Validity and Absolute Reliability of the Cobb Angle in Idiopathic Scoliosis with TraumaMeter Software
Abstract
:1. Introduction
2. Materials and Methods
2.1. Software
2.2. Study Design and Measurement Protocol
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Q.; Lin, H.; Wang, L.; Zhao, L.; Chen, M.; Wang, S.; Rao, Z.; Luo, Y. Correlation between Spinal Coronal Balance and Static Baropodometry in Children with Adolescent Idiopathic Scoliosis. Gait Posture 2020, 75, 93–97. [Google Scholar] [CrossRef]
- Hefti, F. Pathogenesis and Biomechanics of Adolescent Idiopathic Scoliosis (AIS). J. Child. Orthop. 2013, 7, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Kuklo, T.R.; Potter, B.K.; Lenke, L.G. Vertebral Rotation and Thoracic Torsion in Adolescent Idiopathic Scoliosis. J. Spinal Disord. Tech. 2005, 18, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.P.; Pai Kanhangad, M.; Gullia, A. Curve Severity and Apical Vertebral Rotation and Their Association with Curve Flexibility in Adolescent Idiopathic Scoliosis. Musculoskelet. Surg. 2021, 105, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eijgenraam, S.M.; Boselie, T.F.M.; Sieben, J.M.; Bastiaenen, C.H.G.; Willems, P.C.; Arts, J.J.; Lataster, A. Development and Assessment of a Digital X-Ray Software Tool to Determine Vertebral Rotation in Adolescent Idiopathic Scoliosis. Spine J. 2017, 17, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Carlson, B.B.; Burton, D.C.; Asher, M.A. Comparison of Trunk and Spine Deformity in Adolescent Idiopathic Scoliosis. Scoliosis 2013, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Vrtovec, T.; Vengust, R.; Likar, B.; Pernuš, F. Analysis of Four Manual and a Computerized Method for Measuring Axial Vertebral Rotation in Computed Tomography Images. Spine 2010, 35, E535–E541. [Google Scholar] [CrossRef]
- Tamura, Y.; Sugano, N.; Sasama, T.; Sato, Y.; Tamura, S.; Yonenobu, K.; Yoshikawa, H.; Ochi, T. Surface-Based Registration Accuracy of CT-Based Image-Guided Spine Surgery. Eur. Spine J. 2005, 14, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Zhu, F.; Xu, L.; Zhu, Z.; Qian, B.; Liu, Z.; Qiu, Y. Comparison of the Aorta Impingement Risks between Thoracolumbar/Lumbar Curves with Different Convexities in Adolescent Idiopathic Scoliosis: A Computed Tomography Study. Eur. Spine J. 2012, 21, 2043–2049. [Google Scholar] [CrossRef] [Green Version]
- Vrtovec, T.; Pernuš, F.; Likar, B. A Review of Methods for Quantitative Evaluation of Axial Vertebral Rotation. Eur. Spine J. 2009, 18, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Petit, Y.; Aubin, C.-É.; Labelle, H. Spinal Shape Changes Resulting from Scoliotic Spine Surgical Instrumentation Expressed as Intervertebral Rotations and Centers of Rotation. J. Biomech. 2004, 37, 173–180. [Google Scholar] [CrossRef]
- Morrissy, R.T.; Goldsmith, G.S.; Hall, E.C.; Kehl, D.; Cowie, G.H. Measurement of the Cobb Angle on Radiographs of Patients Who Have Scoliosis. Evaluation of Intrinsic Error. J. Bone Jt. Surg. Am. 1990, 72, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Carman, D.L.; Browne, R.H.; Birch, J.G. Measurement of Scoliosis and Kyphosis Radiographs. Intraobserver and Interobserver Variation. J. Bone Jt. Surg. Am. 1990, 72, 328–333. [Google Scholar] [CrossRef]
- Cowell, H.R. Radiographic Measurements and Clinical Decisions. J. Bone Jt. Surg. Am. 1990, 72, 319. [Google Scholar] [CrossRef]
- Hattori, T.; Sakaura, H.; Iwasaki, M.; Nagamoto, Y.; Yoshikawa, H.; Sugamoto, K. In Vivo Three-Dimensional Segmental Analysis of Adolescent Idiopathic Scoliosis. Eur. Spine J. 2011, 20, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, N.D.; Bruce, R.W. Early Onset Scoliosis: Current Concepts and Controversies. Curr. Rev. Musculoskelet. Med. 2012, 5, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Kuklo, T.R.; Potter, B.K.; Schroeder, T.M.; O’Brien, M.F. Comparison of Manual and Digital Measurements in Adolescent Idiopathic Scoliosis. Spine 2006, 31, 1240–1246. [Google Scholar] [CrossRef]
- Yazici, M.; Acaroglu, E.R.; Alanay, A.; Deviren, V.; Cila, A.; Surat, A. Measurement of Vertebral Rotation in Standing versus Supine Position in Adolescent Idiopathic Scoliosis. J. Pediatr. Orthop. 2001, 21, 252–256. [Google Scholar] [CrossRef]
- Essex, R.; Bruce, G.; Dibley, M.; Newton, P.; Thompson, T.; Swaine, I.; Dibley, L. A systematic scoping review and textual narrative synthesis of the qualitative evidence related to adolescent idiopathic scoliosis. Int. J. Orthop. Trauma Nurs. 2022, 45, 100921. [Google Scholar] [CrossRef]
- D’Andrea, L.P.; Betz, R.R.; Lenke, L.G.; Clements, D.H.; Lowe, T.G.; Merola, A.; Haher, T.; Harms, J.; Huss, G.K.; Blanke, K.; et al. Do Radiographic Parameters Correlate with Clinical Outcomes in Adolescent Idiopathic Scoliosis? Spine 2000, 25, 1795–1802. [Google Scholar] [CrossRef]
- Mok, J.M.; Berven, S.H.; Diab, M.; Hackbarth, M.; Hu, S.S.; Deviren, V. Comparison of Observer Variation in Conventional and Three Digital Radiographic Methods Used in the Evaluation of Patients with Adolescent Idiopathic Scoliosis. Spine 2008, 33, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Lonstein, J.E.; Carlson, J.M. The Prediction of Curve Progression in Untreated Idiopathic Scoliosis during Growth. J. Bone Jt. Surg. Am. 1984, 66, 1061–1071. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, S.L.; Ponseti, I.V. Curve Progression in Idiopathic Scoliosis. J. Bone Jt. Surg. Am. 1983, 65, 447–455. [Google Scholar] [CrossRef]
- Loder, R.T.; Spiegel, D.; Gutknecht, S.; Kleist, K.; Ly, T.; Mehbod, A. The Assessment of Intraobserver and Interobserver Error in the Measurement of Noncongenital Scoliosis in Children ≤ 10 Years of Age. Spine 2004, 29, 2548–2553. [Google Scholar] [CrossRef]
- Ylikoski, M.; Tallroth, K. Measurement Variations in Scoliotic Angle, Vertebral Rotation, Vertebral Body Height, and Intervertebral Disc Space Height. J. Spinal Disord. 1990, 3, 387–391. [Google Scholar]
- Zmurko, M.G.; Mooney, J.F., 3rd; Podeszwa, D.A.; Minster, G.J.; Mendelow, M.J.; Guirgues, A. Inter- and Intraobserver Variance of Cobb Angle Measurements with Digital Radiographs. J. Surg. Orthop. Adv. 2003, 12, 208–213. [Google Scholar]
- Langensiepen, S.; Semler, O.; Sobottke, R.; Fricke, O.; Franklin, J.; Schönau, E.; Eysel, P. Measuring Procedures to Determine the Cobb Angle in Idiopathic Scoliosis: A Systematic Review. Eur. Spine J. 2013, 22, 2360–2371. [Google Scholar] [CrossRef] [Green Version]
- Ricart, P.A.; Andres, T.M.; Apazidis, A.; Errico, T.J.; Trobisch, P.D. Validity of Cobb Angle Measurements Using Digitally Photographed Radiographs. Spine J. 2011, 11, 942–946. [Google Scholar] [CrossRef]
- Segev, E.; Hemo, Y.; Wientroub, S.; Ovadia, D.; Fishkin, M.; Steinberg, D.M.; Hayek, S. Intra- and Interobserver Reliability Analysis of Digital Radiographic Measurements for Pediatric Orthopedic Parameters Using a Novel PACS Integrated Computer Software Program. J. Child. Orthop. 2010, 4, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Gstoettner, M.; Sekyra, K.; Walochnik, N.; Winter, P.; Wachter, R.; Bach, C.M. Inter- and Intraobserver Reliability Assessment of the Cobb Angle: Manual versus Digital Measurement Tools. Eur. Spine J. 2007, 16, 1587–1592. [Google Scholar] [CrossRef] [Green Version]
- Srinivasalu, S.; Modi, H.N.; SMehta, S.; Suh, S.-W.; Chen, T.; Murun, T. Cobb Angle Measurement of Scoliosis Using Computer Measurement of Digitally Acquired Radiographs-Intraobserver and Interobserver Variability. Asian Spine J. 2008, 2, 90. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.; Wever, D.J.; Veldhuizen, A.G.; Klein, J.P.; Verdonck, B.; Nijlunsing, R.; Cool, J.C.; Van Horn, J.R. The Reliability of Quantitative Analysis on Digital Images of the Scoliotic Spine. Eur. Spine J. 2002, 11, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lou, E.; Shi, X.; Wang, Y.; Hill, D.L.; Raso, J.V.; Le, L.H.; Lv, L. A Computer-Aided Cobb Angle Measurement Method and Its Reliability. J. Spinal Disord. Tech. 2010, 23, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Wills, B.P.D.; Auerbach, J.D.; Zhu, X.; Caird, M.S.; Horn, B.D.; Flynn, J.M.; Drummond, D.S.; Dormans, J.P.; Ecker, M.L. Comparison of Cobb Angle Measurement of Scoliosis Radiographs with Preselected End Vertebrae: Traditional versus Digital Acquisition. Spine 2007, 32, 98–105. [Google Scholar] [CrossRef]
- Dang, N.R.; Moreau, M.J.; Hill, D.L.; Mahood, J.K.; Raso, J. Intra-Observer Reproducibility and Interobserver Reliability of the Radiographic Parameters in the Spinal Deformity Study Group’s AIS Radiographic Measurement Manual. Spine 2005, 30, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Shea, K.G.; Stevens, P.M.; Nelson, M.; Smith, J.T.; Masters, K.S.; Yandow, S. A Comparison of Manual versus Computer-Assisted Radiographic Measurement. Intraobserver Measurement Variability for Cobb Angles. Spine 1998, 23, 551–555. [Google Scholar] [CrossRef]
- Chan, A.C.Y.; Morrison, D.G.; Nguyen, D.V.; Hill, D.L.; Parent, E.; Lou, E.H.M. Intra- and Interobserver Reliability of the Cobb Angle-Vertebral Rotation Angle-Spinous Process Angle for Adolescent Idiopathic Scoliosis. Spine Deform. 2014, 2, 168–175. [Google Scholar] [CrossRef]
- Zhang, J.; Lou, E.; Hill, D.L.; Raso, J.V.; Wang, Y.; Le, L.H.; Shi, X. Computer-Aided Assessment of Scoliosis on Posteroanterior Radiographs. Med. Biol. Eng. Comput. 2010, 48, 185–195. [Google Scholar] [CrossRef]
- Stokes, I.A.F.; Aronsson, D.D. Computer-Assisted Algorithms Improve Reliability of King Classification and Cobb Angle Measurement of Scoliosis. Spine 2006, 31, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Aubin, C.-E.; Bellefleur, C.; Joncas, J.; de Lanauze, D.; Kadoury, S.; Blanke, K.; Parent, S.; Labelle, H. Reliability and Accuracy Analysis of a New Semiautomatic Radiographic Measurement Software in Adult Scoliosis. Spine 2011, 36, E780–E790. [Google Scholar] [CrossRef]
- Hurtado-Avilés, J.; León-Muñoz, V.J.; Andújar-Ortuño, P.; Santonja-Renedo, F.; Collazo-Diéguez, M.; Cabañero-Castillo, M.; Ponce-Garrido, A.B.; González-Ballester, M.; Sánchez-Martínez, F.J.; Fiorita, P.G.; et al. Validity and Absolute Reliability of Axial Vertebral Rotation Measurements in Thoracic and Lumbar Vertebrae. Appl. Sci. 2021, 11, 1084. [Google Scholar] [CrossRef]
- Hurtado-Avilés, J.; León-Muñoz, V.J.; Sanz-Mengibar, J.M.; Santonja-Renedo, F.; Andújar-Ortuño, P.; Collazo-Diéguez, M.; Ferrer-López, V.; Roca-González, J.; Kurochka, K.S.; Cabañero-Castillo, M.; et al. Validity and Reliability of a Computer-Assisted System Method to Measure Axial Vertebral Rotation. Quant. Imaging Med. Surg. 2021, 12, 1706. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT Guidelines: Orthopaedic and Rehabilitation Treatment of Idiopathic Scoliosis during Growth. Scoliosis Spinal Disord. 2018, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, G.; Nevill, A.M. Selected Issues in the Design and Analysis of Sport Performance Research. J. Sports Sci. 2001, 19, 811–827. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sport. Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
Intragroup Analysis with Software | Intergroup Analysis with Software | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MBE | SD | gl | SE | MDC95 | ICC (2,1) | CI 95% | MBE | SD | gl | SE | MDC95 | ICC (2,1) | CI 95% | ||
E1E2 | 1.67 | 0.67 | 34 | 0.11 | 0.32 | 0.987 | 0.978–0.993 | E1N1 | 1.75 | 0.57 | 33 | 0.10 | 0.27 | 0.983 | 0.972–0.991 |
E2E3 | 1.83 | 0.74 | 35 | 0.13 | 0.35 | 0.984 | 0.974–0.991 | E2N2 | 1.77 | 0.65 | 33 | 0.11 | 0.32 | 0.975 | 0.959–0.987 |
E1E3 | 1.61 | 0.56 | 33 | 0.10 | 0.27 | 0.986 | 0.976–0.992 | E3N3 | 1.99 | 0.84 | 34 | 0.14 | 0.40 | 0.981 | 0.969–0.99 |
E | 1.71 | 0.61 | 34 | 0.11 | 0.29 | 0.986 | 0.977–0.992 | EN | 1.82 | 0.59 | 33 | 0.10 | 0.29 | 0.973 | 0.954–0.987 |
N1N2 | 1.71 | 0.55 | 32 | 0.10 | 0.27 | 0.971 | 0.952–0.985 | ||||||||
N2N3 | 1.85 | 0.87 | 34 | 0.15 | 0.41 | 0.970 | 0.950–0.984 | ||||||||
N1N3 | 2.02 | 0.71 | 34 | 0.12 | 0.34 | 0.977 | 0.962–0.988 | ||||||||
N | 1.90 | 0.67 | 34 | 0.12 | 0.32 | 0.970 | 0.950–0.985 | ||||||||
Intragroup Analysis with the Manual Method | Intergroup Analysis with the Manual Method | ||||||||||||||
MBE | SD | gl | SE | MDC95 | ICC (2,1) | CI 95% | MBE | SD | gl | SE | MDC95 | ICC (2,1) | CI 95% | ||
E1E2 | 2.08 | 0.74 | 35 | 0.13 | 0.35 | 0.982 | 0.971–0.990 | E1N1 | 2.20 | 0.77 | 34 | 0.13 | 0.37 | 0.975 | 0.959–0.987 |
E2E3 | 2.08 | 0.73 | 34 | 0.12 | 0.35 | 0.978 | 0.964–0.987 | E2N2 | 2.61 | 0.81 | 35 | 0.14 | 0.38 | 0.974 | 0.955–0.987 |
E1E3 | 1.96 | 0.75 | 34 | 0.13 | 0.36 | 0.982 | 0.972–0.990 | E3N3 | 2.63 | 1.05 | 33 | 0.18 | 0.50 | 0.976 | 0.961–0.987 |
E | 2.13 | 0.75 | 35 | 0.13 | 0.35 | 0.981 | 0.970–0.990 | EN | 2.47 | 0.76 | 34 | 0.13 | 0.36 | 0.973 | 0.951–0.988 |
N1N2 | 2.49 | 0.84 | 33 | 0.15 | 0.41 | 0.967 | 0.944–0.984 | ||||||||
N2N3 | 2.61 | 1.07 | 35 | 0.18 | 0.50 | 0.976 | 0.958–0.988 | ||||||||
N1N3 | 2.15 | 0.69 | 31 | 0.12 | 0.34 | 0.974 | 0.955–0.987 | ||||||||
N | 2.50 | 0.88 | 34 | 0.15 | 0.42 | 0.974 | 0.954–0.988 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado-Avilés, J.; Santonja-Medina, F.; León-Muñoz, V.J.; Sainz de Baranda, P.; Collazo-Diéguez, M.; Cabañero-Castillo, M.; Ponce-Garrido, A.B.; Fuentes-Santos, V.E.; Santonja-Renedo, F.; González-Ballester, M.; et al. Validity and Absolute Reliability of the Cobb Angle in Idiopathic Scoliosis with TraumaMeter Software. Int. J. Environ. Res. Public Health 2022, 19, 4655. https://doi.org/10.3390/ijerph19084655
Hurtado-Avilés J, Santonja-Medina F, León-Muñoz VJ, Sainz de Baranda P, Collazo-Diéguez M, Cabañero-Castillo M, Ponce-Garrido AB, Fuentes-Santos VE, Santonja-Renedo F, González-Ballester M, et al. Validity and Absolute Reliability of the Cobb Angle in Idiopathic Scoliosis with TraumaMeter Software. International Journal of Environmental Research and Public Health. 2022; 19(8):4655. https://doi.org/10.3390/ijerph19084655
Chicago/Turabian StyleHurtado-Avilés, José, Fernando Santonja-Medina, Vicente J. León-Muñoz, Pilar Sainz de Baranda, Mónica Collazo-Diéguez, Mercedes Cabañero-Castillo, Ana B. Ponce-Garrido, Victoria Eugenia Fuentes-Santos, Fernando Santonja-Renedo, Miriam González-Ballester, and et al. 2022. "Validity and Absolute Reliability of the Cobb Angle in Idiopathic Scoliosis with TraumaMeter Software" International Journal of Environmental Research and Public Health 19, no. 8: 4655. https://doi.org/10.3390/ijerph19084655
APA StyleHurtado-Avilés, J., Santonja-Medina, F., León-Muñoz, V. J., Sainz de Baranda, P., Collazo-Diéguez, M., Cabañero-Castillo, M., Ponce-Garrido, A. B., Fuentes-Santos, V. E., Santonja-Renedo, F., González-Ballester, M., Sánchez-Martínez, F. J., Fiorita, P. G., Sanz-Mengibar, J. M., Alcaraz-Belzunces, J., Ferrer-López, V., & Andújar-Ortuño, P. (2022). Validity and Absolute Reliability of the Cobb Angle in Idiopathic Scoliosis with TraumaMeter Software. International Journal of Environmental Research and Public Health, 19(8), 4655. https://doi.org/10.3390/ijerph19084655