Genotoxic Effects of Lead and Their Impact on the Expression of DNA Repair Genes
Abstract
:1. Introduction
2. Genotoxicity of Lead
3. Study on the Effect of Lead on DNA Repair-Related Genes
3.1. In Vitro Studies
Test System | Substance | Treatment | DNA Repair Gene | Method | Result | Reference |
---|---|---|---|---|---|---|
Mouse embryonic stem (mES) cells | Lead acetate | 0.02 mg/mL for 1 h | OGG1, Top3a, Rad18 | RT-PCR | Significant down-regulation | Gadhia et al. (2012) [9] |
CL3 human lung cancer cells | Lead acetate | 10–100 µM for 30 min, and 24 h | APE1 | Western blot | Significant increase in APE1 protein level in a dose-dependent manner | Wang et al. (2013) [34] |
Stem cells from dental origin | Lead nitrate | 160 µM for 24 h | ERCC3, XRCC4, RAD51 | RT-PCR | No significant change | Abdullah et al. (2014) [33] |
Lymphoblastoid TK6 cells | Lead acetate | 120 µM for6–24 h | XRCC1, hOGG-1, BRCA1, XPD | Western blot | Significant decreases in protein levels of XRCC1 at 12 h; hOGG-1 at 6, 12, and 24 h; BRCA1 at 12 and 24 h; and XPD at 6 and 12 h | Liu et al. (2018) [31] |
Roots of A. cepa var. agrogarum | Lead nitrate | 5.0 and 15.0 µM for 12 h | POLD1 | RT-PCR and MS | Significant down-regulation | Lyu et al. (2020) [32] |
3.2. Epidemiological Studies
Subject | N | Blood Pb Level (µg/dL) (Mean ± SEM) | DNA Repair Gene | Method | Result | Reference |
---|---|---|---|---|---|---|
Workers of construction area origin | 100 exposed 100 controls | - | OGG1-2a | RT-PCR | Significant down-regulation | Akram et al. (2019) [35] |
Welding, handicraft, and paint workers | 100 exposed 100 controls | 7.88 ± 1.27 1.27 ± 0.11 | OGG1, XRCC1, XPD | RT-PCR | Significant down-regulation | Singh et al. (2020) [36] |
Exposed residents | 40 exposed 20 controls | 2.10 ± 0.25 1.12 ± 0.06 | OGG1, APE1 | RT-PCR | No significant change | Bakheet et al. (2013) [37] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bandyopadhyay, D.; Ghosh, D.; Chattopadhyay, A.; Firdaus, S.B.; Ghosh, A.K.; Paul, S.; Dalui, K. Lead induced oxidative stress: A health issue of global concern. J. Pharm. Res. 2014, 88, 1198–1207. [Google Scholar]
- García-Lestón, J.; Méndez, J.; Pasaro, E.; Laffon, B. Genotoxic effects of lead: An updated review. Environ. Int. 2010, 36, 623–636. [Google Scholar] [CrossRef]
- Shaik, A.P.; Sankar, S.; Reddy, S.C.; Das, P.G.; Jamil, K. Lead-induced genotoxicity in lymphocytes from peripheral blood samples of humans: In Vitro studies. Drug Chem. Toxicol. 2006, 29, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.J.; Lakkad, B.C.; Rao, M.V. Genotoxicity in lead treated human lymphocytes evaluated by micronucleus and comet assays. Indian J. Exp. Biol. 2016, 54, 502–508. [Google Scholar] [PubMed]
- Siddarth, M.; Chawla, D.; Raizada, A.; Wadhwa, N.; Banerjee, B.D.; Sikka, M. Lead-induced DNA damage and cell apoptosis in human renal proximal tubular epithelial cell: Attenuation viaN-acetyl cysteine and tannic acid. J. Biochem. Mol. Toxicol. 2018, 2, e22038. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, A.; Schlepegrell, R.; Beyersmann, D. Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells. Mutat. Res. Toxicol. 1990, 241, 75–82. [Google Scholar] [CrossRef]
- Lahtz, C.; Pfeifer, G.P. Epigenetic changes of DNA repair genes in cancer. J. Mol. Cell Biol. 2011, 3, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Gadhia, S.R.; Calabro, A.R.; Barile, F.A. Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells. Toxicol. Lett. 2012, 212, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, H.; Wang, C.; Lu, Q.; Huang, Q.; Zheng, C.; Lei, Y. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology. Sci. Rep. 2015, 5, 15293. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.-H.; Lei, Y.-X.; Wang, C.-X. Analysis of aberrant methylation in dna repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol. Sci. 2011, 125, 412–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, M.; Gong, P.; Suzuki, K.; Koizumi, S. Differential metal response and regulation of human heavy metal-inducible genes. J. Cell. Physiol. 1999, 180, 105–113. [Google Scholar] [CrossRef]
- Korashy, H.M.; El-Kadi, A.O.S. Regulatory mechanisms modulating the expression of cytochrome P450 1A1 gene by heavy metals. Toxicol. Sci. 2005, 88, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F. The genetic effects of environmental lead. Mutat. Res. Mutat. Res. 1998, 410, 123–140. [Google Scholar] [CrossRef]
- Ibrahem, S.; Hassan, M.; Ibraheem, Q.; Arif, K. Genotoxic effect of lead and cadmium on workers at wastewater plant in Iraq. J. Environ. Public Health 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, A. Role of DNA repair inhibition in lead-and cadmium-induced genotoxicity: A review. Environ. Health Perspect. 1994, 102 (Suppl. 3), 45–50. [Google Scholar]
- Silbergeld, E.K. Facilitative mechanisms of lead as a carcinogen. Mutat. Res. Mol. Mech. Mutagen. 2003, 533, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Gómez, J.; García-Vargas, G.-G.; López-Carrillo, L.; Calderón-Aranda, E.-S.; Gómez, A.; Vera, E.; Valverde, M.; Cebrián, M.E.; Rojas, E. Genotoxic effects of environmental exposure to arsenic and lead on children in region lagunera, Mexico. Ann. N. Y. Acad. Sci. 2008, 1140, 358–367. [Google Scholar] [CrossRef]
- Li, P.; Rossman, T.G. Genes upregulated in lead-resistant glioma cells reveal possible targets for lead-induced developmental neurotoxicity. Toxicol. Sci. 2001, 64, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Flora, S.J. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 2011, 51, 257–281. [Google Scholar] [CrossRef]
- Hsu, J.M. Lead toxicity as related to glutathione metabolism. J. Nutr. 1981, 111, 26–33. [Google Scholar] [CrossRef] [PubMed]
- McGowan, C.; Donaldson, W.E. Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks. Biol. Trace Elem. Res. 1986, 10, 37–46. [Google Scholar] [CrossRef]
- Chiba, M.; Shinohara, A.; Matsushita, K.; Watanabe, H.; Inaba, Y. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. Tohoku J. Exp. Med. 1996, 178, 49–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, M.; Cooper, J.B.; Wood, S.P.; Shoolingin-Jordan, P.M. Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem. Sci. 1998, 23, 217–221. [Google Scholar] [CrossRef]
- Douki, T.; Onuki, J.; Medeiros, M.H.G.; Bechara, E.J.H.; Cadet, J.; Di Mascio, P. DNA alkylation by 4,5-dioxovaleric acid, the final oxidation product of 5-aminolevulinic acid. Chem. Res. Toxicol. 1998, 11, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2′ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health Part C 2009, 27, 120–139. [Google Scholar] [CrossRef] [Green Version]
- Alsaad, A.M.; Al-Arifi, M.N.; Maayah, Z.H.; Attafi, I.M.; Alanazi, F.E.; Belali, O.M.; Alhoshani, A.; Asiri, Y.A.; Korashy, H.M. Genotoxic impact of long-term cigarette and waterpipe smoking on DNA damage and oxidative stress in healthy subjects. Toxicol. Mech. Methods 2019, 29, 119–127. [Google Scholar] [CrossRef]
- Cui, X.; Ohtsu, M.; Mise, N.; Ikegami, A.; Mizuno, A.; Sakamoto, T.; Ogawa, M.; Machida, M.; Kayama, F. Heavy metal exposure, in combination with physical activity and aging, is related with oxidative stress in Japanese women from a rural agricultural community. Springer Plus 2016, 5, 885. [Google Scholar] [CrossRef] [Green Version]
- Karakaya, A.E.; Ozcagli, E.; Ertas, N.; Sardas, S. Assessment of abnormal DNA repair responses and genotoxic effects in lead exposed workers. Am. J. Ind. Med. 2005, 47, 358–363. [Google Scholar] [CrossRef]
- Jannuzzi, A.T.; Alpertunga, B. Evaluation of DNA damage and DNA repair capacity in occupationally lead-exposed workers. Toxicol. Ind. Health 2016, 32, 1859–1865. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Shi, W.; Shi, W.; Liu, H.; Wu, X. Lead induces genotoxicity via oxidative stress and promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells. Med. Sci. Monit. 2018, 24, 4295–4304. [Google Scholar] [CrossRef] [PubMed]
- Lyu, G.; Li, D.; Li, S.; Ning, C.; Qin, R. Genotoxic effects and proteomic analysis on Allium cepa var. agrogarum L. root cells under Pb stress. Ecotoxicology 2020, 29, 959–972. [Google Scholar] [CrossRef]
- Abdullah, M.; Rahman, F.A.; Gnanasegaran, N.; Govindasamy, V.; Abu Kasim, N.H.; Musa, S. Diverse effects of lead nitrate on the proliferation, differentiation, and gene expression of stem cells isolated from a dental origin. Sci. World J. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.T.; Tzeng, D.W.; Wang, C.Y.; Hong, J.Y.; Yang, J.L. APE1/Ref-1 prevents oxidative inactivation of ERK for G1-to-S progression following lead acetate exposure. Toxicology 2013, 305, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Akram, Z.; Riaz, S.; Kayani, M.A.; Jahan, S.; Ahmad, M.W.; Ullah, M.A.; Wazir, H.; Mahjabeen, I. Lead induces DNA damage and alteration of ALAD and antioxidant genes mRNA expression in construction site workers. Arch. Environ. Occup. Health 2019, 74, 171–178. [Google Scholar] [CrossRef]
- Singh, P.; Mitra, P.; Goyal, T.; Sharma, S.; Sharma, P. Evaluation of DNA Damage and Expressions of DNA Repair Gene in Occupationally Lead Exposed Workers (Jodhpur, India). Biol. Trace Element Res. 2021, 199, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Al Bakheet, S.A.; Attafi, I.M.; Maayah, Z.H.; Abd-Allah, A.; Asiri, Y.A.; Korashy, H.M. Effect of long-term human exposure to environmental heavy metals on the expression of detoxification and DNA repair genes. Environ. Pollut. 2013, 181, 226–232. [Google Scholar] [CrossRef]
- Danadevi, K.; Rozati, R.; Banu, B.S.; Rao, P.H.; Grover, P. DNA damage in workers exposed to lead using comet assay. Toxicology 2003, 187, 183–193. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Liu, H.; Huang, Q.; Wang, M.; Lei, Y. Cadmium induced cell apoptosis, DNA damage, decreased DNA repair capacity, and genomic instability during malignant transformation of human bronchial epithelial cells. Int. J. Med. Sci. 2013, 10, 1485–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Lu, Q.; Shao, C.; He, C.; Lei, Z.; Lian, Y. Expression profiles of DNA repair-related genes in rat target organs under subchronic cadmium exposure. Genet. Mol. Res. 2015, 14, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Rojas, E.; Martínez-Pacheco, M.; Rodríguez-Sastre, M.A.; Valverde, M. As-Cd-Pb mixture induces cellular transformation via post-transcriptional regulation of Rad51c by miR-222. Cell. Physiol. Biochem. 2019, 53, 910–920. [Google Scholar] [PubMed]
- Singh, P.; Mitra, P.; Goyal, T.; Sharma, S.; Sharma, P. Blood lead and cadmium levels in occupationally exposed workers and their effect on markers of DNA damage and repair. Environ. Geochem. Health 2021, 43, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Bitto, A.; Interdonato, M.; Galfo, F.; Irrera, N.; Mecchio, A.; Pallio, G.; Ramistella, V.; De Luca, F.; Minutoli, L.; et al. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biol. 2014, 2, 686–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Liao, W.; Lin, Y.; Dai, Y.; Shi, Z.; Huo, X. Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. Environ. Geochem. Health 2017, 40, 1481–1494. [Google Scholar] [CrossRef]
- Restrepo, H.G.; Sicard, D.; Torres, M.M. DNA damage and repair in cells of lead exposed people. Am. J. Ind. Med. 2000, 38, 330–334. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemmaphan, S.; Bordeerat, N.K. Genotoxic Effects of Lead and Their Impact on the Expression of DNA Repair Genes. Int. J. Environ. Res. Public Health 2022, 19, 4307. https://doi.org/10.3390/ijerph19074307
Hemmaphan S, Bordeerat NK. Genotoxic Effects of Lead and Their Impact on the Expression of DNA Repair Genes. International Journal of Environmental Research and Public Health. 2022; 19(7):4307. https://doi.org/10.3390/ijerph19074307
Chicago/Turabian StyleHemmaphan, Sirirak, and Narisa K. Bordeerat. 2022. "Genotoxic Effects of Lead and Their Impact on the Expression of DNA Repair Genes" International Journal of Environmental Research and Public Health 19, no. 7: 4307. https://doi.org/10.3390/ijerph19074307
APA StyleHemmaphan, S., & Bordeerat, N. K. (2022). Genotoxic Effects of Lead and Their Impact on the Expression of DNA Repair Genes. International Journal of Environmental Research and Public Health, 19(7), 4307. https://doi.org/10.3390/ijerph19074307