonnweber, T.; Sahanic, S.; Pizzini, A.; Luger, A.; Schwabl, C.; Sonnweber, B.; Kurz, K.; Koppelstätter, S.; Haschka, D.; Petzer, V.; et al. Cardiopulmonary recovery after COVID-19: An observational prospective multicentre trial. Eur. Respir. J. 2021, 57, 2003481. [Google Scholar] [CrossRef]
- Clavario, P.; De Marzo, V.; Lotti, R.; Barbara, C.; Porcile, A.; Russo, C.; Beccaria, F.; Bonavia, M.; Bottaro, L.C.; Caltabellotta, M.; et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int. J. Cardiol. 2021, 340, 113–118. [Google Scholar] [CrossRef]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.; et al. An official American Thoracic Society/European Respiratory Society Statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Rochester, C.L.; Vogiatzis, I.; Holland, A.E.; Lareau, S.C.; Marciniuk, D.D.; Puhan, M.A.; Spruit, M.A.; Masefield, S.; Casaburi, R.; Clini, E.M.; et al. An Official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2015, 192, 1373–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports Medicine; Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Liu, K.; Zhang, W.; Yang, Y.; Zhang, J.; Li, Y.; Chen, Y. Respiratory rehabilitation in elderly patients with COVID-19: A randomized controlled study. Complement. Ther. Clin. Pract. 2020, 39, 101166. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.X.; Tran, Y.M.; Vu, K.T.; Eapen, B.C. Postacute inpatient rehabilitation for COVID-19. BMJ Case Rep. 2020, 13, e237406. [Google Scholar] [CrossRef] [PubMed]
- Barbara, C.; Clavario, P.; De Marzo, V.; Lotti, R.; Guglielmi, G.; Porcile, A.; Russo, C.; Griffo, R.; Mäkikallio, T.; Hautala, A.J.; et al. Effects of exercise rehabilitation in patients with long COVID-19. Eur. J. Prev. Cardiol. 2022, zwac019. [Google Scholar] [CrossRef]
- Rooney, S.; Webster, A.; Paul, L. Systematic review of changes and recovery in physical function and fitness after severe acute respiratory syndrome-related coronavirus infection: Implications for COVID-19 rehabilitation. Phys. Ther. 2020, 100, 1717–1729. [Google Scholar] [CrossRef]
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S.; et al. The stanford hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sports Med. 2020, 54, 949–959. [Google Scholar] [CrossRef]
- WHO. COVID-19 Clinical Management: Living Guidance; WHO: Geneva, Switzerland, 2021.
- Sun, T.; Guo, L.; Tian, F.; Dai, T.; Xing, X.; Zhao, J.; Li, Q. Rehabilitation of patients with COVID-19. Expert Rev. Respir. Med. 2020, 14, 1249–1256. [Google Scholar] [CrossRef]
- Agostini, F.; Mangone, M.; Ruiu, P.; Paolucci, T.; Santilli, V.; Bernetti, A. Rehabilitation setting during and after COVID-19: An overview on recommendations. J. Rehabil. Med. 2021, 53, jrm00141. [Google Scholar] [CrossRef]
- Barrett, H.; DeGroute, W.; Denehy, L.; Etimadi, Y.; Gosslink, R.; Grey, D.; Hallowell, B.; Lim, P.; Marks, E.; Mishra, S.; et al. Rehabilitation Considerations for the COVID-19 Outbreak; Pan American Health Organization; World Health Organization: Washington, DC, USA, 2020.
- Steell, L.; Ho, F.K.; Sillars, A.; Petermann-Rocha, F.; Li, H.; Lyall, D.M.; Iliodromiti, S.; Welsh, P.; Anderson, J.; MacKay, D.F.; et al. Dose-response associations of cardiorespiratory fitness with all-cause mortality and incidence and mortality of cancer and cardiovascular and respiratory diseases: The UK Biobank cohort study. Br. J. Sports Med. 2019, 53, 1371–1378. [Google Scholar] [CrossRef] [Green Version]
- Radtke, T.; Crook, S.; Kaltsakas, G.; Louvaris, Z.; Berton, D.; Urquhart, D.S.; Kampouras, A.; Rabinovich, R.A.; Verges, S.; Kontopidis, D.; et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. Eur. Respir. Rev. 2019, 28, 180101. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I. COVID-19—Does exercise prescription and maximal oxygen uptake (VO2 max) have a role in risk-stratifying patients? Clin. Med. 2020, 20, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Cothran, T.P.; Kellman, S.; Singh, S.; Beck, J.S.; Powell, K.J.; Bolton, C.J.; Tam, J.W. A brewing storm: The neuropsychological sequelae of hyperinflammation due to COVID-19. Brain Behav. Immun. 2020, 88, 957–958. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, R.; Wilke, S.; Smid, D.E.; Janssen, D.J.; Franssen, F.M.; Probst, V.S.; Wouters, E.F.; Muris, J.W.; Pitta, F.; Spruit, M.A. Measurement properties of the Timed Up & Go test in patients with COPD. Chron. Respir. Dis. 2016, 13, 344–352. [Google Scholar] [PubMed] [Green Version]
- Bohannon, R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Ski. 2006, 103, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.E.; Kon, S.S.; Canavan, J.L.; Patel, M.S.; Clark, A.L.; Nolan, C.M.; Polkey, M.I.; Man, W.D. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax 2013, 68, 1015–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global COVID-19 Clinical Platform Case Report Form (CRF) for Post COVID Condition (Post COVID-19 CRF); WHO: Geneva, Switzerland, 2020.
- Tran, V.T.; Riveros, C.; Clepier, B.; Desvarieux, M.; Collet, C.; Yordanov, Y.; Ravaud, P. Development and validation of the long COVID symptom and impact tools, a set of patient-reported instruments constructed from patients’ lived experience. medRxiv 2021. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- McComb, E.; Tuokko, H.; Brewster, P.; Chou, P.H.; Kolitz, K.; Crossley, M.; Simard, M. Mental alternation test: Administration mode, age, and practice effects. J. Clin. Exp. Neuropsychol. 2011, 33, 234–241. [Google Scholar] [CrossRef]
- Pendlebury, S.T.; Welch, S.J.; Cuthbertson, F.C.; Mariz, J.; Mehta, Z.; Rothwell, P.M. Telephone assessment of cognition after transient ischemic attack and stroke: Modified telephone interview of cognitive status and telephone Montreal Cognitive Assessment versus face-to-face Montreal Cognitive Assessment and neuropsychological battery. Stroke 2013, 44, 227–229. [Google Scholar] [CrossRef] [Green Version]
- Lezak, M.D. Neuropsychological Assessment; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Gearhart, R.F., Jr.; Lagally, K.M.; Riechman, S.E.; Andrews, R.D.; Robertson, R.J. Strength tracking using the OMNI resistance exercise scale in older men and women. J. Strength Cond. Res. 2009, 23, 1011–1015. [Google Scholar] [CrossRef]
- Baratto, C.; Caravita, S.; Faini, A.; Perego, G.B.; Senni, M.; Badano, L.P.; Parati, G. Impact of COVID-19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study. J. Appl. Physiol. 2021, 130, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, R.F.; Mondoni, M.; Parazzini, E.M.; Pitari, F.; Brambilla, E.; Luraschi, S.; Balbi, M.; Sferrazza Papa, G.F.; Sotgiu, G.; Guazzi, M.; et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur. Respir. J. 2021, 58, 2100870. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Joseph, P.; Heerdt, P.M.; Cullinan, M.; Lutchmansingh, D.D.; Gulati, M.; Possick, J.D.; Systrom, D.M.; Waxman, A.B. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing. Chest 2021, 161, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Skjorten, I.; Ankerstjerne, O.A.W.; Trebinjac, D.; Brønstad, E.; Rasch-Halvorsen, Ø.; Einvik, G.; Lerum, T.V.; Stavem, K.; Edvardsen, A.; Ingul, C.B. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur. Respir. J. 2021, 58, 2100996. [Google Scholar] [CrossRef]
- Pecanha, T.; Goessler, K.F.; Roschel, H.; Gualano, B. Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1441–H1446. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Chau, B.; Lui, M.; Lam, G.T.; Lin, N.; Humbert, S. Physical medicine and rehabilitation and pulmonary rehabilitation for COVID-19. Am. J. Phys. Med. Rehabil. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Gu, R.; Xu, S.; Li, Z.; Gu, Y.; Sun, Z. The safety and effectiveness of rehabilitation exercises on COVID-19 patients: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e21373. [Google Scholar] [CrossRef]
- Yan, H.; Ouyang, Y.; Wang, L.; Luo, X.; Zhan, Q. Effect of respiratory rehabilitation training on elderly patients with COVID-19: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e22109. [Google Scholar] [CrossRef]
- Siddiq, M.A.B.; Rathore, F.A.; Clegg, D.; Rasker, J.J. Pulmonary Rehabilitation in COVID-19 patients: A scoping review of current practice and its application during the pandemic. Turk. J. Phys. Med. Rehabil. 2020, 66, 480–494. [Google Scholar] [CrossRef]
Time Point | t−1 | T0 Baseline Evaluations | T1 10 Weeks | ||
---|---|---|---|---|---|
Visit 1 | Visit 2 | Visit 3 | Visit 4, 5, 6 | ||
Enrolment: | |||||
Eligibility screening | X | ||||
Informed consent | X | ||||
Assessments: | |||||
Medical visit | X | X | |||
Blood draw 1 | X | X | |||
Body-composition analysis | X | X | |||
Spirometry | X | X | |||
O2max | X | X | |||
Neuropsychological assessment 2 | X | X | |||
NIRS pulsatility, neurovascular coupling | X | X | |||
5 Sit-to-Stand test | X | X | |||
Timed Up-and-Go test | X | X | |||
6 min walking test | X | X | |||
Self-reported questionnaires 3 | X | X | |||
Interventions: | |||||
control group | Have to maintain their daily habit | ||||
cardiopulmonary-exercise-training group | 8 weeks; 3 times/week |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besnier, F.; Bérubé, B.; Malo, J.; Gagnon, C.; Grégoire, C.-A.; Juneau, M.; Simard, F.; L’Allier, P.; Nigam, A.; Iglésies-Grau, J.; et al. Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. Int. J. Environ. Res. Public Health 2022, 19, 4133. https://doi.org/10.3390/ijerph19074133
Besnier F, Bérubé B, Malo J, Gagnon C, Grégoire C-A, Juneau M, Simard F, L’Allier P, Nigam A, Iglésies-Grau J, et al. Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. International Journal of Environmental Research and Public Health. 2022; 19(7):4133. https://doi.org/10.3390/ijerph19074133
Chicago/Turabian StyleBesnier, Florent, Béatrice Bérubé, Jacques Malo, Christine Gagnon, Catherine-Alexandra Grégoire, Martin Juneau, François Simard, Philippe L’Allier, Anil Nigam, Josep Iglésies-Grau, and et al. 2022. "Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study" International Journal of Environmental Research and Public Health 19, no. 7: 4133. https://doi.org/10.3390/ijerph19074133
APA StyleBesnier, F., Bérubé, B., Malo, J., Gagnon, C., Grégoire, C. -A., Juneau, M., Simard, F., L’Allier, P., Nigam, A., Iglésies-Grau, J., Vincent, T., Talamonti, D., Dupuy, E. G., Mohammadi, H., Gayda, M., & Bherer, L. (2022). Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. International Journal of Environmental Research and Public Health, 19(7), 4133. https://doi.org/10.3390/ijerph19074133