A Scoping Review of Galectin-3 as a Biomarker of Cardiovascular Diseases in Pediatric Populations
Abstract
:1. Introduction
1.1. Galectin-3—General Information
1.2. Galectin-3 in Pediatrics
1.3. Galectin-3 in Pediatric Cardiology
2. The Aim
3. Methods
4. Results
4.1. Heart Failure
4.2. Kawasaki Disease
4.3. Congenital Heart Diseases Treated Surgically
4.4. Arrhythmia
5. Discussion
6. Conclusions
Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argüeso, P.; Panjwani, N. Focus on Molecules: Galectin-3. Exp. Eye Res. 2011, 92, 2–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimond, J.; Zimonjic, D.B.; Mignon, C.; Mattei, M.G.; Popescu, N.C.; Monsigny, M.; Legrand, A. Mapping of the galectin-3 gene (LGALS3) to human Chromosome 14 at region 14q21-22. Mamm. Genome 1997, 8, 706–707. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Gray, R.M.; Haudek, K.; Patterson, R.J. Nucleocytoplasmic lectins. Biochim. Biophys. Acta (BBA) Gen. Subj. 2004, 1673, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Moutsatsos, I.K.; Davis, J.M.; Wang, J.L. Endogenous lectins from cultured cells: Subcellular localization of carbohydrate-binding protein 35 in 3T3 fibroblasts. J. Cell Biol. 1986, 102, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moutsatsos, I.K.; Wade, M.; Schindler, M.; Wang, J.L. Endogenous lectins from cultured cells: Nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts. Proc. Natl. Acad. Sci. USA 1987, 84, 6452–6456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotan, R.; Belloni, P.N.; Tressler, R.J.; Lotan, D.; Xu, X.-C.; Nicolson, G.L. Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconj. J. 1994, 11, 462–468. [Google Scholar] [CrossRef]
- Dumic, J.; Dabelic, S.; Flögel, M. Galectin-3: An open-ended story. Biochim. Biophys. Acta (BBA) Gen. Subj. 2006, 1760, 616–635. [Google Scholar] [CrossRef]
- Güneş, A.; Uluca, Ü.; Şen, V.; Ece, A.; Tan, I.; Karabel, D.; Aktar, F.; Karabel, M.; Balık, H. Serum Galectin-3 Levels in Children with Chronic Hepatitis B Infection and Inactive Hepatitis B Carriers. Med. Sci. Monit. 2015, 21, 1376–1380. [Google Scholar] [CrossRef] [Green Version]
- Borges, C.B.; Bernardes, E.S.; Latorraca, É.F.; Becker, A.P.; Neder, L.; Chammas, R.; Roque-Barreira, M.C.; Machado, H.R.; de Oliveira, R.S. Galectin-3 expression: A useful tool in the differential diagnosis of posterior fossa tumors in children. Child’s Nerv. Syst. 2011, 27, 253–257. [Google Scholar] [CrossRef]
- Ostalska-Nowicka, D.; Nowicki, M.; Kondraciuk, B.; Partyka, M.; Samulak, D.; Witt, M. Expression of galectin-3 in nephrotic syndrome glomerulopaties in children. Folia Histochem. Cytobiol. 2009, 47, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Jing, J.; Peng, J.; Mao, W.; Zheng, Y.; Wang, D.; Wang, X.; Liu, Z.; Zhang, X. Expression and clinical significance of galectin-3 in osteosarcoma. Gene 2014, 546, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, M.H.M.; El-Gammasy, T.M.A.; Shaheen, K.Y.A.; Osman, A.O.Y. Elevated production of galectin-3 is correlated with juvenile idiopathic arthritis disease activity, severity, and progression. Int. J. Rheum. Dis. 2011, 14, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Mendonca Belmont, T.F.; do, O.K.; Soares da Silva, A.; de Melo Vilar, K.; Silva Medeiros, F.; Silva Vasconcelos, L.R.; dos Anjos, A.C.M.; Domingues Hatzlhofer, B.L.; da Rocha Pitta, M.G.; Cavalcanti Bezerra, M.A.; et al. Single Nucleotide Polymorphisms at +191 and +292 of Galectin-3 Gene (LGALS3) Related to Lower GAL-3 Serum Levels Are Associated with Frequent Respiratory Tract Infection and Vaso-Occlusive Crisis in Children with Sickle Cell Anemia. PLoS ONE 2016, 11, e0162297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagdy, R.; Suliman, H.; Bamashmose, B.; Aidaroos, A.; Haneef, Z.; Samonti, A.; Awn, F. Subclinical myocardial injury during vaso-occlusive crisis in pediatric sickle cell disease. Eur. J. Pediatr. 2018, 177, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Skiendzielewski, J.; Werner, B. Utility of B-type natriuretic peptide in pediatric cardiology and in children without cardiovascular diseases. Nowa Pediatr. 2016, 2, 53–56. [Google Scholar]
- Caselli, C.; Cangemi, G.; Masotti, S.; Ragusa, R.; Gennai, I.; Del Ry, S.; Prontera, C.; Clerico, A. Plasma cardiac troponin I concentrations in healthy neonates, children and adolescents measured with a high sensitive immunoassay method: High sensitive troponin I in pediatric age. Clin. Chim. Acta 2016, 458, 68–71. [Google Scholar] [CrossRef]
- Meeusen, J.W.; Johnson, J.N.; Gray, A.; Wendt, P.; Jefferies, J.L.; Jaffe, A.S.; Donato, L.J.; Saenger, A.K. Soluble ST2 and galectin-3 in pediatric patients without heart failure. Clin. Biochem. 2015, 48, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Caselli, C.; Ragusa, R.; Prontera, C.; Cabiati, M.; Cantinotti, M.; Federico, G.; Del Ry, S.; Trivella, M.G.; Clerico, A. Distribution of circulating cardiac biomarkers in healthy children: From birth through adulthood. Biomarkers Med. 2016, 10, 357–365. [Google Scholar] [CrossRef]
- Kotby, A.A.; Youssef, O.I.; Elmaraghy, M.O.; El Sharkawy, O.S. Galectin-3 in Children with Chronic Heart Failure with Normal and Reduced Ejection Fraction: Relationship to Disease Severity. Pediatr. Cardiol. 2017, 38, 95–102. [Google Scholar] [CrossRef]
- Layla, A. Mohammed, H.S.G.; Hussien Neama, R. Galectin-3 as Early Detector of Heart Failure in Children with Congenital Acyanotic Heart Disease. Clin. Med. Diagn. 2014, 4, 90–98. [Google Scholar]
- Saleh, N.; Khattab, A.; Rizk, M.; Salem, S.; Abo-Haded, H. Value of Galectin-3 assay in children with heart failure secondary to congenital heart diseases: A prospective study. BMC Pediatr. 2020, 20, 537. [Google Scholar] [CrossRef] [PubMed]
- Elhewala, A.A.; Ibrahem, M.M.; Hafez, E.S. Galectin-3 as a biomarker of heart failure in children with congenital heart disease. Egypt. J. Hosp. Med. 2020, 80, 1008–1013. [Google Scholar] [CrossRef]
- Woulfe, K.C.; Siomos, A.K.; Nguyen, H.; SooHoo, M.; Galambos, C.; Stauffer, B.L.; Sucharov, C.; Miyamoto, S. Fibrosis and Fibrotic Gene Expression in Pediatric and Adult Patients With Idiopathic Dilated Cardiomyopathy. J. Card. Fail. 2017, 23, 314–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numano, F.; Shimizu, C.; Jimenez-Fernandez, S.; Vejar, M.; Oharaseki, T.; Takahashi, K.; Salgado, A.; Tremoulet, A.H.; Gordon, J.B.; Burns, J.C.; et al. Galectin-3 is a marker of myocardial and vascular fibrosis in Kawasaki disease patients with giant aneurysms. Int. J. Cardiol. 2015, 201, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.M.; Everett, A.D.; Stabler, M.E.; Vricella, L.; Jacobs, M.L.; Jacobs, J.P.; Parikh, C.R.; Pasquali, S.K.; Brown, J.R. Novel Biomarkers Improve Prediction of 365-Day Readmission After Pediatric Congenital Heart Surgery. Ann. Thorac. Surg. 2020, 109, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.H.; Parsons, M.; Zappitelli, M.; Jia, Y.; Thiessen-Philbrook, H.R.; Devarajan, P.; Everett, A.D.; Parikh, C.R. Cardiac Biomarkers for Risk Stratification of Acute Kidney Injury after Pediatric Cardiac Surgery. Ann. Thorac. Surg. 2021, 111, 191–198. [Google Scholar] [CrossRef]
- Parsons, M.; Greenberg, J.; Parikh, C.; Brown, J.; Parker, D.; Zhu, J.; Vricella, L.; Everett, A.D. Post-operative acute kidney injury is associated with a biomarker of acute brain injury after paediatric cardiac surgery. Cardiol. Young 2020, 30, 505–510. [Google Scholar] [CrossRef]
- Frank, B.S.; Urban, T.T.; Lewis, K.; Tong, S.; Cassidy, C.; Mitchell, M.B.; Nichols, C.S.; Davidson, J. Circulating biomarkers of left ventricular hypertrophy in pediatric coarctation of the aorta. Congenit. Hear. Dis. 2019, 14, 446–453. [Google Scholar] [CrossRef]
- Zegelbone, P.M.; Ringel, R.E.; Coulson, J.D.; Nies, M.K.; Stabler, M.E.; Brown, J.R.; Everett, A.D. Heart failure biomarker levels correlate with invasive haemodynamics in pulmonary valve replacement. Cardiol. Young 2020, 30, 50–54. [Google Scholar] [CrossRef]
- van den Bosch, E.; Bossers, S.S.M.; Kamphuis, V.P.; Boersma, E.; Roos-Hesselink, J.W.; Breur, J.; Ten Harkel, A.D.; Kapusta, L.; Bartelds, B.; Roest, A.A.; et al. Associations Between Blood Biomarkers, Cardiac Function, and Adverse Outcome in a Young Fontan Cohort. J. Am. Heart Assoc. 2021, 10, e015022. [Google Scholar] [CrossRef]
- Pietrzak, R.; Książczyk, T.; Górska, E.; Małek, L.A.; Werner, B. Evaluation of Galectin-3 Plasma Concentration in Adolescents with Ventricular Arrhythmia. Int. J. Environ. Res. Public Health 2021, 18, 2410. [Google Scholar] [CrossRef] [PubMed]
- Beyhoff, N.; Lohr, D.; Foryst-Ludwig, A.; Klopfleisch, R.; Brix, S.; Grune, J.; Thiele, A.; Erfinanda, L.; Tabuchi, A.; Kuebler, W.M.; et al. Characterization of Myocardial Microstructure and Function in an Experimental Model of Isolated Subendocardial Damage. Hypertension 2019, 74, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Sánchez, F.J.; Aramburu-Bodas, O.; Salamanca-Bautista, P.; Morales-Rull, J.L.; Galisteo-Almeda, L.; Páez-Rubio, M.I.; Arias-Jiménez, J.L.; Aguayo-Canela, M.; Pérez-Calvo, J.I. Predictive value of serum galectin-3 levels in patients with acute heart failure with preserved ejection fraction. Int. J. Cardiol. 2013, 169, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Meijers, W.C.; Januzzi, J.L.; Defilippi, C.; Adourian, A.S.; Shah, S.J.; van Veldhuisen, D.J.; de Boer, R.A. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: A pooled analysis of 3 clinical trials. Am. Heart J. 2014, 167, 853–860.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, C.J.; Gallagher, J.; Wilkinson, M.; Russell-Hallinan, A.; Tea, I.; James, S.; O’Reilly, J.; O’Connell, E.; Zhou, S.; Ledwidge, M.; et al. Biomarker profiling for risk of future heart failure (HFpEF) development. J. Transl. Med. 2021, 19, 61. [Google Scholar] [CrossRef]
- Srivatsan, V.; George, M.; Shanmugam, E. Utility of galectin-3 as a prognostic biomarker in heart failure: Where do we stand? Eur. J. Prev. Cardiol. 2015, 22, 1096–1110. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Yao, Y.; Shen, D.; Chen, R.; Ying, C.; Wang, C.; Guo, J.; Zhang, G. Galectin-3 Predicts Left Ventricular Remodeling of Hypertension. J. Clin. Hypertens. 2016, 18, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Karatolios, K.; Chatzis, G.; Holzendorf, V.; Störk, S.; Richter, A.; Binas, D.; Schieffer, B.; Pankuweit, S. Galectin-3 as a Predictor of Left Ventricular Reverse Remodeling in Recent-Onset Dilated Cardiomyopathy. Dis. Markers 2018, 2018, 2958219. [Google Scholar] [CrossRef] [Green Version]
- Opotowsky, A.R.; Baraona, F.; Owumi, J.; Loukas, B.; Singh, M.N.; Valente, A.M.; Wu, F.; Cheng, S.; Veldtman, G.; Rimm, E.B.; et al. Galectin-3 Is Elevated and Associated With Adverse Outcomes in Patients With Single-Ventricle Fontan Circulation. J. Am. Heart Assoc. 2016, 5, e002706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frogoudaki, A.A.; Pantelakis, I.; Bistola, V.; Kroupis, C.; Birba, D.; Ikonomidis, I.; Alexopoulos, D.; Filippatos, G.; Parissis, J. Global Longitudinal Strain of the Systemic Ventricle Is Correlated with Plasma Galectin-3 and Predicts Major Cardiovascular Events in Adult Patients with Congenital Heart Disease. Medicina 2020, 56, 305. [Google Scholar] [CrossRef] [PubMed]
- Geenen, L.; van Grootel, R.W.J.; Akman, K.; Baggen, V.J.M.; Menting, M.E.; Eindhoven, J.A.; Cuypers, J.A.A.E.; Boersma, E.; Bosch, A.E.V.D.; Roos-Hesselink, J.W. Exploring the Prognostic Value of Novel Markers in Adults With a Systemic Right Ventricle. J. Am. Heart Assoc. 2019, 8, e013745. [Google Scholar] [CrossRef]
- Oz, F.; Onur, I.; Elitok, A.; Ademoglu, E.; Altun, I.; Bilge, A.K.; Adalet, K. Galectin-3 correlates with arrhythmogenic right ventricular cardiomyopathy and predicts the risk of ventricular arrhythmias in patients with implantable defibrillators. Acta Cardiol. 2017, 72, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Geenen, L.W.; de Assis, L.U.; Baggen, V.J.; Eindhoven, J.A.; Cuypers, J.; Boersma, E.; Roos-Hesselink, J.W.; Bosch, A.E.V.D. Evolution of blood biomarker levels following percutaneous atrial septal defect closure in adults. Int. J. Cardiol. Heart Vasc. 2020, 30, 100582. [Google Scholar] [CrossRef]
- Kowalik, E.; Kuśmierczyk-Droszcz, B.; Klisiewicz, A.; Wróbel, A.; Lutyńska, A.; Gawor, M.; Niewiadomska, J.; Lipczyńska, M.; Biernacka, E.K.; Grzybowski, J.; et al. Galectin-3 plasma levels in adult congenital heart disease and the pressure overloaded right ventricle: Reason matters. Biomark. Med. 2020, 14, 1197–1205. [Google Scholar] [CrossRef]
- Fenster, B.E.; Lasalvia, L.; Schroeder, J.D.; Smyser, J.; Silveira, L.J.; Buckner, J.K.; Brown, K.K. Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension. Heart Vessel. 2016, 31, 939–946. [Google Scholar] [CrossRef]
- Pattathu, J.; Gorenflo, M.; Hilgendorff, A.; Koskenvuo, J.W.; Apitz, C.; Hansmann, G.; Alastalo, T.P. Genetic testing and blood biomarkers in paediatric pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 2016, 102 (Suppl. S2), ii36–ii41. [Google Scholar]
- Takemoto, Y.; Ramirez, R.J.; Yokokawa, M.; Kaur, K.; Ponce-Balbuena, D.; Sinno, M.C.; Willis, B.C.; Ghanbari, H.; Ennis, S.R.; Guerrero-Serna, G.; et al. Galectin-3 Regulates Atrial Fibrillation Remodeling and Predicts Catheter Ablation Outcomes. JACC Basic Transl. Sci. 2016, 1, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Gurses, K.M.; Yalcin, M.U.; Kocyigit, D.; Canpinar, H.; Evranos, B.; Yorgun, H.; Sahiner, M.L.; Kaya, E.B.; Ozer, N.; Tokgozoglu, L.; et al. Effects of Persistent Atrial Fibrillation on Serum Galectin-3 Levels. Am. J. Cardiol. 2015, 115, 647–651. [Google Scholar] [CrossRef]
- Kornej, J.; Schmidl, J.; Ueberham, L.; John, S.; Daneschnejad, S.; Dinov, B.; Hindricks, G.; Adams, V.; Husser, D.; Bollmann, A. Galectin-3 in Patients with Atrial Fibrillation Undergoing Radiofrequency Catheter Ablation. PLoS ONE 2015, 10, e0123574. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-Y.; Li, S.-N.; Wen, S.-N.; Nie, J.-G.; Deng, W.-N.; Bai, R.; Liu, N.; Tang, R.-B.; Zhang, T.; Du, X.; et al. Plasma galectin-3 predicts clinical outcomes after catheter ablation in persistent atrial fibrillation patients without structural heart disease. Europace 2015, 17, 1541–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clementy, N.; Benhenda, N.; Piver, E.; Pierre, B.; Bernard, A.; Fauchier, L.; Pages, J.-C.; Babuty, M. Serum Galectin-3 Levels Predict Recurrences after Ablation of Atrial Fibrillation. Sci. Rep. 2016, 6, 34357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, W.R.; Jagu, B.; van den Berg, N.W.E.; Chan Pin Yin, D.; van Straalen, J.P.; de Boer, O.J.; Driessen, A.H.; Neefs, J.; Krul, S.P.; van Boven, W.P.; et al. The change in circulating galectin-3 predicts absence of atrial fibrillation after thoracoscopic surgical ablation. Europace 2017, 20, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, O.; Karaayvaz, E.; Erdogan, T.; Panc, C.; Sarıkaya, R.; Oncul, A.; Bilge, A.K. A new biomarker that predicts ventricular arrhythmia in patients with ischemic dilated cardiomyopathy: Galectin-3. Rev. Port. Cardiol. 2021, 40, 829–835. [Google Scholar] [CrossRef]
- Dencker, M.; Arvidsson, D.; Karlsson, M.K.; Wollmer, P.; Andersen, L.B.; Thorsson, O. Galectin-3 levels relate in children to total body fat, abdominal fat, body fat distribution, and cardiac size. Eur. J. Pediatr. 2018, 177, 461–467. [Google Scholar] [CrossRef] [Green Version]
Reference Publication Year/[Reference Number] | Aim of the Study | Results |
---|---|---|
Mohammed et al., 2014/[20] | G3 for HF prediction in children with CHD |
|
Numano et al., 2015/[24] | G3 in Kawasaki disease (acute and convalescent patients) G3 stained in the myocardium and coronary arterial walls autopsy and cardiac transplant cases |
|
Kotby et al., 2016/[19] | G3 in children with chronic HF G3 correlation to disease severity and progression |
|
Woulfe et al., 2017/[23] | Age-related differences in pathologic fibrosis and selected fibrosis gene expression (i.a. noncoding G3) in children and adults undergoing transplantation owing to end-stage IDC |
|
Frank et al., 2018/[28] | Association between G3 and echocardiographic persistent LV abnormalities at intermediate-term follow-up in patients with CoA undergoing surgical repair |
|
Zegelbone et al., 2019/[29] | Association of G3 and right heart volume/pressure overload from pulmonary valve insufficiency and/or stenosis before pulmonary valve replacement |
|
Elhewala et al., 2020/[22] | G3 in children with CHD |
|
Parker et al., 2020/[25] | G3 association of 365-day readmission or mortality after paediatric congenital heart surgery |
|
Saleh et al., 2020/[21] | G3 in children with HF secondary to CHD and its correlation with mortality in this group |
|
Parsons et al., 2020/[27] | G3 for risk stratification of AKI in children with CHD undergoing cardiac surgery |
|
Greenberg et al., 2021/[26] | G3 for risk stratification of post-operative AKI in children with CHD after cardiac surgery |
|
Pietrzak et al., 2021/[31] | G3 impact on myocardial tissue preservation in adolescents with ventricular arrhythmia |
|
Bosch et al., 2021/[30] | G3 association of cardiac function and adverse outcome in a young Fontan cohort |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smereczyńska-Wierzbicka, E.; Pietrzak, R.; Werner, B. A Scoping Review of Galectin-3 as a Biomarker of Cardiovascular Diseases in Pediatric Populations. Int. J. Environ. Res. Public Health 2022, 19, 4349. https://doi.org/10.3390/ijerph19074349
Smereczyńska-Wierzbicka E, Pietrzak R, Werner B. A Scoping Review of Galectin-3 as a Biomarker of Cardiovascular Diseases in Pediatric Populations. International Journal of Environmental Research and Public Health. 2022; 19(7):4349. https://doi.org/10.3390/ijerph19074349
Chicago/Turabian StyleSmereczyńska-Wierzbicka, Ewa, Radosław Pietrzak, and Bożena Werner. 2022. "A Scoping Review of Galectin-3 as a Biomarker of Cardiovascular Diseases in Pediatric Populations" International Journal of Environmental Research and Public Health 19, no. 7: 4349. https://doi.org/10.3390/ijerph19074349
APA StyleSmereczyńska-Wierzbicka, E., Pietrzak, R., & Werner, B. (2022). A Scoping Review of Galectin-3 as a Biomarker of Cardiovascular Diseases in Pediatric Populations. International Journal of Environmental Research and Public Health, 19(7), 4349. https://doi.org/10.3390/ijerph19074349