Chronic Effects of Foam Rolling on Flexibility and Performance: A Systematic Review of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Quality Check
2.4. Characteristics of Studies
3. Results
3.1. Quality Appraisal
3.2. Sample Population
3.3. Intervention
3.4. Control
3.5. Effects of FR on Flexibility
3.6. Effects of FR on Performance
3.7. Effects of FR on Recovery
4. Discussion
4.1. Effects of Foam Rolling on Flexibility
4.2. Effects of Foam Rolling on Performance
Effects of FR on Recovery
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konrad, A.; Tilp, M.; Nakamura, M. A Comparison of the Effects of Foam Rolling and Stretching on Physical Performance. A Systematic Review and Meta-Analysis. Front. Physiol. 2021, 12, 720531. [Google Scholar] [CrossRef] [PubMed]
- Wiewelhove, T.; Döweling, A.; Schneider, C.; Hottenrott, L.; Meyer, T.; Kellmann, M.; Pfeiffer, M.; Ferrauti, A. A meta-analysis of the effects of foam rolling on performance and recovery. Front. Physiol. 2019, 10, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behm, D.G.; Alizadeh, S.; Anvar, S.H.; Mahmoud, M.M.I.; Ramsay, E.; Hanlon, C.; Cheatham, S. Foam rolling prescription: A clinical commentary. J. Strength Cond. Res. 2020, 34, 3301–3308. [Google Scholar] [CrossRef] [PubMed]
- Wilke, J.; Müller, A.-L.; Giesche, F.; Power, G.; Ahmedi, H.; Behm, D.G. Acute effects of foam rolling on range of motion in healthy adults: A systematic review with multilevel meta-analysis. Sports Med. 2020, 50, 387–402. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.; Sanchotene, C.G.; da Silva Lopes, C.M.; Beck, J.A.; da Silva, A.C.K.; Pereira, S.M.; Ruschel, C. Acute effect of 2 self-myofascial release protocols on hip and ankle range of motion. J. Sport Rehabil. 2019, 28, 159–164. [Google Scholar] [CrossRef]
- Aboodarda, S.J.; Greene, R.M.; Philpott, D.T.; Jaswal, R.S.; Millet, G.Y.; Behm, D.G. The effect of rolling massage on the excitability of the corticospinal pathway. Appl. Physiol. Nutr. Metab. 2018, 43, 317–323. [Google Scholar] [CrossRef]
- Cavanaugh, M.T.; Döweling, A.; Young, J.D.; Quigley, P.J.; Hodgson, D.D.; Whitten, J.H.; Reid, J.C.; Aboodarda, S.J.; Behm, D.G. An acute session of roller massage prolongs voluntary torque development and diminishes evoked pain. Eur. J. Appl. Physiol. 2017, 117, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Acute effects of self-myofascial release using a foam roller on arterial function. J. Strength Cond. Res. 2014, 28, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearcey, G.E.; Bradbury-Squires, D.J.; Kawamoto, J.-E.; Drinkwater, E.J.; Behm, D.G.; Button, D.C. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J. Athl. Train. 2015, 50, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janot, J.; Malin, B.; Cook, R.; Hagenbucher, J.; Draeger, A.; Jordan, M.; Quinn, E. Effects of self myofascial release and static stretching on anaerobic power output. J. Fit. Res. 2013, 2, 41–54. [Google Scholar]
- MacDonald, G.Z. Foam Rolling as a Recovery Tool Following an Intense Bout of Physical Activity; Memorial University of Newfoundland: St. John’s, NL, Canada, 2013. [Google Scholar]
- Soares, R.N.; Inglis, E.C.; Khoshreza, R.; Murias, J.M.; Aboodarda, S.J. Rolling massage acutely improves skeletal muscle oxygenation and parameters associated with microvascular reactivity: The first evidence-based study. Microvasc. Res. 2020, 132, 104063. [Google Scholar] [CrossRef] [PubMed]
- Weerapong, P.; Hume, P.A.; Kolt, G.S. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 2005, 35, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, C.; Skarabot, J. Effects of self-myofascial release: A systematic review. J. Bodyw. Mov. 2015, 19, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, S.W.; Kolber, M.J.; Cain, M.; Lee, M. The Effects of Self-Myofascial Release Using a Foam Roll or Roller Massager on Joint Range of Motion, Muscle Recovery, and Performance: A Systematic Review. Int. J. Sports Phys. 2015, 10, 827–838. [Google Scholar]
- Hendricks, S.; den Hollander, S.; Lombard, W.; Parker, R. Effects of foam rolling on performance and recovery: A systematic review of the literature to guide practitioners on the use of foam rolling. J. Bodyw. Mov. Ther. 2020, 24, 151–174. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.N.; Best, T.M. Is self myofascial release an effective preexercise and recovery strategy? A literature review. Curr. Sports Med. Rep. 2015, 14, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Skinner, B.; Moss, R.; Hammond, L. A systematic review and meta-analysis of the effects of foam rolling on range of motion, recovery and markers of athletic performance. J. Bodyw. Mov. Ther. 2020, 24, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, A.A.; Bishop, C.; Turner, A.N.; Papadopoulos, K.; Budd, S.; Richardson, M.; Maloney, S.J. Acute and chronic effects of foam rolling vs eccentric exercise on ROM and force output of the plantar flexors. J. Sports Sci. 2019, 37, 138–145. [Google Scholar] [CrossRef]
- Guillot, A.; Kerautret, Y.; Queyrel, F.; Schobb, W.; Di Rienzo, F. Foam rolling and joint distraction with elastic band training performed for 5–7 weeks respectively improve lower limb flexibility. J. Sports Sci. Med. 2019, 18, 160. [Google Scholar] [PubMed]
- Hodgson, D.D.; Lima, C.D.; Low, J.L.; Behm, D.G. Four weeks of roller massage training did not impact range of motion, pain pressure threshold, voluntary contractile properties or jump performance. Int. J. Sports Phys. Ther. 2018, 13, 835. [Google Scholar] [CrossRef]
- Junker, D.; Stöggl, T. The training effects of foam rolling on core strength endurance, balance, muscle performance and range of motion: A randomized controlled trial. J. Sports Sci. Med. 2019, 18, 229. [Google Scholar] [PubMed]
- Junker, D.H.; Stöggl, T.L. The foam roll as a tool to improve hamstring flexibility. J. Strength Cond. Res. 2015, 29, 3480–3485. [Google Scholar] [CrossRef] [PubMed]
- Kiyono, R.; Onuma, R.; Yasaka, K.; Sato, S.; Yahata, K.; Nakamura, M. Effects of 5-Week Foam Rolling Intervention on Range of Motion and Muscle Stiffness. J. Strength Cond. Res. 2020. [CrossRef] [PubMed]
- Morton, R.W.; Oikawa, S.Y.; Phillips, S.M.; Devries, M.C.; Mitchell, C.J. Self–myofascial release: No improvement of functional outcomes in “tight” hamstrings. Int. J. Sports Physiol. Perform. 2016, 11, 658–663. [Google Scholar] [CrossRef]
- Smith, J.C.; Washell, B.R.; Aini, M.F.; Brown, S.; Hall, M.C. Effects of static stretching and foam rolling on ankle dorsiflexion range of motion. Med. Sci. Sports Exerc. 2019, 51, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Ikutomo, H.; Nagai, K.; Tagomori, K.; Miura, N.; Okamura, K.; Okuno, T.; Nakagawa, N.; Masuhara, K. Effects of foam rolling on hip pain in patients with hip osteoarthritis: A retrospective propensity-matched cohort study. Physiother. Theory Pract. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Young, J.D.; Spence, A.-J.; Behm, D.G. Roller massage decreases spinal excitability to the soleus. J. Appl. Physiol. 2018, 124, 950–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Konrad, A.; Kiyono, R.; Sato, S.; Yahata, K.; Yoshida, R.; Yasaka, K.; Murakami, Y.; Sanuki, F.; Wilke, J. Local and Non-local Effects of Foam Rolling on Passive Soft Tissue Properties and Spinal Excitability. Front. Physiol. 2021, 12, 702042. [Google Scholar] [CrossRef]
- Behm, D.G.; Wilke, J. Do Self-Myofascial Release Devices Release Myofascia? Rolling Mechanisms: A Narrative Review. Sports Med. 2019, 49, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Hedley, G. Notes on visceral adhesions as fascial pathology. J. Bodyw. Mov. 2010, 14, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Mine, K.; Lei, D.; Nakayama, T. Is Pre-Performance Massage Effective to Improve Maximal Muscle Strength and Functional Performance? A Systematic Review. Int. J. Sports Phys. Ther. 2018, 13, 789. [Google Scholar] [CrossRef] [PubMed]
Study | Item | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total | |
Aune et al. 2018 [20] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Guillot et al. 2019 [21] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Hodgson et al. 2018 [22] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Ikutomo et al. 2020 [28] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Junker & Stöggl, 2015 [24] | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Junker & Stöggl, 2019 [23] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Kiyono et al. 2020 [25] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Morton et al. 2016 [26] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Smith et al. 2019 [27] | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Author | Participants | Duration | Protocol | Measures | Result | ||||
---|---|---|---|---|---|---|---|---|---|
FR | CON | Flexibility | Performance | Flexibility | Performance | ||||
Aune et al. 2018 [20] | 23 male and female top-division soccer players | 4 weeks | daily FR on gastrocnemius (3 × 60 s) | daily single-leg heel drop exercise (3 × 15 repetitions) | DFROM | maximal isometric plantar flexion torque drop RSI | DFROM: FR ↔ CON | plantar flexion torque: FR ↔ CON drop RSI: FR ↔ CON | |
Guillot et al. 2019 [21] | 30 male professional rugby players | 6 weeks | FR20: unilateral FR for hip extensors, hip adductors, knee extensors, and plantar flexors (1 × 20 s for 15 sessions) FR40: same FR intervention with FR20 but executed for 1 × 40 s | cycling task at 50% Vo2Max | side split active flexed/straight leg raise hip extension | not available | All dependent variables: FR20 > CON FR40 > CON | not available | |
CON–control group; Vo2Max–maximal oxygen consumption; DFROM–dorsiflexion range of motion; RSI–reactive strength index. | |||||||||
Author | Participants | Duration | Protocol | Measures | Result | ||||
FR | CON | Flexibility | Performance | Flexibility | Performance | ||||
Hodgson et al. 2018 [22] | 23 recreationally -active males and females | 4 weeks | FR3: 3 days/week of alternating FR for quadriceps and hamstrings for 4 × 30 s FR6: same FR protocol with FR3 but performed for 6 days/week | regular training routine | active and passive hip flexion ROM | neuromuscular efficiency during a lunge single leg CMJ knee flexor and extensor MVIC pain pressure threshold of biceps femoris and rectus femoris | active and passive hip flexion ROM: FR3 ↔ CON FR6 ↔ CON | all dependent variables: FR3 ↔ CON FR6 ↔ CON | |
Ikutomo et al. 2020 [28] | 74 male and female patients with osteoarthritis | 11–12 weeks | home exercise program with 10-min FR for gluteus, hamstrings, and quadriceps of the affected leg | home exercise program | not available | hip pain VAS Haris Hip Score JHEQ | not available | hip pain VAS: FR < CON Haris Hip Score and JHEQ: FR > CON | |
Junker & Stöggl 2015 [24] | 26 recreationally- active males | 4 weeks | 3 days/week of 3 × 30–40 s hamstring FR for both limbs | regular training routine | Stand-and- Reach Test | not available | Stand-and-Reach Test | Stand-and -Reach Test: FR > CON | |
MVIC–maximal voluntary isometric contraction; VAS–visual analog scale; JHEQ–Japanese Orthopedic Association Hip Disease Evaluation Questionnaire. | |||||||||
Author | Participants | Duration | Protocol | Measures | Result | ||||
FR | CON | Flexibility | Performance | Flexibility | Performance | ||||
Junker & Stöggl 2015 [23] | 25 recreationally- active males and females | 8 weeks | Twice a week, unilateral/bilateral FR for gluteus, quadriceps, hamstrings, illiotibial band, and calf muscles (3 × 30–50 s) | regular training routine | Stand-and-Reach Test | Bourban Trunk Muscle Test standing long jump single leg, triple hop for distance Y-Balance Test knee flexor and extensor MVIC | Stand-and-Reach Test: FR > CON | all dependent variables: FR ↔ CON | |
Kiyono et al. 2020 [25] | 30 healthy males and females | 5 weeks | thrice a week, unilateral FR for gastrocnemius (3 × 30 s) | regular training routine | DFROM | DFROM passive torque Haris Hip Score JHEQ muscle stiffness | not available | Haris Hip Score and JHEQ: FR > CON DFROM passive torque and muscle stiffness: FR6 ↔ CON | |
Author | Participants | Duration | Protocol | Measures | Result | ||||
FR | CON | Flexibility | Performance | Flexibility | Performance | ||||
Morton et al. 2016 [26] | 20 recreationally- active males | 4 weeks | once a day, bilateral FR for hamstrings (4 × 60 s) followed by static stretching of hamstrings (4 × 45 s), | once a day static stretching of hamstrings (4 × 45 s) | passive knee extension ROM | knee extensor MVIC | Passive knee extension ROM: FR ↔ CON | knee extensor MVIC: FR ↔ CON | |
Smith et al. 2019 [27] | 44 male and female university students | 6 weeks | FR: twice a week, unilateral FR for gastrocnemius (3 × 30 s) FR + SS: FR with twice a week, static stretching for gastrocnemius (3 × 30 s) | Twice a week, static stretching for gastrocnemius (3 × 30 s) | DFROM | not available | DFROM: FR ↔ CON FR + SS ↔ CON | not available |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagaduan, J.C.; Chang, S.-Y.; Chang, N.-J. Chronic Effects of Foam Rolling on Flexibility and Performance: A Systematic Review of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 4315. https://doi.org/10.3390/ijerph19074315
Pagaduan JC, Chang S-Y, Chang N-J. Chronic Effects of Foam Rolling on Flexibility and Performance: A Systematic Review of Randomized Controlled Trials. International Journal of Environmental Research and Public Health. 2022; 19(7):4315. https://doi.org/10.3390/ijerph19074315
Chicago/Turabian StylePagaduan, Jeffrey Cayaban, Sheng-Yuan Chang, and Nai-Jen Chang. 2022. "Chronic Effects of Foam Rolling on Flexibility and Performance: A Systematic Review of Randomized Controlled Trials" International Journal of Environmental Research and Public Health 19, no. 7: 4315. https://doi.org/10.3390/ijerph19074315
APA StylePagaduan, J. C., Chang, S. -Y., & Chang, N. -J. (2022). Chronic Effects of Foam Rolling on Flexibility and Performance: A Systematic Review of Randomized Controlled Trials. International Journal of Environmental Research and Public Health, 19(7), 4315. https://doi.org/10.3390/ijerph19074315