Characteristics, Source Contributions, and Source-Specific Health Risks of PM2.5-Bound Polycyclic Aromatic Hydrocarbons for Senior Citizens during the Heating Season in Tianjin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Description
2.1.1. Sampling Area
2.1.2. Participant Recruitment
2.1.3. Sample Collection
2.2. Mass and PAH Analysis
2.2.1. Mass Analysis
2.2.2. Polycyclic Aromatic Hydrocarbons Analysis
2.3. Data Analysis
2.3.1. Source Apportionment
2.3.2. Health Risk Assessment
3. Results and Discussions
3.1. Characteristics of Personal PAHs Exposure
3.2. Source Apportionment of Personal PAHs Exposure
3.3. Carcinogenic Risk of PAH Sources via Inhalation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.F.; Latif, M.T.; Lim, C.H.; Amil, N.; Jaafar, S.A.; Dominick, D.; Mohd Nadzir, M.S.; Sahani, M.; Tahir, N.M. Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmos. Environ. 2015, 106, 178–190. [Google Scholar] [CrossRef]
- Taghvaee, S.; Sowlat, M.H.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K.; Sioutas, C. Source-specific lung cancer risk assessment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran. Environ. Int. 2018, 120, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Y.; Yin, W.; Xu, T.; Hu, C.; Cheng, J.; Hou, J.; He, Z.; Yuan, J. Seasonal exposure to PM2.5-bound polycyclic aromatic hydrocarbons and estimated lifetime risk of cancer: A pilot study. Sci. Total Environ. 2020, 702, 135056. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Yang, L.; Chen, J.; Wang, X.; Li, H.; Zhu, Y.; Wen, L.; Xu, C.; Zhang, J.; Zhu, T.; et al. Identification of concentrations and sources of PM2.5-bound PAHs in North China during haze episodes in 2013. Air Qual. Atmos. Health 2016, 9, 823–833. [Google Scholar] [CrossRef]
- Wang, C.; Meng, Z.; Yao, P.; Zhang, L.; Wang, Z.; Lv, Y.; Tian, Y.; Feng, Y. Sources-specific carcinogenicity and mutagenicity of PM2.5-bound PAHs in Beijing, China: Variations of contributions under diverse anthropogenic activities. Ecotoxicol. Environ. Saf. 2019, 183, 109552. [Google Scholar] [CrossRef]
- Wang, S.; Ji, Y.; Zhao, J.; Lin, Y.; Lin, Z. Source apportionment and toxicity assessment of PM2.5-bound PAHs in a typical iron-steel industry city in northeast China by PMF-ILCR. Sci. Total Environ. 2020, 713, 136428. [Google Scholar] [CrossRef]
- Xue, Q.; Jiang, Z.; Wang, X.; Song, D.; Huang, F.; Tian, Y.; Huang-fu, Y.; Feng, Y. Comparative study of PM10-bound heavy metals and PAHs during six years in a Chinese megacity: Compositions, sources, and source-specific risks. Ecotoxicol. Environ. Saf. 2019, 186, 109740. [Google Scholar] [CrossRef]
- Yin, H.; Xu, L. Comparative study of PM10/PM2.5-bound PAHs in downtown Beijing, China: Concentrations, sources, and health risks. J. Clean. Prod. 2018, 177, 674–683. [Google Scholar] [CrossRef]
- Han, B.; You, Y.; Liu, Y.; Xu, J.; Zhou, J.; Zhang, J.; Niu, C.; Zhang, N.; He, F.; Ding, X.; et al. Inhalation cancer risk estimation of source-specific personal exposure for particulate matter–bound polycyclic aromatic hydrocarbons based on positive matrix factorization. Environ. Sci. Pollut. Res. 2019, 26, 10230–10239. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 2009, 43, 812–819. [Google Scholar] [CrossRef]
- IARC. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures; International Agency for Research on Cancer: Lyson, France, 2010; Volume 92. [Google Scholar]
- Gao, B.; Guo, H.; Wang, X.-M.; Zhao, X.-Y.; Ling, Z.-H.; Zhang, Z.; Liu, T.-Y. Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: Spatiotemporal patterns and emission sources. J. Hazard. Mater. 2012, 239, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, N.; Niu, C.; Han, B.; Bai, Z. Personal Exposure of Children to Particle-Associated Polycyclic Aromatic Hydrocarbons in Tianjin, China. Polycycl. Aromat. Compd. 2014, 34, 320–342. [Google Scholar] [CrossRef]
- Liu, J.; Man, R.; Ma, S.; Li, J.; Wu, Q.; Peng, J. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Mar. Pollut. Bull. 2015, 100, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Chen, Z.; Tian, Q.; Mao, Y.; Liu, W.; Shi, M.; Cheng, C.; Hu, T.; Zhu, G.; Li, Y.; et al. Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons in urban, suburban, and rural ambient air, central China during summer harvest. Ecotoxicol. Environ. Saf. 2020, 191, 110219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, H.; Zhang, L.; Zhang, Z.; Xing, X.; Qi, S. Fine particle-bound polycyclic aromatic hydrocarbons (PAHs) at an urban site of Wuhan, central China: Characteristics, potential sources and cancer risks apportionment. Environ. Pollut. 2019, 246, 319–327. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Hou, J.; Zheng, D.; Wang, G.; Hu, C.; Xu, T.; Cheng, J.; Yin, W.; Mao, X.; et al. Associations between inhaled doses of PM2.5-bound polycyclic aromatic hydrocarbons and fractional exhaled nitric oxide. Chemosphere 2019, 218, 992–1001. [Google Scholar] [CrossRef]
- Shang, J.; Zhang, Y.; Schauer, J.J.; Tian, J.; Hua, J.; Han, T.; Fang, D.; An, J. Associations between source-resolved PM2.5 and airway inflammation at urban and rural locations in Beijing. Environ. Int. 2020, 139, 105635. [Google Scholar] [CrossRef]
- Mu, G.; Fan, L.; Zhou, Y.; Liu, Y.; Ma, J.; Yang, S.; Wang, B.; Xiao, L.; Ye, Z.; Shi, T.; et al. Personal exposure to PM2.5-bound polycyclic aromatic hydrocarbons and lung function alteration: Results of a panel study in China. Sci. Total Environ. 2019, 684, 458–465. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, S.; Shen, H.; Ma, J. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proc. Natl. Acad. Sci. USA 2009, 106, 21063–21067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, B.; Zeng, H.; Zhang, L.; Wang, H.; Liu, J.; Hao, K.; Zheng, G.; Wang, M.; Wang, Q.; Yang, W. Toxic metals in outdoor/indoor airborne PM2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. Environ. Pollut. 2021, 279, 116937. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.M.; Carter, E.; Shan, M.; Ni, K.; Clark, S.; Ezzati, M.; Wiedinmyer, C.; Yang, X.; Baumgartner, J.; Schauer, J.J. Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China. Sci. Total Environ. 2019, 646, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Saraga, D.E.; Maggos, T.E.; Sfetsos, A.; Tolis, E.I.; Andronopoulos, S.; Bartzis, J.G.; Vasilakos, C. PAHs sources contribution to the air quality of an office environment: Experimental results and receptor model (PMF) application. Air Qual. Atmos. Health 2010, 3, 225–234. [Google Scholar] [CrossRef]
- Tong, X.; Chen, X.-C.; Chuang, H.-C.; Cao, J.-J.; Ho, S.S.H.; Lui, K.-H.; Ho, K.F. Characteristics and cytotoxicity of indoor fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Hong Kong. Air Qual. Atmos. Health 2019, 12, 1459–1468. [Google Scholar] [CrossRef]
- Chao, S.; Liu, J.; Chen, Y.; Cao, H.; Zhang, A. Implications of seasonal control of PM2.5-bound PAHs: An integrated approach for source apportionment, source region identification and health risk assessment. Environ. Pollut. 2019, 247, 685–695. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, N.; Yin, S.; Li, X.; Yu, F.; Guo, Y.; Zhang, R. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment. Atmos. Res. 2017, 191, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Cai, J.; Liu, Y.; Hong, L.; Qin, M.; Zhao, Y.; Ma, J.; Wang, X.; Zhu, T.; et al. Atmospheric PAHs in North China: Spatial distribution and sources. Sci. Total Environ. 2016, 565, 994–1000. [Google Scholar] [CrossRef]
- Shi, G.-L.; Liu, G.-R.; Tian, Y.-Z.; Zhou, X.-Y.; Peng, X.; Feng, Y.-C. Chemical characteristic and toxicity assessment of particle associated PAHs for the short-term anthropogenic activity event: During the Chinese New Year’s Festival in 2013. Sci. Total Environ. 2014, 482, 8–14. [Google Scholar] [CrossRef]
- Yuan, Y.; Luo, Z.; Liu, J.; Wang, Y.; Lin, Y. Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China. Sci. Total Environ. 2018, 626, 546–554. [Google Scholar] [CrossRef]
- Zhou, J.; Han, B.; Bai, Z.; You, Y.; Zhang, J.; Niu, C.; Liu, Y.; Zhang, N.; He, F.; Ding, X.; et al. Particle Exposure Assessment for Community Elderly (PEACE) in Tianjin, China: Mass concentration relationships. Atmos. Environ. 2012, 49, 77–84. [Google Scholar] [CrossRef]
- Chen, X.-C.; Chuang, H.-C.; Ward, T.J.; Sarkar, C.; Webster, C.; Cao, J.; Hsiao, T.-C.; Ho, K.-F. Toxicological effects of personal exposure to fine particles in adult residents of Hong Kong. Environ. Pollut. 2019, 275, 116633. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Khuzestani, R.B.; Tian, J.; Schauer, J.J.; Hua, J.; Zhang, Y.; Cai, T.; Fang, D.; An, J.; Zhang, Y. Chemical characterization and source apportionment of PM2.5 personal exposure of two cohorts living in urban and suburban Beijing. Environ. Pollut. 2019, 246, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhao, B.; Zhao, Y.; Luo, Q.; Wang, S.; Zhao, B.; Bai, S. Reduction in population exposure to PM2.5 and cancer risk due to PM2.5-bound PAHs exposure in Beijing, China during the APEC meeting. Environ. Pollut. 2017, 225, 338–345. [Google Scholar] [CrossRef]
- Hime, N.J.; Marks, G.B.; Cowie, C.T. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. Int. J. Environ. Res. Public Health 2018, 15, 1206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Han, B.; He, F.; Xu, J.; Zhao, R.; Zhang, Y.; Bai, Z. Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking. Environ. Pollut. 2017, 227, 24–30. [Google Scholar] [CrossRef]
- Zhang, N.; Han, B.; Zhao, R.; Zhao, X.; Xu, J.; Zhang, Y.; Bai, Z. Source profile and excess cancer risk evaluation of environmental tobacco smoking under real conditions, China. Atmos. Pollut. Res. 2019, 10, 1994–1999. [Google Scholar] [CrossRef]
- EPA. Risk Assessment Guidance for Superfund, Volume Ι: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Available online: https://www.epa.gov/sites/default/files/2015-09/documents/partf_200901_final.pdf (accessed on 2 December 2021).
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Li, P.-H.; Kong, S.-F.; Geng, C.-M.; Han, B.; Lu, B.; Sun, R.-F.; Zhao, R.-J.; Zhi, P.-B. Health risk assessment for vehicle inspection workers exposed to airborne polycyclic aromatic hydrocarbons (PAHs) in their work place. Environ. Sci. Processes Impacts 2013, 15, 623–632. [Google Scholar] [CrossRef]
- See, S.W.; Karthikeyan, S.; Balasubramanian, R. Health risk assessment of occupational exposure to particulate-phase polycyclic aromatic hydrocarbons associated with Chinese, Malay and Indian cooking. J. Environ. Monit. 2006, 8, 369–376. [Google Scholar] [CrossRef]
- Liu, Y.N.; Tao, S.; Dou, H.; Zhang, T.W.; Zhang, X.L.; Dawson, R. Exposure of traffic police to Polycyclic aromatic hydrocarbons in Beijing, China. Chemosphere 2007, 66, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Bai, Z.; Zhang, L.; Wang, X.; Zhang, L.; Yu, Q.; Zhu, T. Health risk assessment for traffic policemen exposed to polycyclic aromatic hydrocarbons (PAHs) in Tianjin, China. Sci. Total Environ. 2007, 382, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Peng, Y.; Li, W.; Qiu, W.; Bai, Z.; Kong, S.; Jin, T. Characterization and Source Identification of PM10-bound Polycyclic Aromatic Hydrocarbons in Urban Air of Tianjin, China. Aerosol Air Qual. Res. 2010, 10, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Lin, T.; Li, Y.; Ji, T.; Ma, C.; Guo, Z. Sources of polycyclic aromatic hydrocarbons in PM2.5 over the East China Sea, a downwind domain of East Asian continental outflow. Atmos. Environ. 2014, 92, 484–492. [Google Scholar] [CrossRef]
- Yu, Q.; Gao, B.; Li, G.; Zhang, Y.; He, Q.; Deng, W.; Huang, Z.; Ding, X.; Hu, Q.; Huang, Z.; et al. Attributing risk burden of PM2.5-bound polycyclic aromatic hydrocarbons to major emission sources: Case study in Guangzhou, south China. Atmos. Environ. 2016, 142, 313–323. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Wu, B.; Hao, X.; Yin, Y.; Jiang, X. Characteristics of PAHs from deep-frying and frying cooking fumes. Environ. Sci. Pollut. Res. 2015, 22, 16110–16120. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.; Chatterjee, A.; Majumdar, D.; Ghosh, S.K.; Raha, S. Polycyclic aromatic hydrocarbons over a tropical urban and a high altitude Himalayan Station in India: Temporal variation and source apportionment. Atmos. Res. 2017, 197, 331–341. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chiang, H.-C.; Hsu, C.-Y.; Yang, T.-T.; Lin, T.-Y.; Chen, M.-J.; Chen, N.-T.; Wu, Y.-S. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environ. Pollut. 2016, 218, 372–382. [Google Scholar] [CrossRef]
- Callén, M.S.; Iturmendi, A.; López, J.M. Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environ. Pollut. 2014, 195, 167–177. [Google Scholar] [CrossRef]
- Cao, X.; Hao, X.; Shen, X.; Jiang, X.; Wu, B.; Yao, Z. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements. Atmos. Environ. 2017, 148, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zhu, L. Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J. Hazard. Mater. 2007, 139, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Mannino, M.R.; Orecchio, S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC–MS analysis, distribution and sources. Atmos. Environ. 2008, 42, 1801–1817. [Google Scholar] [CrossRef]
- Murillo, J.H.; Villalobos, M.C.; Rojas Marín, J.F.; Guerrero, V.H.B.; Solórzano Arias, D. Polycyclic aromatic hydrocarbons in PM2.5 and PM10 atmospheric particles in the Metropolitan Area of Costa Rica: Sources, temporal and spatial variations. Atmos. Pollut. Res. 2017, 8, 320–327. [Google Scholar] [CrossRef]
- Ho, K.F.; Ho, S.S.H.; Lee, S.C.; Cheng, Y.; Chow, J.C.; Watson, J.G.; Louie, P.K.K.; Tian, L. Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmos. Environ. 2009, 43, 6343–6351. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Hosgood, H.D., 3rd; Boffetta, P.; Greenland, S.; Lee, Y.-C.A.; McLaughlin, J.; Seow, A.; Duell, E.J.; Andrew, A.S.; Zaridze, D.; Szeszenia-Dabrowska, N.; et al. In-home coal and wood use and lung cancer risk: A pooled analysis of the International Lung Cancer Consortium. Environ. Health Perspect. 2010, 118, 1743–1747. [Google Scholar] [CrossRef] [Green Version]
- Andersen, Z.J.; Wahlin, P.; Raaschou-Nielsen, O.; Scheike, T.; Loft, S. Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 625–636. [Google Scholar] [CrossRef] [Green Version]
- IARC. Diesel and Gasoline Egnine Exhausts and Some Nitroarenes; International Agency for Research on Cancer: Lyson, France, 2014; Volume 105. [Google Scholar]
- Xie, J.; Wang, X.; Sheng, G.; Bi, X.; Fu, J. Determination of tobacco smoking influence on volatile organic compounds constituent by indoor tobacco smoking simulation experiment. Atmos. Environ. 2003, 37, 3365–3374. [Google Scholar] [CrossRef]
PAH Species | Abbreviation | Rings | MW Groups | TEFs a | IUR b (μg/m3)−1 |
---|---|---|---|---|---|
Acenaphthene | Ace | 3 | LMW | 0.001 | / |
Fluorene | Flu | 3 | LMW | 0.001 | / |
Phenanthrene | Phe | 3 | LMW | 0.001 | / |
Fluoranthene | Fl | 4 | MMW | 0.001 | / |
Pyrene | Pyr | 4 | MMW | 0.001 | / |
Benz[a]anthracene | BaA | 4 | MMW | 0.1 | / |
Chrysene | Chr | 4 | MMW | 0.01 | / |
Benzo[b]fluoranthene | BbF | 5 | HMW | 0.1 | / |
Benzo[k]fluoranthene | BkF | 5 | HMW | 0.1 | / |
Benz[e]pyrene | BeP | 5 | HMW | / | / |
Benzo[a]pyrene | BaP | 5 | HMW | 1 | 1.1 × 10−3 |
Dibenz[a,h]anthracene | DahA | 5 | HMW | 1 | / |
Benzo[ghi]perylene | BghiP | 6 | HMW | 0.01 | / |
Indeno[1,2,3-cd]pyrene | IND | 6 | HMW | 0.1 | / |
PAHs | All Population (n = 87) | ETS-Exposed (n = 27) | Non-ETS (n = 60) | Cooking (n = 52) | Non-Cooking (n = 35) |
---|---|---|---|---|---|
Ace | 0.5 ± 1.2 | 0.7 ± 1.5 | 0.5 ± 1.1 | 0.5 ± 1.4 | 0.6 ± 1.1 |
Flu | 0.7 ± 1.2 | 0.9 ± 1.5 | 0.7 ± 1.0 | 0.7 ± 1.2 | 0.8 ± 1.2 |
Phe | 5.0 ± 4.5 | 5.4 ± 5.6 | 4.8 ± 3.9 | 4.8 ± 4.3 | 5.2 ± 4.7 |
Fl | 8.1 ± 7.3 | 8.6 ± 8.9 | 7.9 ± 6.5 | 7.7 ± 6.5 | 8.7 ± 8.4 |
Pyr | 5.7 ± 4.7 | 6.1 ± 6.1 | 5.6 ± 3.9 | 5.6 ± 4.4 | 6.0 ± 5.0 |
BaA | 6.7 ± 5.3 | 7.2 ± 6.3 | 6.5 ± 4.8 | 6.4 ± 5.1 | 7.1 ± 5.6 |
Chr | 9.2 ± 7.0 | 9.9 ± 9.4 | 8.9 ± 5.7 | 8.7 ± 6.2 | 9.9 ± 8.1 |
BghiP | 11.7 ± 6.9 | 12.7 ± 8.7 | 11.2 ± 5.9 | 11.3 ± 6.7 | 12.3 ± 7.3 |
IND | 14.7 ± 8.8 | 16.0 ± 11.4 | 14.1 ± 7.4 | 14.1 ± 8.4 | 15.7 ± 9.6 |
DahA | 2.3 ± 1.8 | 2.5 ± 2.1 | 2.1 ± 1.7 | 2.1 ± 1.8 | 2.5 ± 1.8 |
BbF | 22.7 ± 14.9 | 24.1 ± 19.1 | 22.1 ± 12.6 | 21.8 ± 13.7 | 24.0 ± 16.6 |
BaP | 8.0 ± 5.4 | 8.3 ± 5.9 | 7.9 ± 5.2 | 7.7 ± 5.5 | 8.5 ± 5.3 |
BeP | 7.5 ± 4.7 | 7.7 ± 6.1 | 7.4 ± 4.0 | 7.2 ± 4.3 | 8.0 ± 5.3 |
BkF | 3.7 ± 2.5 | 3.6 ± 3.1 | 3.7 ± 2.3 | 3.6 ± 2.4 | 3.9 ± 2.7 |
∑PAHs | 106.4 ± 70.9 | 113.4 ± 91.0 | 103.3 ± 60.4 | 102.1 ± 66.5 | 112.9 ± 77.6 |
BaPeq | 15.3 ± 10.1 | 16.2 ± 12.1 | 14.9 ± 9.2 | 14.6 ± 9.9 | 16.3 ± 10.5 |
Contribution to Carcinogenic Risk (%) | Contribution to Mass Concentration (%) | Ratio of Contribution to Carcinogenic Risk/ Contribution to Mass Concentration | |
---|---|---|---|
Biomass burning | 25.2 | 14.7 | 1.7 |
Coal combustion | 9.0 | 27.1 | 0.3 |
Cooking | 5.4 | 9.9 | 0.5 |
Diesel emission | 23.2 | 18.7 | 1.2 |
ETS | 18.5 | 9.2 | 2.0 |
Gasoline emission | 18.7 | 20.4 | 0.9 |
Indoor | 23.9 | 19.1 | 1.2 |
Outdoor | 76.1 | 80.9 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Geng, C.; Xu, J.; Zhang, L.; Li, P.; Han, J.; Gao, S.; Wang, X.; Yang, W.; Bai, Z.; et al. Characteristics, Source Contributions, and Source-Specific Health Risks of PM2.5-Bound Polycyclic Aromatic Hydrocarbons for Senior Citizens during the Heating Season in Tianjin, China. Int. J. Environ. Res. Public Health 2022, 19, 4440. https://doi.org/10.3390/ijerph19084440
Zhang N, Geng C, Xu J, Zhang L, Li P, Han J, Gao S, Wang X, Yang W, Bai Z, et al. Characteristics, Source Contributions, and Source-Specific Health Risks of PM2.5-Bound Polycyclic Aromatic Hydrocarbons for Senior Citizens during the Heating Season in Tianjin, China. International Journal of Environmental Research and Public Health. 2022; 19(8):4440. https://doi.org/10.3390/ijerph19084440
Chicago/Turabian StyleZhang, Nan, Chunmei Geng, Jia Xu, Liwen Zhang, Penghui Li, Jinbao Han, Shuang Gao, Xinhua Wang, Wen Yang, Zhipeng Bai, and et al. 2022. "Characteristics, Source Contributions, and Source-Specific Health Risks of PM2.5-Bound Polycyclic Aromatic Hydrocarbons for Senior Citizens during the Heating Season in Tianjin, China" International Journal of Environmental Research and Public Health 19, no. 8: 4440. https://doi.org/10.3390/ijerph19084440
APA StyleZhang, N., Geng, C., Xu, J., Zhang, L., Li, P., Han, J., Gao, S., Wang, X., Yang, W., Bai, Z., Zhang, W., & Han, B. (2022). Characteristics, Source Contributions, and Source-Specific Health Risks of PM2.5-Bound Polycyclic Aromatic Hydrocarbons for Senior Citizens during the Heating Season in Tianjin, China. International Journal of Environmental Research and Public Health, 19(8), 4440. https://doi.org/10.3390/ijerph19084440