Study on Air Quality and Its Annual Fluctuation in China Based on Cluster Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methods
2.2.1. Clustering Analysis Based on MATLAB—Self-Organizing Maps (SOM)
2.2.2. Clustering Analysis Based on SPSS—K-Means Clustering Algorithms
2.2.3. Spatial Interpolation
2.2.4. Principal Component Analysis
3. Results
3.1. The Results of SOM Cluster
3.2. The Results of K-Means Cluster and Comparison of Two Kinds of Cluster
3.3. The Results of AQI Clustering and Comparison with SOM Clustering Results of AQFI
3.4. The Results Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Chen, Y.; Song, P.; Ding, T. China’s urban air quality evaluation with streaming data: A DEA window analysis. Sci. Total Environ. 2020, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, J.; Xue, K.; Fang, C. Spatial and temporal distribution characteristics and influencing factors analysis of particulate matter pollution in Jinan City. Air Qual. Atmos. Health 2021, 14, 1267–1278. [Google Scholar] [CrossRef]
- Bai, X.; Tian, H.; Liu, X.; Wu, B.; Liu, S.; Hao, Y.; Luo, L.; Liu, W.; Zhao, S.; Lin, S.; et al. Spatial-temporal variation characteristics of air pollution and apportionment of contributions by different sources in Shanxi province of China. Atmos. Environ. 2021, 244, 117926. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, Y.; Liu, Q.; Xu, D.; Zhao, S.; He, L.; Liu, H.; Xu, H. Temporal and spatial trends in air quality in Beijing. Landsc. Urban Plan. 2019, 185, 35–43. [Google Scholar] [CrossRef]
- Yao, Y.; He, C.; Li, S.; Ma, W.; Li, S.; Yu, Q.; Mi, N.; Yu, J.; Wang, W.; Yin, L.; et al. Properties of particulate matter and gaseous pollutants in Shandong, China: Daily fluctuation, influencing factors, and spatiotemporal distribution. Sci. Total Environ. 2019, 660, 384–394. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, C.; Lei, L.; Fu, P.; Sun, Y. Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015–2019 in China. Environ. Pollut. 2021, 272, 116031. [Google Scholar] [CrossRef]
- Cao, B.; Wang, X.; Ning, G.; Yuan, L.; Jiang, M.; Zhang, X.; Wang, S. Factors influencing the boundary layer height and their relationship with air quality in the Sichuan Basin, China. Environ. Pollut. 2020, 727, 138584. [Google Scholar] [CrossRef]
- Huang, C.; Liu, K.; Zhou, L. Spatio-temporal trends and influencing factors of PM2.5 concentrations in urban agglomerations in China between 2000 and 2016. Environ. Sci. Pollut. Res. 2021, 28, 10988–11000. [Google Scholar] [CrossRef]
- Li, F.; Zhou, T.; Lan, F. Relationships between urban form and air quality at different spatial scales: A case study from northern China. Ecol. Indic. 2021, 121, 107029. [Google Scholar] [CrossRef]
- Luo, M.; Li, J.; Hu, S. Exploring regional air quality evolution by developing a driving force model: Case study of Beijing. J. Environ. Manag. 2019, 248, 109333. [Google Scholar] [CrossRef] [PubMed]
- Ventura, L.M.B.; Ramos, M.B.; Márcio de Almeida, D.A.; Gioda, A. Evaluation of the impact of the national strike of the road freight transport sector on the air quality of the metropolitan region of Rio de Janeiro, Brazil. Sustain. Cities Soc. 2021, 65, 102588. [Google Scholar] [CrossRef]
- East, J.; Montealegre, J.S.; Pachon, J.E.; Garcia-Menendez, F. Air quality modeling to inform pollution mitigation strategies in a Latin American megacity. Sci. Total Environ. 2021, 776, 145894. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hussain, S.A.; Sobri, S.; Md Said, M.S. Overviewing the air quality models on air pollution in Sichuan Basin, China. Chemosphere 2021, 271, 129502. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lau, A.K.H.; Sandbrink, K.; Fung, J.C.H. Time Series Forecasting of Air Quality Based On Regional Numerical Modeling in Hong Kong. J. Geophys. Res.-Atmos. 2018, 123, 4175–4196. [Google Scholar] [CrossRef] [Green Version]
- Raheja, S.; Obaidat, M.S.; Sadoun, B.; Malik, S.; Rani, A.; Kumar, M.; Stephan, T. Modeling and simulation of urban air quality with a 2-phase assessment technique. Simul. Model. Pract. Theory 2021, 109, 102281. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, F.; Tian, R. A deep learning and image-based model for air quality estimation. Sci. Total Environ. 2020, 724, 138178. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Duan, X.; Wang, L.; Wang, L. Analysis of spatio-temporal distribution characteristics and socioeconomic drivers of urban air quality in China. Chemosphere 2022, 291, 132799. [Google Scholar] [CrossRef]
- Nguyen, L.S.P.; Chang, J.H.W.; Griffith, S.M.; Hien, T.T.; Kong, S.S.K.; Le, H.N.; Huang, H.Y.; Sheu, G.R.; Lin, N.H. Trans-boundary air pollution in a Southeast Asian megacity: Case studies of the synoptic meteorological mechanisms and impacts on air quality. Atmos. Pollut. Res. 2022, 13, 101366. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S. Revisiting air quality during lockdown persuaded by second surge of COVID-19 of megacity Delhi, India. Urban. Clim. 2022, 41, 101082. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, J.; Tan, Z.; Liu, T.; Zeng, W.; Li, X.; Huang, C.; Wang, S.; Huang, Z.; Ma, W. Ambient carbon monoxide and increased risk of daily hospital outpatient visits for respiratory diseases in Dongguan, China. Sci. Total Environ. 2019, 668, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.Q.; Solmon, F.; Deng, X.J.; Zou, Y.; Deng, T.; Wang, N.; Li, F.; Mai, B.R.; Liu, L. Geographical distribution of ozone seasonality over China. Sci. Total Environ. 2019, 689, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, J. Spatiotemporal estimation of satellite-borne and ground-level NO2 using full residual deep networks. Remote Sens. Environ. 2021, 254, 112257. [Google Scholar] [CrossRef]
- Shams, S.R.; Jahani, A.; Kalantary, S.; Moeinaddini, M.; Khorasani, N. The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Clim. 2021, 37, 100837. [Google Scholar] [CrossRef]
- Xu, G.; Ren, X.; Xiong, K.; Li, L.; Bi, X.; Wu, Q. Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecol. Indic. 2020, 110, 105889. [Google Scholar] [CrossRef]
- Vesanto, J.; Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 2000, 11, 586–600. [Google Scholar] [CrossRef]
- Hagenbuchner, M.; Sperduti, A.; Tsoi, A.C. A self-organizing map for adaptive processing of structured data. IEEE Trans. Neural Netw. 2003, 14, 491–505. [Google Scholar] [CrossRef]
- Bagan, H.; Wang, Q.; Watanabe, M.; Yang, Y.; Ma, J. Land cover classification from MODIS EVI times-series data using SOM neural network. Int. J. Remote Sens. 2005, 26, 4999–5012. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, J.S.; Marley, N.A. The impacts of combustion emissions on air quality and climate—From coal to biofuels and beyond. Atmos. Environ. 2009, 43, 23–36. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, M.; Zhu, J.; Skorokhod, A. Model analysis of soil dust impacts on the boundary layer meteorology and air quality over East Asia in April 2015. Atmos. Res. 2017, 187, 42–56. [Google Scholar] [CrossRef]
- Wang, L.; Li, P.; Yu, S.; Mehmood, K.; Li, Z.; Chang, S.; Liu, W.; Rosenfeld, D.; Flagan, R.C.; Seinfeld, J.H. Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China. Sci. Rep. 2018, 8, 934. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Lin, H.; Ho, S.L.; Yan, J.; Dong, J.; Fang, S.; Huang, Y. Overview of wind power generation in China: Status and development. Renew. Sustain. Energy Rev. 2015, 50, 847–858. [Google Scholar] [CrossRef]
- Chang, X.; Liu, X.; Zhou, W. Hydropower in China at present and its further development. Energy 2010, 35, 4400–4406. [Google Scholar] [CrossRef]
- Xu, Y.; Kang, J.; Yuan, J. The Prospective of Nuclear Power in China. Sustainability 2018, 10, 2086. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Feng, Y.; Wu, J.; Zhu, T.; Bai, Z.; Duan, C. Using geoaccumulation index to study source profiles of soil dust in China. J. Environ. Sci. 2008, 20, 571–578. [Google Scholar] [CrossRef]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- De Wekker, S.F.J.; Snyder, B.J. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., Ed.; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-4098-3. [Google Scholar]
Indicator | The Meanings of Indicators |
---|---|
CO | Carbon monoxide is one of the main atmospheric chemical pollutants. Due to its high chemical activity, it has a short life span and uneven distribution in the atmosphere. Its variation characteristics basically reflect the source and sink characteristics of the location, and its content has an important influence on the surface environment. Carbon monoxide is toxic and can cause symptoms of different degrees of poisoning at higher concentrations. |
O3 | O3 is one of the main atmospheric pollutants in the air, which is the main cause of urban photochemical pollution. O3 pollution near the ground causes many hazards to human health, crops and plant growth. |
NO2 | Nitrogen dioxide, toxic, irritating. NO2 is mainly formed by fuel combustion and is emitted by cars, trucks, buses, power plants and other sources. It can be emitted directly from combustion sources, but part of it is formed through chemical reactions of nitric oxide and other air pollutants. NO2 is an important precursor of anthropogenic ozone and urban smog, and a key factor in the formation of nitric acid, fine particulate matter and nitro polycyclic aromatic hydrocarbons. |
SO2 | Sulfur dioxide, the most common, simplest and irritating sulfur oxide, is one of the major atmospheric pollutants. SO2 is a toxic, highly reactive gas with an irritating and putrefying odor that can cause eye and respiratory irritation, bronchoconstriction, cardiovascular disease, cancer, and ecological effects on soil, forests, and fresh water. |
PM10 | PM10 is known as atmospheric particulate matter smaller than 10 micrometers in diameter, which has a huge impact on global health. Epidemiological studies have confirmed the long-term and short-term health effects of PM10 and further refined the public health effects of PM10. |
PM2.5 | PM2.5 stands for atmospheric particulate matter with aerodynamic equivalent diameter equal to or less than 2.5 microns, which is the main factor causing haze weather, reducing visibility and affecting traffic safety. PM2.5 has become the main pollutant in the air of most cities in China, and PM2.5 concentration is an important indicator reflecting the degree of air pollution. Several episodes of severe PM2.5 pollution and related problems have aroused widespread concern in society and society. |
Indicator | Composition | ||||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | Total | |
CO | 0.76 | 0.217 | 0.222 | −0.131 | / |
NO2 | 0.292 | 0.097 | 0.947 | 0.078 | / |
O3 | −0.165 | −0.063 | 0.067 | 0.982 | / |
PM10 | 0.897 | 0.19 | 0.173 | −0.098 | / |
PM2.5 | 0.913 | 0.141 | 0.161 | −0.11 | / |
SO2 | 0.276 | 0.953 | 0.096 | −0.067 | / |
Variance Contribution (%) | 52.504 | 17.957 | 11.630 | 8.858 | 90.949 |
Indicator | Composition | ||||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | Total | |
CO | 0.528 | 0.535 | 0.342 | 0.182 | / |
NO2 | 0.377 | 0.218 | 0.231 | 0.87 | / |
O3 | −0.193 | −0.115 | −0.947 | −0.18 | / |
PM10 | 0.887 | 0.246 | 0.167 | 0.266 | / |
PM2.5 | 0.907 | 0.19 | 0.164 | 0.243 | / |
SO2 | 0.205 | 0.933 | 0.072 | 0.157 | / |
Variance Contribution (%) | 61.733 | 12.379 | 11.028 | 6.956 | 92.096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, Y.; Li, Y.; Yi, X.; Wu, J. Study on Air Quality and Its Annual Fluctuation in China Based on Cluster Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4524. https://doi.org/10.3390/ijerph19084524
Zhang S, Chen Y, Li Y, Yi X, Wu J. Study on Air Quality and Its Annual Fluctuation in China Based on Cluster Analysis. International Journal of Environmental Research and Public Health. 2022; 19(8):4524. https://doi.org/10.3390/ijerph19084524
Chicago/Turabian StyleZhang, Shengyong, Yunhao Chen, Yudong Li, Xing Yi, and Jiansheng Wu. 2022. "Study on Air Quality and Its Annual Fluctuation in China Based on Cluster Analysis" International Journal of Environmental Research and Public Health 19, no. 8: 4524. https://doi.org/10.3390/ijerph19084524
APA StyleZhang, S., Chen, Y., Li, Y., Yi, X., & Wu, J. (2022). Study on Air Quality and Its Annual Fluctuation in China Based on Cluster Analysis. International Journal of Environmental Research and Public Health, 19(8), 4524. https://doi.org/10.3390/ijerph19084524