Computation of Fetal Kicking in Various Fetal Health Examinations: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Maternal Sensation
4.2. Maternal Wearable Devices
4.3. Cardiotocography (CTG)
4.4. Actograph
4.5. Ultrasound
4.6. Cine-MRI
4.7. Biomechanics of Fetal Lower Limb Movement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadovsky, E.; Yaffe, H. Daily fetal movement recording and fetal prognosis. Obstet. Gynecol. 1973, 41, 845–850. [Google Scholar] [PubMed]
- Efkarpidis, S.; Alexopoulos, E.; Kean, L.; Liu, D.; Fay, T. Case-control study of factors associated with intrauterine fetal deaths. Medscape Gen. Med. 2004, 6, 53. [Google Scholar]
- Leader, L.; Baillie, P.; Van Schalkwyk, D.J. Fetal movements and fetal outcome: A prospective study. Obstet. Gynecol. 1981, 57, 431–436. [Google Scholar] [PubMed]
- Resnik, R. Intrauterine growth restriction. Obstet. Gynecol. 2002, 99, 490–496. [Google Scholar]
- O’sullivan, O.; Stephen, G.; Martindale, E.; Heazell, A.J.J.O.O. Predicting poor perinatal outcome in women who present with decreased fetal movements. J. Obstet. Gynaecol. 2009, 29, 705–710. [Google Scholar] [CrossRef]
- Sinha, D.; Sharma, A.; Nallaswamy, V.; Jayagopal, N.; Bhatti, N. Obstetric outcome in women complaining of reduced fetal movements. J. Obstet. Gynaecol. 2007, 27, 41–43. [Google Scholar] [CrossRef]
- Stacey, T.; Thompson, J.M.; Mitchell, E.A.; Ekeroma, A.; Zuccollo, J.; McCowan, L.M. Maternal perception of fetal activity and late stillbirth risk: Findings from the Auckland Stillbirth Study. Birth 2011, 38, 311–316. [Google Scholar] [CrossRef]
- Warrander, L.K.; Heazell, A.E. Identifying placental dysfunction in women with reduced fetal movements can be used to predict patients at increased risk of pregnancy complications. Med. Hypotheses 2011, 76, 17–20. [Google Scholar] [CrossRef]
- Maulik, D.; Figueroa, R. Doppler velocimetry for fetal surveillance: Adverse perinatal outcome and fetal hypoxia. In Doppler Ultrasound in Obstetrics and Gynecology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 363–374. [Google Scholar]
- Velazquez, M.D.; Rayburn, W.F. Antenatal evaluation of the fetus using fetal movement monitoring. Clin. Obstet. Gynecol. 2002, 45, 993–1004. [Google Scholar] [CrossRef]
- Rayburn, W.F. Clinical implications from monitoring fetal activity. Am. J. Obstet. Gynecol. 1982, 144, 967–980. [Google Scholar] [CrossRef]
- Bennet, L.; Roelfsema, V.; Pathipati, P.; Quaedackers, J.; Gunn, A. Relationship between evolving epileptiform activity and delayed loss of mitochondrial activity after asphyxia measured by near-infrared spectroscopy in preterm fetal sheep. J. Physiol. 2006, 572, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Prechtl, H.F.; Einspieler, C.; Cioni, G.; Bos, A.F.; Ferrari, F.; Sontheimer, D. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997, 349, 1361–1363. [Google Scholar] [CrossRef]
- Guzzetta, A.; Mercuri, E.; Rapisardi, G.; Ferrari, F.; Roversi, M.; Cowan, F.; Rutherford, M.; Paolicelli, P.; Einspieler, C.; Boldrini, A. General movements detect early signs of hemiplegia in term infants with neonatal cerebral infarction. Neuropediatrics 2003, 34, 61–66. [Google Scholar] [PubMed]
- Hadders-Algra, M.; Mavinkurve-Groothuis, A.M.; Groen, S.E.; Stremmelaar, E.F.; Martijn, A.; Butcher, P.R.J.C.R. Quality of general movements and the development of minor neurological dysfunction at toddler and school age. Clin. Rehabil. 2004, 18, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Piontelli, A. Development of Normal Fetal Movements; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Vries, J.I.P.D.; Fong, B.F. Normal fetal motility: An overview. Ultrasound Obstet. Gynecol. 2010, 27, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Sadovsky, E.; Mahler, Y.; Polishuk, W.; Malkin, A. Correlation between electromagnetic recording and maternal assessment of fetal movement. Lancet 1973, 301, 1141–1143. [Google Scholar] [CrossRef]
- Cioni, G.; Ferrari, F.; Einspieler, C.; Paolicelli, P.B.; Barbani, T.; Prechtl, H.F. Comparison between observation of spontaneous movements and neurologic examination in preterm infants. J. Pediatr. 1997, 130, 704–711. [Google Scholar] [CrossRef]
- Rådestad, I.; Lindgren, H. Women’s perceptions of fetal movements in full-term pregnancy. Sex. Reprod. Healthc. 2012, 3, 113–116. [Google Scholar] [CrossRef]
- Sival, D.; Visser, G.; Prechtl, H. The effect of intrauterine growth retardation on the quality of general movements in the human fetus. Early Hum. Dev. 1992, 28, 119–132. [Google Scholar] [CrossRef]
- Visser, G.; Laurini, R.; De Vries, J.; Bekedam, D.; Prechtl, H. Abnormal motor behaviour in anencephalic fetuses. Early Hum. Dev. 1985, 12, 173–182. [Google Scholar] [CrossRef]
- Heriza, C.B. Comparison of leg movements in preterm infants at term with healthy full-term infants. Phys. Ther. 1988, 68, 1687–1693. [Google Scholar] [CrossRef] [Green Version]
- Sandell, L.J. Etiology of osteoarthritis: Genetics and synovial joint development. Nat. Rev. Rheumatol. 2012, 8, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Bellussi, F.; Livi, A.; Saccone, G.; De Vivo, V.; Oliver, E.A.; Berghella, V. Fetal movement counting and perinatal mortality: A systematic review and meta-analysis. Obstet. Gynecol. 2020, 135, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, F.; Cioni, G.; Einspieler, C.; Roversi, M.F.; Bos, A.F.; Paolicelli, P.B.; Ranzi, A.; Prechtl, H.F. Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch. Pediatr. Adolesc. Med. 2002, 156, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Medicine, P.G.J.A.o.i. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayburn, W.F. Clinical significance of perceptible fetal motion. Am. J. Obstet. Gynecol. 1980, 138, 210–212. [Google Scholar] [CrossRef]
- Budorick, N.E.; Pretorius, D.H.; Johnson, D.D.; Nelson, T.R.; Tartar, M.K.; Lou, K.V. Three-dimensional ultrasonography of the fetal distal lower extremity: Normal and abnormal. J. Ultrasound Med. 1998, 17, 649–660. [Google Scholar] [CrossRef]
- Nemec, S.F.; Höftberger, R.; Nemec, U.; Bettelheim, D.; Brugger, P.C.; Kasprian, G.; Amann, G.; Rotmensch, S.; Graham, J.M., Jr.; Rimoin, D.L.; et al. Fetal akinesia and associated abnormalities on prenatal MRI. Prenat. Diagn. 2011, 31, 484–490. [Google Scholar] [CrossRef]
- Giorgi, M.; Carriero, A.; Shefelbine, S.J.; Nowlan, N.C. Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: Application to hip dysplasia. J. Biomech. 2015, 48, 3390–3397. [Google Scholar] [CrossRef] [Green Version]
- Carreras, E.; Maroto, A.; Illescas, T.; Melendez, M.; Arevalo, S.; Peiro, J.L.; Garcia-Fontecha, C.G.; Belfort, M.; Cuxart, A. Prenatal ultrasound evaluation of segmental level of neurological lesion in fetuses with myelomeningocele: Development of a new technique. Ultrasound Obstet. Gynecol. 2016, 47, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, S.W.; Loo, J.H.; Hayat, T.T.; Hajnal, J.V.; Rutherford, M.A.; Phillips, A.T.; Nowlan, N.C. Modeling the biomechanics of fetal movements. Biomech. Model. Mechanobiol. 2016, 15, 995–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroto, A.; Illescas, T.; Melendez, M.; Arevalo, S.; Rodo, C.; Peiro, J.L.; Belfort, M.; Cuxart, A.; Carreras, E. Ultrasound functional evaluation of fetuses with myelomeningocele: Study of the interpretation of results. J. Matern.-Fetal Neonatal Med. 2017, 30, 2301–2305. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, S.W.; Bernhard, K.; Shelmerdine, S.C.; Arthurs, O.J.; Hajnal, J.V.; Rutherford, M.A.; Phillips, A.T.M.; Nowlan, N.C. Altered biomechanical stimulation of the developing hip joint in presence of hip dysplasia risk factors. J. Biomech. 2018, 78, 30037582. [Google Scholar] [CrossRef] [PubMed]
- Oliver, E.R.; Heuer, G.G.; Thom, E.A.; Burrows, P.K.; Didier, R.A.; DeBari, S.E.; Martin-Saavedra, J.S.; Moldenhauer, J.S.; Jatres, J.; Howell, L.J.; et al. Myelomeningocele sac associated with worse lower-extremity neurological sequelae: Evidence for prenatal neural stretch injury? Ultrasound Obstet. Gynecol. 2020, 55, 740–746. [Google Scholar] [CrossRef]
- Chen, H.; Song, Y.; Xuan, R.; Hu, Q.; Baker, J.S.; Gu, Y. Kinematic Comparison on Lower Limb Kicking Action of Fetuses in Different Gestational Weeks: A Pilot Study. Healthcare 2021, 9, 1057. [Google Scholar] [CrossRef]
- Bradford, B.; Maude, R. Maternal perception of fetal movements in the third trimester: A qualitative description. Women Birth 2018, 31, e287–e293. [Google Scholar] [CrossRef]
- Frøen, J.F. A kick from within–fetal movement counting and the cancelled progress in antenatal care. J. Perinat. Med. 2004, 32, 13–24. [Google Scholar] [CrossRef]
- Heazell, A.P.; Frøen, J. Methods of fetal movement counting and the detection of fetal compromise. J. Obstet. Gynaecol. 2008, 28, 147–154. [Google Scholar] [CrossRef]
- Mangesi, L.; Hofmeyr, G.J.; Smith, V.; Smyth, R.M.D. Fetal movement counting for assessment of fetal wellbeing. Cochrane Database Syst. Rev. 2015, 15, CD004909. [Google Scholar] [CrossRef] [Green Version]
- Eller, D.P.; Stramm, S.L.; Newman, R.B. The effect of maternal intravenous glucose administration on fetal activity. Am. J. Obstet. Gynecol. 1992, 167, 1071–1074. [Google Scholar] [CrossRef]
- Dlugosz, L.; Belanger, K.; Hellenbrand, K.; Holford, T.R.; Leaderer, B.; Bracken, M.B. Maternal caffeine consumption and spontaneous abortion: A prospective cohort study. Epidemiology 1996, 7, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, K.; Valentin, L.; Thelin, T.; Maršál, K. Maternal anxiety in late pregnancy: Effect on fetal movements and fetal heart rate. Early Hum. Dev. 2002, 67, 87–100. [Google Scholar] [CrossRef]
- Heazell, A.E.; Warland, J.; Stacey, T.; Coomarasamy, C.; Budd, J.; Mitchell, E.A.; O’Brien, L.M. Stillbirth is associated with perceived alterations in fetal activity–findings from an international case control study. BMC Pregnancy Childbirth 2017, 17, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warland, J.; O’Brien, L.M.; Heazell, A.E.; Mitchell, E.A. An international internet survey of the experiences of 1,714 mothers with a late stillbirth: The STARS cohort study. BMC Pregnancy Childbirth 2015, 15, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heazell, A.E.; Stacey, T.; O’Brien, L.M.; Mitchell, E.A.; Warland, J. Excessive fetal movements are a sign of fetal compromise which merits further examination. Med. Hypotheses 2018, 111, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Dutton, P.J.; Warrander, L.K.; Roberts, S.A.; Bernatavicius, G.; Byrd, L.M.; Gaze, D.; Kroll, J.; Jones, R.L.; Sibley, C.P.; Frøen, J.F. Predictors of poor perinatal outcome following maternal perception of reduced fetal movements–a prospective cohort study. PLoS ONE 2012, 7, e39784. [Google Scholar] [CrossRef] [Green Version]
- Delay, U.; Nawarathne, B.; Dissanayake, D.; Ekanayake, M.; Godaliyadda, G.; Wijayakulasooriya, J.; Rathnayake, R. Non Invasive Wearable Device for Fetal Movement Detection. In Proceedings of the 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 26–28 November 2020; pp. 285–290. [Google Scholar]
- Jonathan, L.; Richard, W.; Yuriy, A.; Qurratul, A.M.; Lees, C.C.; Ravi, V.; Nowlan, N.C.; Marco, A. Performance of a wearable acoustic system for fetal movement discrimination. PLoS ONE 2018, 13, e0195728. [Google Scholar]
- Grivell, R.M.; Alfirevic, Z.; Gyte, G.M.L.; Devane, D. Antenatal cardiotocography for fetal assessment. Cochrane Database Syst. Rev. 2015, 12, CD007863. [Google Scholar] [CrossRef]
- Rabinowitz, R.; Persitz, E.; Sadovsky, E. The relation between fetal heart rate accelerations and fetal movements. Obstet. Gynecol. 1983, 61, 16–18. [Google Scholar]
- Landy, H.J.; Khoury, A.N.; Heyl, P.S. Antenatal ultrasonographic diagnosis of fetal seizure activity. Am. J. Obstet. Gynecol. 1989, 161, 308. [Google Scholar]
- Heazell, A.E.; Green, M.; Wright, C.; Flenady, V.; Frøen, F. Midwives’ and obstetricians’ knowledge and management of women presenting with decreased fetal movements. Acta Obstet. Gynecol. Scand. 2008, 87, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Alfirevic, Z.; Devane, D.; Gyte, G.M.L. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst. Rev. 2013, 31, CD006066. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K. New ultrasonic Doppler fetal actograph and continuous recording of fetal movement. Nihon Sanka Fujinka Gakkai Zasshi 1984, 36, 280–288. [Google Scholar] [PubMed]
- Lai, J.; Nowlan, N.C.; Vaidyanathan, R.; Visser, G.H.; Lees, C.C. The use of actograph in the assessment of fetal well-being. J. Matern.-Fetal Neonatal Med. 2020, 33, 2116–2121. [Google Scholar] [CrossRef] [PubMed]
- Besinger, R.E.; Johnson, T.R.B. Doppler recording of fetal movement: Clinical correlation with real-time ultrasound. Obstet. Gynecol. 1989, 74, 277–280. [Google Scholar] [PubMed]
- Fitzgerald, D.; Drumm, J. Non-invasive measurement of human fetal circulation using ultrasound: A new method. Br. Med. J. 1977, 2, 1450–1451. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.; Jordan, E.T.; Paine, L.L. Doppler recordings of fetal movement: II. Comparison with maternal perception. Obstet. Gynecol. 1990, 76, 42–43. [Google Scholar]
- De Vries, J.; Fong, B. Changes in fetal motility as a result of congenital disorders: An overview. Ultrasound Obstet. Gynecol. 2007, 29, 590–599. [Google Scholar] [CrossRef]
- Frøen, J.F.; Tveit, J.V.H.; Saastad, E.; Børdahl, P.E.; Stray-Pedersen, B.; Heazell, A.E.P.; Flenady, V.; Fretts, R.C. Management of Decreased Fetal Movements. Semin. Perinatol. 2008, 32, 307–311. [Google Scholar] [CrossRef]
- Whitworth, M.; Bricker, L.; Mullan, C. Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst. Rev. 2015, 14, CD007058. [Google Scholar] [CrossRef]
- Hayat, T.T.; Martinez-Biarge, M.; Kyriakopoulou, V.; Hajnal, J.V.; Rutherford, M.A. Neurodevelopmental correlates of fetal motor behavior assessed using cine MR imaging. Am. J. Neuroradiol. 2018, 39, 1519–1522. [Google Scholar] [CrossRef] [PubMed]
- Roodenburg, P.; Wladimiroff, J.; Van Es, A.; Prechtl, H. Classification and quantitative aspects of fetal movements during the second half of normal pregnancy. Early Hum. Dev. 1991, 25, 19–35. [Google Scholar] [CrossRef]
- Kurjak, A.; Miskovic, B.; Stanojevic, M.; Amiel-Tison, C.; Ahmed, B.; Azumendi, G.; Vasilj, O.; Andonotopo, W.; Turudic, T.; Salihagic-Kadic, A. New scoring system for fetal neurobehavior assessed by three-and four-dimensional sonography. J. Perinat. Med. 2008, 36, 73–81. [Google Scholar] [CrossRef]
- Tveit, J.V.H.; Saastad, E.; Stray-Pedersen, B.; Børdahl, P.E.; Flenady, V.; Fretts, R.; Frøen, J.F. Reduction of late stillbirth with the introduction of fetal movement information and guidelines—A clinical quality improvement. BMC Pregnancy Childbirth 2009, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.-Y.; Ono, S.; Oi, S.; Shen, S.-H.; Wong, T.-T.; Chung, H.-W.; Hung, J.-H. Dynamic motion analysis of fetuses with central nervous system disorders by cine magnetic resonance imaging using fast imaging employing steady-state acquisition and parallel imaging: A preliminary result. J. Neurosurg. Pediatr. 2006, 105, 94–100. [Google Scholar] [CrossRef]
- Hayat, T.T.A.; Nihat, A.; Martinez-Biarge, M.; Mcguinness, A.; Allsop, J.M.; Hajnal, J.V.; Rutherford, M.A. Optimization and initial experience of a multisection balanced steady-state free precession cine sequence for the assessment of fetal behavior in utero. AJNR Am. J. Neuroradiol 2011, 32, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.C.; Simonetti, O.; Bundy, J.; Li, D.; Pereles, S.; Finn, J.P. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 2001, 219, 828–834. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F. Prechtl’s assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 2005, 11, 61–67. [Google Scholar] [CrossRef]
- Gao, Y.; Ren, S.; Zhou, H.; Xuan, R. Impact of Physical Activity During Pregnancy on Gestational Hypertension. Phys. Act. Health 2020, 4, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Xuan, R.; Yang, M.; Gao, Y.; Ren, S.; Li, J.; Yang, Z.; Song, Y.; Huang, X.-H.; Teo, E.-C.; Zhu, J.; et al. A Simulation Analysis of Maternal Pelvic Floor Muscle. Int. J. Environ. Res. Public Health 2021, 18, 10821. [Google Scholar] [CrossRef]
- Nowlan, N.C.; Sharpe, J.; Roddy, K.A.; Prendergast, P.J.; Murphy, P. Mechanobiology of embryonic skeletal development: Insights from animal models. Birth Defects Res. Part C Embryo Today Rev. 2010, 90, 203–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintana, L.; zur Nieden, N.I.; Semino, C.E. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: New paradigms for cartilage tissue engineering. Tissue Eng. Part B Rev. 2009, 15, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witters, I.; Moerman, P.; Fryns, J.P. Fetal akinesia deformation sequence: A study of 30 consecutive in utero diagnoses. Am. J. Med. Genet. 2002, 113, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, S.W.; Kainz, B.; Shelmerdine, S.C.; Hajnal, J.V.; Rutherford, M.A.; Arthurs, O.J.; Phillips, A.T.M.; Nowlan, N.C. Stresses and strains on the human fetal skeleton during development. J. R. Soc. Interface 2018, 15, 20170593. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Gao, Y.; Yang, Z.; Li, J.; Xuan, R.; Liu, J.; Chen, X.; Thirupathi, A. The Effect of Pelvic Floor Muscle Training on Pelvic Floor Dysfunction in Pregnant and Postpartum Women. Phys. Act. Health 2020, 4, 130–141. [Google Scholar] [CrossRef]
Studies | Gestational Age | Numbers | Reference Method | Ultrasonic Scanning Plane/MRI Section Thickness | Inspection Area |
---|---|---|---|---|---|
Rayburn et al., 1980 [28] | from 28 to 43 gestational weeks | 24 pregnancies | ultrasound | along the longitudinal axis of the fetus | fetal abdomen and lower extremities |
Budorick et al., 1998 [29] | from 16 to 32 gestational weeks | 33 fetuses | ultrasound | corresponding to the coronal, sagittal, and axial planes | the lower leg bones and digits containing ossification centers; a vertical appearance to hindfoot; visualization of the forefoot, hindfoot, ossification centers in the hindfoot; a perpendicular orientation of the sole of the foot; a complete foot in the axial plane; |
Nemec et al., 2011 [30] | from 18 + 4 to 31 + 1 gestational weeks | 6 fetuses | MRI | coronal and sagittal T2-w sequences: 3–4 mm; dynamic steady-state free precession sequence: 30 mm; a three-dimensional thick-slab T2-w sequence: 30–50 mm | the whole fetus including the fetal extremities/musculoskeletal system |
Giorgi et al., 2015 [31] | three in the early-middle (gestational weeks: 21, 22) stages; two in the late-middle (gestational weeks: 29, 34) stages. | 5 fetuses | cine-MRI and Abaqus | 30–40 mm | the whole fetus especially the prenatal hip joint |
Carreras et al., 2016 [32] | from 18 and 26 gestational weeks | 18 fetuses | B-mode ultrasound | sagittal plane | fetal lower limbs movements |
Verbruggen et al., 2016 [33] | after 20 gestational weeks | 3 fetuses | cine-MRI | 30–40 mm | kicking sequences |
Maroto et al., 2017 [34] | from 20.6–24.5 gestational weeks | 28 fetuses | grey-scale (mode B) ultrasound | a sagittal plane | lower-limb movements |
Verbruggen et al., 2018 [35] | 20 weeks gestational age | 341 fetuses | cine-MRI | 30–40 mm | clear in-plane extension-flexion fetal kicks |
Oliver et al., 2020 [36] | from 18 to 25 gestational weeks | 404 fetuses | ultrasound and MRI | / | fetal lower-extremity |
Chen et al., 2021 [37] | 24, 27, 30 gestational weeks, respectively | 3 fetuses | ultrasound | / | lower-limb movements |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xuan, R.; He, Y.; Ren, F.; Gu, Y. Computation of Fetal Kicking in Various Fetal Health Examinations: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4366. https://doi.org/10.3390/ijerph19074366
Liu Y, Xuan R, He Y, Ren F, Gu Y. Computation of Fetal Kicking in Various Fetal Health Examinations: A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(7):4366. https://doi.org/10.3390/ijerph19074366
Chicago/Turabian StyleLiu, Yuwei, Rongrong Xuan, Yuhuan He, Feng Ren, and Yaodong Gu. 2022. "Computation of Fetal Kicking in Various Fetal Health Examinations: A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 7: 4366. https://doi.org/10.3390/ijerph19074366
APA StyleLiu, Y., Xuan, R., He, Y., Ren, F., & Gu, Y. (2022). Computation of Fetal Kicking in Various Fetal Health Examinations: A Systematic Review. International Journal of Environmental Research and Public Health, 19(7), 4366. https://doi.org/10.3390/ijerph19074366