Training Computers to See the Built Environment Related to Physical Activity: Detection of Microscale Walkability Features Using Computer Vision
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Image Classifier Performance
3.2. Model Inference Results
3.2.1. Associations between Model-Detected Microscale Feature and GIS-Measured Macro-Level Walkability
3.2.2. Associations between Model-Detected Microscale Feature and Perceived Neighborhood Walkability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Street Feature | Performance | ||||
---|---|---|---|---|---|
Precision | Recall | Negative Predictive Value | Specificity | Accuracy | |
Sidewalk | 97.25% | 96.81% | 92.82% | 93.78% | 95.88% |
Sidewalk buffer | 87.10% | 85.85% | 95.01% | 95.49% | 92.96% |
Curb cut | 83.21% | 65.86% | 52.32% | 73.81% | 68.54% |
Zebra crosswalk | 97.33% | 84.97% | 93.61% | 98.95% | 94.62% |
Line crosswalk | 89.20% | 75.59% | 71.20% | 86.83% | 80.20% |
Walk signals | 86.00% | 73.38% | 68.80% | 83.09% | 77.40% |
Bike symbols | 95.00% | 95.00% | 98.33% | 98.33% | 97.50% |
Streetlight | 84.30% | 86.44% | 83.84% | 81.37% | 84.09% |
References
- Sallis, J.F.; Spoon, C.; Cavill, N.; Engelberg, J.K.; Gebel, K.; Parker, M.; Thornton, C.M.; Lou, D.; Wilson, A.L.; Cutter, C.L.; et al. Co-benefits of designing communities for active living: An exploration of literature. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfonzo, M.; Boarnet, M.G.; Day, K.; Mcmillan, T.; Anderson, C.L. The relationship of neighbourhood built environment features and adult parents’ walking. J. Urban Des. 2008, 13, 29–51. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cerin, E.; Kerr, J.; Adams, M.A.; Sugiyama, T.; Christiansen, L.B.; Schipperijn, J.; Davey, R.; Salvo, D.; Frank, L.D.; et al. Built Environment, Physical Activity, and Obesity: Findings from the International Physical Activity and Environment Network (IPEN) Adult Study. Annu. Rev. Public Health 2020, 41, 119–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cain, K.L.; Millstein, R.A.; Sallis, J.F.; Conway, T.L.; Gavand, K.A.; Frank, L.D.; Saelens, B.E.; Geremia, C.M.; Chapman, J.; Adams, M.A.; et al. Contribution of streetscape audits to explanation of physical activity in four age groups based on the Microscale Audit of Pedestrian Streetscapes (MAPS). Soc. Sci. Med. 2014, 116, 82–92. [Google Scholar] [CrossRef]
- Casagrande, S.S.; Whitt-Glover, M.C.; Lancaster, K.J.; Odoms-Young, A.M.; Gary, T.L. Built environment and health behaviors among African Americans: A systematic review. Am. J. Prev. Med. 2009, 36, 174–181. [Google Scholar] [CrossRef]
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index: Application to the Neighborhood Quality of Life Study. Br. J. Sports Med. 2010, 44, 924–933. [Google Scholar] [CrossRef]
- Bornioli, A.; Parkhurst, G.; Morgan, P.L. Affective experiences of built environments and the promotion of urban walking. Transp. Res. Part A Policy Pract. 2019, 123, 200–215. [Google Scholar] [CrossRef]
- Kerr, J.; Norman, G.J.; Adams, M.A.; Ryan, S.; Frank, L.; Sallis, J.F.; Calfas, K.J.; Patrick, K. Do neighborhood environments moderate the effect of physical activity lifestyle interventions in adults? Health Place 2010, 16, 903–908. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.A.; Hurley, J.C.; Todd, M.; Bhuiyan, N.; Jarrett, C.L.; Tucker, W.J.; Hollingshead, K.E.; Angadi, S.S. Adaptive goal setting and financial incentives: A 2 × 2 factorial randomized controlled trial to increase adults’ physical activity. BMC Public Health 2017, 17, 286. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.A.; Hurley, J.C.; Phillips, C.B.; Todd, M.; Angadi, S.S.; Berardi, V.; Hovell, M.F.; Hooker, S. Rationale, design, and baseline characteristics of WalkIT Arizona: A factorial randomized trial testing adaptive goals and financial reinforcement to increase walking across higher and lower walkable neighborhoods. Contemp. Clin. Trials 2019, 81, 87–101. [Google Scholar] [CrossRef]
- Mayne, D.J.; Morgan, G.G.; Jalaludin, B.B.; Bauman, A.E. The contribution of area-level walkability to geographic variation in physical activity: A spatial analysis of 95,837 participants from the 45 and Up Study living in Sydney, Australia. Popul. Health Metr. 2017, 15, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebel, K.; Bauman, A.E.; Sugiyama, T.; Owen, N. Mismatch between perceived and objectively assessed neighborhood walkability attributes: Prospective relationships with walking and weight gain. Health Place 2011, 17, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Cain, K.L.; Conway, T.L.; Gavand, K.A.; Millstein, R.A.; Geremia, C.M.; Frank, L.D.; Saelens, B.E.; Glanz, K.; King, A.C. Is your neighborhood designed to support physical activity? A brief streetscape audit tool. Prev. Chronic Dis. 2015, 12, E141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, C.B.; Engelberg, J.K.; Geremia, C.M.; Zhu, W.; Kurka, J.M.; Cain, K.L.; Sallis, J.F.; Conway, T.L.; Adams, M.A. Online versus in-person comparison of Microscale Audit of Pedestrian Streetscapes (MAPS) assessments: Reliability of alternate methods. Int. J. Health Geogr. 2017, 16, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Joseph, E.; Lee, J.S.; Cromley, E.K.; Laden, F.; Troped, P.J. Virtual and actual: Relative accuracy of on-site and web-based instruments in auditing the environment for physical activity. Health Place 2013, 19, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Kurka, J.M.; Adams, M.A.; Geremia, C.; Zhu, W.; Cain, K.L.; Conway, T.L.; Sallis, J.F. Comparison of field and online observations for measuring land uses using the Microscale Audit of Pedestrian Streetscapes (MAPS). J. Transp. Health 2016, 3, 278–286. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, Y.; Kurka, J.; Geremia, C.; Engelberg, J.K.; Cain, K.; Conway, T.; Sallis, J.F.; Hooker, S.P.; Adams, M.A. Reliability between online raters with varying familiarities of a region: Microscale Audit of Pedestrian Streetscapes (MAPS). Landsc. Urban Plan. 2017, 167, 240–248. [Google Scholar] [CrossRef]
- Clarke, P.; Ailshire, J.; Melendez, R.; Bader, M.; Morenoff, J. Using Google Earth to conduct a neighborhood audit: Reliability of a virtual audit instrument. Health Place 2010, 16, 1224–1229. [Google Scholar] [CrossRef] [Green Version]
- Rundle, A.G.; Bader, M.D.M.; Richards, C.A.; Neckerman, K.M.; Teitler, J.O. Using Google Street View to audit neighborhood environments. Am. J. Prev. Med. 2011, 40, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Grande, A.J.; Rech, C.R.; Peccin, M.S. Geoprocessing via google maps for assessing obesogenic built environments related to physical activity and chronic noncommunicable diseases: Validity and reliability. J. Healthc. Eng. 2015, 6, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Vanwolleghem, G.; Ghekiere, A.; Cardon, G.; De Bourdeaudhuij, I.; D’Haese, S.; Geremia, C.M.; Lenoir, M.; Sallis, J.F.; Verhoeven, H.; Van Dyck, D. Using an audit tool (MAPS Global) to assess the characteristics of the physical environment related to walking for transport in youth: Reliability of Belgian data. Int. J. Health Geogr. 2016, 15, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanwolleghem, G.; Van Dyck, D.; Ducheyne, F.; De Bourdeaudhuij, I.; Cardon, G. Assessing the environmental characteristics of cycling routes to school: A study on the reliability and validity of a Google Street View-based audit. Int. J. Health Geogr. 2014, 13, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J.S.; Kelly, C.M.; Schootman, M.; Baker, E.A.; Banerjee, A.; Clennin, M.; Miller, D.K. Assessing the built environment using omnidirectional imagery. Am. J. Prev. Med. 2012, 42, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badland, H.M.; Opit, S.; Witten, K.; Kearns, R.A.; Mavoa, S. Can virtual streetscape audits reliably replace physical streetscape audits? J. Urban Health 2010, 87, 1007–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, L.; Wu, T.; Luo, W.; Zhou, W.; Wu, J. A non-invasive, rapid method to genotype late-onset Alzheimer’s disease-related apolipoprotein E gene polymorphisms. Neural Regen. Res. 2014, 9, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.D.M.; Mooney, S.J.; Lee, Y.J.; Sheehan, D.; Neckerman, K.M.; Rundle, A.G.; Teitler, J.O. Development and deployment of the Computer Assisted Neighborhood Visual Assessment System (CANVAS) to measure health-related neighborhood conditions. Health Place 2015, 31, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Kang, J.; Körner, M.; Wang, Y.; Taubenböck, H.; Zhu, X.X. Building instance classification using street view images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 44–59. [Google Scholar] [CrossRef]
- Naik, N.; Philipoom, J.; Raskar, R.; Hidalgo, C. Streetscore—Predicting the Perceived Safety of One Million Streetscapes. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 793–799. [Google Scholar]
- Gebru, T.; Krause, J.; Wang, Y.; Chen, D.; Deng, J.; Aiden, E.L.; Fei-Fei, L. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13108–13113. [Google Scholar] [CrossRef] [Green Version]
- Branson, S.; Wegner, J.D.; Hall, D.; Lang, N.; Schindler, K.; Perona, P. From Google Maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote Sens. 2018, 135, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Hara, K.; Sun, J.; Moore, R.; Jacobs, D.; Froehlich, J. Tohme: Detecting curb ramps in google street view using crowdsourcing, computer vision, and machine learning. In Proceedings of the 27th annual ACM symposium on User interface software and technology—UIST’14, Honolulu, HI, USA, 5–8 October 2014; ACM Press: New York, NY, USA, 2014; pp. 189–204. [Google Scholar]
- Abbott, A.; Deshowitz, A.; Murray, D.; Larson, E.C. WalkNet: A Deep Learning Approach to Improving Sidewalk Quality and Accessibility. SMU Data Sci. Rev. 2018, 1, 7. [Google Scholar]
- Berriel, R.F.; Rossi, F.S.; de Souza, A.F.; Oliveira-Santos, T. Automatic large-scale data acquisition via crowdsourcing for crosswalk classification: A deep learning approach. Comput. Graph. 2017, 68, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Krylov, V.; Kenny, E.; Dahyot, R. Automatic Discovery and Geotagging of Objects from Street View Imagery. Remote Sens. 2018, 10, 661. [Google Scholar] [CrossRef] [Green Version]
- Balali, V.; Ashouri Rad, A.; Golparvar-Fard, M. Detection, classification, and mapping of U.S. traffic signs using google street view images for roadway inventory management. Vis. Eng. 2015, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Hebbalaguppe, R.; Garg, G.; Hassan, E.; Ghosh, H.; Verma, A. Telecom inventory management via object recognition and localisation on google street view images. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 725–733. [Google Scholar]
- Koo, B.W.; Guhathakurta, S.; Botchwey, N. How are Neighborhood and Street-Level Walkability Factors Associated with Walking Behaviors? A Big Data Approach Using Street View Images. Environ. Behav. 2021, 54, 211–241. [Google Scholar] [CrossRef]
- Saelens, B.E.; Sallis, J.F.; Black, J.B.; Chen, D. Neighborhood-based differences in physical activity: An environment scale evaluation. Am. J. Public Health 2003, 93, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Cerin, E.; Conway, T.L.; Saelens, B.E.; Frank, L.D.; Sallis, J.F. Cross-validation of the factorial structure of the Neighborhood Environment Walkability Scale (NEWS) and its abbreviated form (NEWS-A). Int. J. Behav. Nutr. Phys. Act. 2009, 6, 32. [Google Scholar] [CrossRef]
- Adams, M.A.; Ryan, S.; Kerr, J.; Sallis, J.F.; Patrick, K.; Frank, L.D.; Norman, G.J. Validation of the Neighborhood Environment Walkability Scale (NEWS) items using geographic information systems. J. Phys. Act. Health 2009, 6 (Suppl. S1), S113–S123. [Google Scholar] [CrossRef]
- Ching, J.; Aliaga, D.; Mills, G.; Masson, V.; See, L.; Neophytou, M.; Middel, A.; Baklanov, A.; Ren, C.; Ng, E.; et al. Pathway using WUDAPT’s Digital Synthetic City tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling. Urban Clim. 2019, 28, 100459. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Maciejewski, R.; Demuzere, M.; Roth, M. Sky View Factor footprints for urban climate modeling. Urban Clim. 2018, 25, 120–134. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Wada, K.; Mpitid; Buijs, M.; Zhang, C.N.; なるみ; Kubovčík, B.M.; Myczko, A.; Latentix; Zhu, L.; Yamaguchi, N.; et al. wkentaro/labelme: V4.6.0. Zenodo 2021. [Google Scholar] [CrossRef]
- Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Gugger, S. Fastai: A layered API for deep learning. Information 2020, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Huh, M.; Agrawal, P.; Efros, A.A. What makes ImageNet good for transfer learning? arXiv 2016, arXiv:1608.08614. [Google Scholar]
- Gebel, K.; Bauman, A.; Owen, N. Correlates of non-concordance between perceived and objective measures of walkability. Ann. Behav. Med. 2009, 37, 228–238. [Google Scholar] [CrossRef]
- Athens, J.; Mehta, S.; Wheelock, S.; Chaudhury, N.; Zezza, M. Using 311 data to develop an algorithm to identify urban blight for public health improvement. PLoS ONE 2020, 15, e0235227. [Google Scholar] [CrossRef]
- Ping, P.; Xu, G.; Kumala, E.; Gao, J. Smart Street Litter Detection and Classification Based on Faster R-CNN and Edge Computing. Int. J. Soft. Eng. Knowl. Eng. 2020, 30, 537–553. [Google Scholar] [CrossRef]
- Neuhold, G.; Ollmann, T.; Bulo, S.R.; Kontschieder, P. The mapillary vistas dataset for semantic understanding of street scenes. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5000–5009. [Google Scholar]
- Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic object classes in video: A high-definition ground truth database. Pattern Recognit. Lett. 2009, 30, 88–97. [Google Scholar] [CrossRef]
Street Feature | Image Counts | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Present | Absent | Total | ||||||||
All Training | All Validation | Phoenix Only Training | Phoenix Only Validation | All Training | All Validation | Phoenix Only Training | Phoenix Only Validation | Training | Validation | |
Sidewalk | 8868 | 2851 | 5177 | 1745 | 3702 | 1254 | 2298 | 429 | 12570 | 4105 |
Sidewalk buffer | 3530 | 629 | 1519 | 347 | 6066 | 1773 | 4461 | 1567 | 9596 | 2402 |
Curb cuts | 5947 | 599 | 2406 | 268 | 6059 | 767 | 2459 | 599 | 12006 | 1366 |
Zebra crosswalk | 1687 | 2456 | 412 | 100 | 5604 | 6121 | 2971 | 879 | 7291 | 8577 |
Line crosswalk | 1762 | 1053 | 1693 | 758 | 4057 | 2462 | 3798 | 2257 | 5819 | 3515 |
Walk Signal | 3126 | 509 | 1951 | 216 | 4722 | 1221 | 2747 | 1014 | 7848 | 1730 |
Bike Symbol | 1127 | 152 | 853 | 132 | 9306 | 2138 | 6908 | 2078 | 10433 | 2290 |
Streetlight | 1380 | 288 | 808 | 170 | 1213 | 273 | 761 | 171 | 2593 | 561 |
Street Feature | Performance | ||||
---|---|---|---|---|---|
Precision | Recall | Negative Predictive Value | Specificity | Accuracy | |
Sidewalk | 97.93% | 97.48% | 89.93% | 91.61% | 96.32% |
Sidewalk buffer | 86.73% | 84.73% | 96.63% | 97.13% | 94.88% |
Curb cut | 95.38% | 92.54% | 96.71% | 98.00% | 96.31% |
Zebra crosswalk | 100% | 96.00% | 99.55% | 100% | 99.59% |
Line crosswalk | 95.97% | 94.20% | 98.06% | 98.67% | 97.55% |
Walk signals | 96.77% | 97.22% | 99.41% | 99.31% | 98.94% |
Bike symbols | 93.28% | 94.70% | 99.66% | 99.57% | 99.28% |
Streetlight | 88.64% | 91.76% | 91.52% | 88.30% | 90.03% |
Model- Detected Microscale Feature | GIS-Measured Macroscale Neighborhood Walkability | Perceived Neighborhood Walkability | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Residential Density | Land-Use Mix Diversity | Intersection Density | Transit Density | Overall Walkability Index | Residential Density | Land-Use Mix Diversity | Street Connectivity | Walking and Cycling Facilities | Aesthetics | Pedestrian Safety | Crime Safety | |
Sidewalks | 0.12 ** | 0.05 | 0.18 ** | −0.06 | 0.02 | −0.06 | −0.02 | −0.03 | 0.11 * | −0.24 *** | 0.01 | −0.02 |
Sidewalk Buffers | 0.18 *** | 0.30 *** | −0.14 ** | 0.01 | 0.17 *** | 0.07 † | −0.01 | 0.05 | 0.17 *** | 0.19 ** | −0.08 † | 0.01 |
Curb Cuts | 0.04 | 0.16 * | −0.16 *** | −0.20 *** | −0.11 * | −0.19 *** | −0.06 | 0.06 | 0.17 *** | −0.03 | 0.08 † | 0.04 |
Zebra crosswalks | 0.16 *** | −0.07 | 0.04 | 0.37 *** | 0.02 | 0.15 ** | 0.04 | −0.01 | −0.04 | −0.06 | −0.04 | −0.07 |
Line crosswalks | 0.06 | 0.42 *** | −0.14 ** | 0.13 ** | 0.39 *** | 0.28 *** | 0.24 *** | 0.01 | 0.02 | 0.03 | −0.01 | −0.02 |
All crosswalks | 0.07 † | 0.39 *** | −0.12 ** | 0.38 ** | 0.38 *** | 0.30 *** | 0.23 *** | 0.00 | 0.01 | 0.01 | −0.01 | −0.03 |
Walk Signals | 0.09 * | 0.37 *** | −0.10 * | 0.52 *** | 0.46 *** | 0.31 *** | 0.23 ** | 0.02 | 0.00 | 0.07 | −0.07 † | −0.07 |
Bike Symbols | 0.17 ** | 0.22 *** | 0.06 | 0.20 *** | 0.28 *** | 0.25 *** | 0.15 ** | −0.01 | 0.02 | −0.03 | −0.03 | −0.05 |
Streetlights | 0.23 *** | 0.38 *** | 0.00 | 0.12 ** | 0.35 *** | 0.17 *** | 0.07 | −0.00 | 0.14 ** | −0.03 | −0.06 | −0.07 |
Total Microscale | 0.19 *** | 0.38 *** | −0.12 * | 0.11 * | 0.30 *** | 0.13 ** | 0.07 † | 0.02 | 0.21 *** | 0.04 | −0.02 | −0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, M.A.; Phillips, C.B.; Patel, A.; Middel, A. Training Computers to See the Built Environment Related to Physical Activity: Detection of Microscale Walkability Features Using Computer Vision. Int. J. Environ. Res. Public Health 2022, 19, 4548. https://doi.org/10.3390/ijerph19084548
Adams MA, Phillips CB, Patel A, Middel A. Training Computers to See the Built Environment Related to Physical Activity: Detection of Microscale Walkability Features Using Computer Vision. International Journal of Environmental Research and Public Health. 2022; 19(8):4548. https://doi.org/10.3390/ijerph19084548
Chicago/Turabian StyleAdams, Marc A., Christine B. Phillips, Akshar Patel, and Ariane Middel. 2022. "Training Computers to See the Built Environment Related to Physical Activity: Detection of Microscale Walkability Features Using Computer Vision" International Journal of Environmental Research and Public Health 19, no. 8: 4548. https://doi.org/10.3390/ijerph19084548
APA StyleAdams, M. A., Phillips, C. B., Patel, A., & Middel, A. (2022). Training Computers to See the Built Environment Related to Physical Activity: Detection of Microscale Walkability Features Using Computer Vision. International Journal of Environmental Research and Public Health, 19(8), 4548. https://doi.org/10.3390/ijerph19084548