Association among Helicobacter pylori Infection, Tooth Loss, and Heavy Medal Exposure in a Chinese Rural Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Study Population
2.3. Sample Collection
2.4. Heavy Metal Determination in Whole Blood
2.5. Carbon-14 Urea Breath Test
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population in the Different Villages
3.2. Association of H. pylori Infection and Dental Problems with Heavy Metal Exposure Levels
3.3. Association of H. pylori infection with Dental Problems
3.4. Association between the H. pylori Infection and Dental Problems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ztürk, N.; Kurt, N.; Özgeriş, F.B.; Baygutalp, N.K.; Tosun, M.S.; Bakan, N. Serum Zinc, Copper, Magnesium and Selenium Levels in Children with Helicobacter pylori Infection. Eurasian J. Med. 2015, 47, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Li, L.; Hu, C.; Zhang, D.; Wang, C.; Jiang, Y. Serum Concentrations of 15 Elements Among Helicobacter pylori-Infected Residents from Lujiang County with High Gastric Cancer Risk in Eastern China. Biol. Trace Elem. Res. 2018, 186, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Krueger, W.S.; Wade, T.J. Elevated blood lead and cadmium levels associated with chronic infections among non-smokers in a cross-sectional analysis of NHANES data. Environ. Health 2016, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leja, M.; Grinberga-Derica, I.; Bilgilier, C.; Steininger, C. Review: Epidemiology of Helicobacter pylori infection. Helicobacter 2019, 24, e12635. [Google Scholar] [CrossRef] [Green Version]
- Pina-Pérez, M.C.; González, A.; Moreno, Y.; Ferrús, M.A. Helicobacter pylori Detection in Shellfish: A Real-Time Quantitative Polymerase Chain Reaction Approach. Foodborne Pathog. Dis. 2019, 16, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.G.; Loke, M.F.; Goh, K.L.; Vadivelu, J.; Ho, B. Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiol. 2017, 62, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Rusiñol, M.; Hundesa, A.; Cárdenas-Youngs, Y.; Fernández-Bravo, A.; Pérez-Cataluña, A.; Moreno-Mesonero, L. Microbiologial contamination of conventional and reclaimed irrigation water: Evaluation and management measures. Sci. Total Environ. 2020, 710, 136298. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, K.K.; Hegde, A.M. Lead exposure and its relation to dental caries in children. J. Clin. Pediatr. Dent. 2013, 38, 71–74. [Google Scholar] [CrossRef]
- Ma, Y.; Ran, D.; Shi, X.; Zhao, H.; Liu, Z. Cadmium toxicity: A role in bone cell function and teeth development. Sci. Total Environ. 2021, 769, 144646. [Google Scholar] [CrossRef]
- Goller, S.S.; Hesse, N.; Dürr, H.R.; Ricke, J.; Schmitt, R. Hydroxyapatite deposition disease of the wrist with intraosseous migration to the lunate bone. Skelet. Radiol. 2021, 50, 1909–1913. [Google Scholar] [CrossRef]
- Foxman, B.; Kolderman, E.; Salzman, E.; Cronenwett, A.; Gonzalez-Cabezas, C.; Neiswanger, K.; Marazita, M.L. Primary teeth microhardness and lead (Pb) levels. Heliyon 2019, 5, e01551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-L.; Fang, J.; Chang, C.-J.; Wu, T.-F.; Wang, I.-K.; Fu, J.-F.; Huang, Y.-C.; Yen, J.-S.; Weng, C.-H.; Yen, T.-H. Environmental Cadmium Exposure and Dental Indices in Orthodontic Patients. Healthcare 2021, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Browar, A.W.; Koufos, E.B.; Wei, Y.; Leavitt, L.L.; Prozialeck, W.C.; Edwards, J.R. Cadmium Exposure Disrupts Periodontal Bone in Experimental Animals: Implications for Periodontal Disease in Humans. Toxics 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Browar, A.W.; Leavitt, L.L.; Prozialeck, W.C.; Edwards, J.R. Levels of Cadmium in Human Mandibular Bone. Toxics 2019, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tort, B.; Choi, Y.-H.; Kim, E.-K.; Jung, Y.-S.; Ha, M.; Song, K.-B.; Lee, Y.-E. Lead exposure may affect gingival health in children. BMC Oral Health 2018, 18, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Jansen, E.C.; Peterson, K.E.; Foxman, B.; Goodrich, J.M.; Hu, H.; Solano-González, M.; Cantoral, A.; Téllez-Rojo, M.M.; Martinez-Mier, E.A. The associations between lead exposure at multiple sensitive life periods and dental caries risks in permanent teeth. Sci. Total Environ. 2018, 654, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Alagl, A.S.; Abdelsalam, M.; El Tantawi, M.; Madi, M.; Aljindan, R.; Alsayyah, A. Association between Helicobacter pylori gastritis and dental diseases: A cross-sectional, hospital-based study in Eastern Saudi Arabia. J. Periodontol. 2019, 90, 375–380. [Google Scholar] [CrossRef]
- Shimoyama, T.; Higuchi, H.; Matsuzaka, M.; Chinda, D.; Nakaji, S.; Fukuda, S. Helicobacter pylori infection is associated with a decreased risk of tooth loss in healthy Japanese men. Jpn. J. Infect. Dis. 2013, 66, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, S.; Nan, Z.; Zang, F.; Sun, H.; Zhang, Q.; Huang, W.; Bao, L. Accumulation, fractionation and health risk as-sessment of fluoride and heavy metals in soil-crop systems in northwest China. Sci Total Environ. 2019, 663, 307–314. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Ai, S.; Zhu, S.; Zhang, W.; Zhang, Y. Spatial distribution and source identification of heavy metals in soils under different land uses in a sewage irrigation region, northwest China. J. Soils Sediments 2016, 16, 1547–1556. [Google Scholar] [CrossRef]
- Nan, Z.; Zhao, C. Heavy Metal Concentrations in Gray Calcareous Soils of Baiyin Region, Gansu Province, P.R. China. Water Air Soil Pollut. 2000, 118, 131–142. [Google Scholar] [CrossRef]
- Liu, B.; Ai, S.; Zhang, W.; Huang, D.; Zhang, Y. Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China. Sci. Total Environ. 2017, 609, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Zang, F.; Wang, S.; Nan, Z.; Ma, J.; Zhang, Q.; Chen, Y.; Li, Y. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma 2017, 305, 188–196. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, J.; Niu, J.; Wang, H.; Li, X. Association between lead and cadmium co-exposure and systemic immune in-flammation in residents living near a mining and smelting area in NW China. Chemosphere 2022, 287 Pt 3, 132190. [Google Scholar] [CrossRef]
- Zhang, F.; Pu, K.; Wu, Z.; Zhang, Z.; Liu, X.; Chen, Z.; Ye, Y.; Wang, Y.; Zheng, Y.; Zhang, J.; et al. Prevalence and associated risk factors of Helicobacter pylori infection in the Wuwei cohort of north-western China. Trop. Med. Int. Health 2020, 26, 290–300. [Google Scholar] [CrossRef]
- Hertzmark, E.; Pazaris, M.; Spiegelman, D. The SAS MEDIATE Macro. Harvard T.H. Chan School of Public Health. 2018. Available online: https://www.hsph.harvard.edu/donna--spiegelman/software/mediate/ (accessed on 7 February 2022).
- Li, Y.; Wang, Y.-B.; Gou, X.; Su, Y.-B.; Wang, G. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J. Environ. Sci. 2006, 18, 1124–1134. [Google Scholar] [CrossRef]
- He, B.; Wang, W.; Geng, R.; Ding, Z.; Luo, D.; Qiu, J.; Zheng, G.; Fan, Q. Exploring the fate of heavy metals from mining and smelting activities in soil-crop system in Baiyin, NW China. Ecotoxicol. Environ. Saf. 2020, 207, 111234. [Google Scholar] [CrossRef]
- Li, M.; Sun, Y.; Yang, J.; de Martel, C.; Charvat, H.; Clifford, G.M. Time trends and other sources of variation in Helico-bacter pylori infection in mainland China: A systematic review and meta-analysis. Helicobacter 2020, 25, e12729. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, W.; Zhu, S.; Sun, X.; Li, P.; Liu, K.; Liu, H.; Gu, J.; Zhang, S. Assessment of prevalence and risk factors of helicobacter pylori infection in an oilfield Community in Hebei, China. BMC Gastroenterol. 2019, 19, 186. [Google Scholar] [CrossRef]
- Hooi, J.; Lai, W.Y.; Ng, W.K.; Suen, M.; Underwood, F.E.; Tanyingoh, D. Global Prevalence of Helicobacter pylori In-fection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Fong, P.; Wang, Q.T. Protective effect of oral contraceptive against Helicobacter pylori infection in US adult females: NHANES 1999–2000. Epidemiol. Infect. 2021, 149, e120. [Google Scholar] [CrossRef]
- Park, W.-J.; Kim, S.-H.; Kang, W.; Ahn, J.-S.; Cho, S.; Lim, D.-Y.; Kim, S.; Moon, J.-D. Blood lead level and Helicobacter pylori infection in a healthy population: A cross-sectional study. Arch. Environ. Occup. Health 2019, 75, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-M.; Li, B.-Y.; Tang, Z.; She, J.; Liang, X.-Y.; Dong, L.-K.; Zhang, M. Epidemiological investigation of Helicobacter pylori infection in elderly people in Beijing. World J. Clin. Cases 2020, 8, 2173–2180. [Google Scholar] [CrossRef] [PubMed]
- Szaflarska-Popławska, A.; Soroczyńska-Wrzyszcz, A. Prevalence of Helicobacter pylori infection among junior high school students in Grudziadz, Poland. Helicobacter 2019, 24, e12552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alomary, A.; Al-Momani, I.F.; Obeidat, S.M.; Massadeh, A.M. Levels of lead, cadmium, copper, iron, and zinc in deciduous teeth of children living in Irbid, Jordan by ICP-OES: Some factors affecting their concentrations. Environ. Monit. Assess. 2012, 185, 3283–3295. [Google Scholar] [CrossRef] [PubMed]
- Shiue, I. Urinary heavy metals, phthalates, phenols, thiocyanate, parabens, pesticides, polyaromatic hydrocarbons but not arsenic or polyfluorinated compounds are associated with adult oral health: USA NHANES, 2011–2012. Environ. Sci. Pollut. Res. 2015, 22, 15636–15645. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Shen, S.; Zhang, Z.; Song, X.; Jiang, Q. Study on the relationship between age and the concentrations of heavy metal elements in human bone. Ann. Transl. Med. 2018, 6, 320. [Google Scholar] [CrossRef]
- Kakei, M.; Sakae, T.; Yoshikawa, M. Combined effects of estrogen deficiency and cadmium exposure on calcified hard tissues: Animal model relating to itai-itai disease in postmenopausal women. Proc. Jpn. Acad. Ser. B 2013, 89, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Liu, M.; Shu, H.; Chen, Z.; Liu, G.; Zhang, Y. Relationship between oral problems and Helicobacter pylori infection. Arch. Oral Biol. 2014, 59, 938–943. [Google Scholar] [CrossRef]
- Zahedi, L.; Jafari, E.; Parizi, M.T.; Shafieipour, S.; Abbasi, M.H.B.; Moghadam, S.D.; Zahedi, M.J. The Association between Oral Hygiene and Gastric Pathology in Patients with Dyspepsia: A Cross-Sectional Study in Southeast Iran. Middle East J. Dig. Dis. 2017, 9, 33–38. [Google Scholar] [CrossRef]
- Pearce, M.S.; Steele, J.G.; Campbell, D.I.; Thomas, J.E. Tooth Loss and Helicobacter pylori Seropositivity: The Newcastle Thousand Families Cohort Study at Age 49–51 Years. Helicobacter 2005, 10, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nature reviews. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Kotsakis, G.A.; Chrepa, V.; Shivappa, N.; Wirth, M.; Hébert, J.; Koyanagi, A.; Tyrovolas, S. Diet-borne systemic inflammation is associated with prevalent tooth loss. Clin. Nutr. 2017, 37, 1306–1312. [Google Scholar] [CrossRef]
- Melo, P.; Marques, S.; Silva, O.M. Portuguese self-reported oral-hygiene habits and oral status. Int. Dent. J. 2017, 67, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolzenberg-Solomon, R.Z.; Dodd, K.W.; Blaser, M.J.; Virtamo, J.; Taylor, P.R.; Albanes, D. Tooth loss, pancreatic cancer, and Helicobacter pylori. Am. J. Clin. Nutr. 2003, 78, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Radaic, A.; Kapila, Y.L. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput. Struct. Biotechnol. J. 2021, 19, 1335–1360. [Google Scholar] [CrossRef]
YF Village (n = 99) | SH Village (n = 91) | MQ Village (n = 126) | p Value | |
---|---|---|---|---|
Demographic characteristics | ||||
Height (Wu et al.) | 159.68 ± 6.53 | 163.49 ± 8.29 | 162.03 ± 8.84 | 0.004 * |
Weight (kg) | 62.81 ± 9.33 | 62.39 ± 11.16 | 61.43 ± 10.78 | 0.596 |
BMI (kg/m2) | 24.66 ± 3.61 | 23.30 ± 3.51 | 23.29 ± 2.84 | 0.003 * |
Waist circumference (Wu et al.) | 83.87 ± 9.37 | 84.13 ± 9.59 | 85.25 ± 8.95 | 0.491 |
Age (years) | 56.30 ± 11.39 | 55.70 ± 6.18 | 56.45 ± 6.96 | 0.802 |
Gender | 0.226 | |||
Male | 30 (30.3) | 35 (38.5) | 52 (41.3) | |
Female | 69 (69.7) | 56 (61.5) | 74 (58.7) | |
Education level | 0.626 | |||
Illiteracy | 32 (32.3) | 25 (27.5) | 32 (25.4) | |
Primary school | 26 (26.3) | 19 (20.9) | 28 (22.2) | |
Middle school | 32 (32.3) | 34 (37.4) | 45 (35.7) | |
High school | 9 (9.1) | 13 (14.3) | 21 (16.7) | |
Family income/person/year (¥) | 0.001 * | |||
<1000 | 12 (12.8) | 10 (11.2) | 2 (1.7) | |
1000–3000 | 24 (25.5) | 26 (29.2) | 19 (15.8) | |
3000–6000 | 26 (27.7) | 28 (31.5) | 40 (33.3) | |
6000–10,000 | 27 (28.7) | 18 (20.2) | 38 (31.7) | |
>10,000 | 5 (5.3) | 7 (7.9) | 21 (17.5) | |
Occupation | 0.683 | |||
Farmer | 92 (92.9) | 85 (93.4) | 114 (90.5) | |
No farmer | 7 (7.1) | 6 (6.6) | 12 (9.5) | |
Cigarette smoking | 0.050 * | |||
Yes | 24 (24.2) | 30 (33.0) | 50 (39.7) | |
No | 75 (75.8) | 61 (67.0) | 76 (60.3) | |
Alcohol consumption | 0.058 | |||
Yes | 5 (5.1) | 6 (6.6) | 17 (13.5) | |
No | 94 (94.9) | 85 (93.4) | 109 (86.5) | |
Tea drinking | 0.939 | |||
Yes | 37 (37.4) | 35 (38.5) | 50 (39.7) | |
No | 62 (62.6) | 56 (61.5) | 76 (60.3) | |
Salt intake | 0.218 | |||
High-salt (>6 g/day) | 9 (9.1) | 16 (12.7) | 16 (17.6) | |
Normal (≤6 g/day) | 90 (90.9) | 110 (87.3) | 75 (82.4) | |
Gastric history | 0.010 * | |||
Yes | 12 (12.1) | 2 (2.2) | 18 (14.3) | |
No | 87 (87.9) | 89 (97.8) | 108 (85.7) | |
Carbon-14 urea breath test | ||||
H. pylori infection | 0.001 * | |||
Negative | 36 (36.4) | 18 (19.8) | 19 (15.1) | |
Positive | 63 (63.6) | 73 (80.2) | 107 (84.9) | |
Dental problems | ||||
MT index | 0.242 | |||
0–10 | 94 (94.9) | 90 (98.9) | 123 (97.6) | |
11–28 | 5 (5.1) | 1 (1.1) | 3 (2.4) | |
FT index | 0.012 * | |||
0–10 | 93 (93.9) | 87 (95.6) | 107 (84.9) | |
11–28 | 6 (6.1) | 4 (4.4) | 19 (15.1) | |
MFT index | 0.048 * | |||
0–10 | 87 (87.9) | 84 (92.3) | 102 (81.0) | |
11–28 | 12 (12.1) | 7 (7.7) | 24 (19.0) | |
Toxic trace metals | ||||
BCd (ng/mL) | 0.42 (0.08–1.52) | 2.92 (0.08–5.91) | 4.82 (2.81–7.79) | <0.001 * |
BPb (ng/mL) | 21.32 (10.92–27.71) | 22.44 (12.42–30.21) | 44.34 (34.99–56.81) | <0.001 * |
High BCd (n = 158) | Low BCd (n = 158) | p Value | High BPb (n = 158) | Low BPb (n = 158) | p Value | |
---|---|---|---|---|---|---|
Carbon-14 urea breath test | ||||||
H. pylori infection | 0.031* | 0.004 * | ||||
Negative | 29 (18.4) | 44 (27.8) | 26 (16.5) | 47 (29.7) | ||
Positive | 129 (81.6) | 114 (72.2) | 132 (83.5) | 111 (70.3) | ||
Dental problems | ||||||
MT index | 0.251 | 0.500 | ||||
0–10 | 155 (98.1) | 152 (96.2) | 154 (97.5) | 153 (96.8) | ||
11–28 | 3 (1.9) | 6 (3.8) | 4 (2.5) | 5 (3.2) | ||
FT index | 0.121 | 0.003 * | ||||
0–10 | 140 (88.6) | 147 (93.0) | 136 (86.1) | 151 (95.6) | ||
11–28 | 18 (11.4) | 11 (7.0) | 22 (13.9) | 7 (4.4) | ||
MFT index | 0.372 | 0.024 * | ||||
0–10 | 135 (85.4) | 138 (87.3) | 130 (82.3) | 143 (90.5) | ||
11–28 | 23 (14.6) | 20 (12.7) | 28 (17.7) | 15 (9.5) |
Model 1 | Model 2 | |||
---|---|---|---|---|
OR (95%CI) | p Value | OR (95%CI) | p Value | |
MT index | ||||
0–10 | reference | reference | ||
11–28 | 1.209 (0.251–5.821) | 0.813 | 1.218 (0.248–5.994) | 0.808 |
FT index | ||||
0–10 | reference | reference | ||
11–28 | 4.437 (1.029–19.129) | 0.046 * | 4.938 (1.125–21.671) | 0.034 * |
MFT index | ||||
0–10 | reference | reference | ||
11–28 | 3.298 (1.137–9.563) | 0.028 * | 3.602 (1.218–10.648) | 0.020 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Zhang, H.; Hu, Z.; Zhang, X.; Niu, J.; Luo, B.; Wang, H.; Li, X. Association among Helicobacter pylori Infection, Tooth Loss, and Heavy Medal Exposure in a Chinese Rural Population. Int. J. Environ. Res. Public Health 2022, 19, 4569. https://doi.org/10.3390/ijerph19084569
Yan J, Zhang H, Hu Z, Zhang X, Niu J, Luo B, Wang H, Li X. Association among Helicobacter pylori Infection, Tooth Loss, and Heavy Medal Exposure in a Chinese Rural Population. International Journal of Environmental Research and Public Health. 2022; 19(8):4569. https://doi.org/10.3390/ijerph19084569
Chicago/Turabian StyleYan, Jun, Honglong Zhang, Zenan Hu, Xuan Zhang, Jingping Niu, Bin Luo, Haiping Wang, and Xun Li. 2022. "Association among Helicobacter pylori Infection, Tooth Loss, and Heavy Medal Exposure in a Chinese Rural Population" International Journal of Environmental Research and Public Health 19, no. 8: 4569. https://doi.org/10.3390/ijerph19084569
APA StyleYan, J., Zhang, H., Hu, Z., Zhang, X., Niu, J., Luo, B., Wang, H., & Li, X. (2022). Association among Helicobacter pylori Infection, Tooth Loss, and Heavy Medal Exposure in a Chinese Rural Population. International Journal of Environmental Research and Public Health, 19(8), 4569. https://doi.org/10.3390/ijerph19084569