Problematic Social Media Use and Depressive Outcomes among College Students in China: Observational and Experimental Findings
Abstract
:1. Introduction
2. Methods
2.1. Observational Study (Study 1)
2.1.1. Study Design and Participants
2.1.2. Outcome Variable
2.1.3. Exposure and Mediating Variables
2.1.4. Covariates
2.1.5. Statistical Analysis
2.2. Experimental Study (Study 2)
2.2.1. Intervention Design
2.2.2. Participant Recruitment
2.2.3. Intervention Process
2.2.4. Statistical Analysis
3. Results
3.1. Observational Study (Study 1)
3.1.1. Depressive Symptoms and Prevalence of Depression among College Students across Socio-Demographic Characteristics
3.1.2. Problematic Social Media Use, Perceived Social Support, Loneliness, and Social Media Violence of All Students and by Sex
3.1.3. Adjusted Associations of Social Media Addiction, Perceived Social Support, Loneliness, and Social Media Violence with Depression Symptoms and Probable Depression
3.1.4. Structural Equation Modeling Results—Problematic Social Media Use and Depressive Symptoms: The Mediating Effects of Perceived Social Support, Loneliness, and Social Media Violence
3.2. Experimental Study (Study 2)
3.2.1. Demographic Characteristics and Probable Depression of Participants at Baseline
3.2.2. Between-Group Difference of Depressive Symptoms, Problematic Social Media Use, Perceived Social Support, Social Media Violence, and Loneliness
4. Discussion
Limitations of This Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhter, P.; Waqas, A.; Naveed, S.; Li, Y.; Wang, Y. Prevalence of depression among university students in low and middle income countries (LMICs): A systematic review and meta-analysis. J. Affect. Disord. 2020, 274, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.Y.; Xiao, L.M.; Liu, Y.N.; Li, Y.M.; Jakob, P. Prevalence of Depression among Chinese University Students: A Meta-Analysis. PLoS ONE 2016, 11, e0153454. [Google Scholar]
- Kim, K.; Ryu, E.; Chon, M.-Y.; Yeun, E.-J.; Choi, S.-Y.; Seo, J.-S.; Nam, B.-W. Internet addiction in Korean adolescents and its relation to depression and suicidal ideation: A questionnaire survey. Int. J. Nurs. Stud. 2006, 43, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Sampasa-Kanyinga, H.; Hamilton, H.A. Social networking sites and mental health problems in adolescents: The mediating role of cyberbullying victimization. Eur. Psychiatry 2015, 30, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Tkacova, H.; Pavlikova, M.; Jenisova, Z.; Maturkanic, P.; Kralik, R. Social Media and Students’ Wellbeing: An Empirical Analysis during the COVID-19 Pandemic. Sustainability 2021, 13, 10442. [Google Scholar] [CrossRef]
- Tkacova, H.; Pavlikova, M.; Tvrdon, M.; Jenisova, Z. The Use of Media in the Field of Individual Responsibility for Sustainable Development in Schools: A Proposal for an Approach to Learning about Sustainable Development. Sustainability 2021, 13, 4138. [Google Scholar] [CrossRef]
- Lin, L.Y.; Sidani, J.E.; Shensa, A.; Radovic, A.; Miller, E.; Colditz, J.B.; Hoffman, B.L.; Giles, L.M.; Primack, B.A. Association between Social Media Use and Depression among U.S. Young Adults. Depress. Anxiety 2016, 33, 323–331. [Google Scholar] [CrossRef]
- Bryana, B. Social Media Usage Among University Students in China. Occam’s Razor 2017, 5, 5. [Google Scholar]
- Hou, Y.; Xiong, D.; Jiang, T.; Song, L.; Wang, Q. Social media addiction: Its impact, mediation, and intervention. Cyberpsychol. J. Psychosoc. Res. Cyberspace 2019, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Lau, Y.; Chan, L.; Luk, J. Prevalence of social media addiction across 32 nations: Meta-analysis with subgroup analysis of classification schemes and cultural values. Addict. Behav. 2021, 117, 106845. [Google Scholar] [CrossRef]
- Chi, X.; Lin, L.; Zhang, P. Internet Addiction Among College Students in China: Prevalence and Psychosocial Correlates. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 567. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Varghese, A.; Vr, V.; Dhandapani, M.; Grover, S.; Sharma, S.; Khakha, D.; Mann, S.; Varkey, B.P. Prevalence of internet addiction among college students in the Indian setting: A systematic review and meta-analysis. Gen. Psychiatr. 2021, 34, e100496. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.L.; Wang, P.G.; Qu, G.C.; Yuan, S.; Phongsavan, P.; He, Q.Q. Associations between multiple health risk behaviors and mental health among Chinese college students. Psychol. Health Med. 2015, 21, 377. [Google Scholar] [CrossRef] [PubMed]
- Asa, B.; Jesa, B.; Eva, B.; Ges, A.; Bap, C.; Cb, D. Emotional support from social media and face-to-face relationships: Associations with depression risk among young adults. J. Affect. Disord. 2020, 260, 38–44. [Google Scholar]
- Craig, W.; Boniel-Nissim, M.; King, N.; Walsh, S.D.; Boer, M.; Donnelly, P.D.; Harel-Fisch, Y.; Malinowska-Cieślik, M.; de Matos, M.G.; Cosma, A.; et al. Social Media Use and Cyber-Bullying: A Cross-National Analysis of Young People in 42 Countries. J. Adolesc. Health 2020, 66, S100–S108. [Google Scholar] [CrossRef] [PubMed]
- Bottino, S.M.B.; Bottino, C.M.C.; Regina, C.G.; Correia, A.V.L.; Ribeiro, W. Cyberbullying and adolescent mental health: Systematic review. Cad. Saude Publica 2015, 31, 463–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viner, R.M.; Gireesh, A.; Stiglic, N.; Hudson, L.D.; Goddings, A.L.; Ward, J.L.; Nicholls, D.E. Roles of cyberbullying, sleep, and physical activity in Mediating the effects of social media use on mental health and wellbeing among young people in England: A secondary analysis of longitudinal data—ScienceDirect. Lancet Child Adolesc. Health 2019, 3, 685–696. [Google Scholar] [CrossRef]
- Kittipongpisal, S. Patient with depressive disorder treated by Satir Transformational Systemic Therapy (STST): A Case Report. J. Psychiatr. Assoc. Thail. 2009, 54, 17–28. [Google Scholar]
- Hagen, L.; Sabey, A. Satir Model of Transformational Systemic Therapy. In Encyclopedia of Couple and Family Therapy; Lebow, J., Chambers, A., Breunlin, D.C., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 1–9. [Google Scholar]
- Beaudry, G. The Family Reconstruction Process and Its Evolution to Date: Virginia Satir’s Transformational Process. Contemp. Fam. Ther. 2002, 24, 79–91. [Google Scholar] [CrossRef]
- Manago, A.M.; Taylor, T.; Greenfield, P.M. Me and my 400 friends: The anatomy of college students’ Facebook networks, their communication patterns, and well-being. Dev. Psychol. 2012, 48, 369. [Google Scholar] [CrossRef] [Green Version]
- Radloff, L.S. The CES-D Scale A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, X.Y.; Yu, B.; Cui, L.X.; Luo, Y.Z. Stress level and depression symptoms in Chinese college students:Moderator effects of weakest link. Chin. Ment. Health J. 2012, 26, 791–795. [Google Scholar]
- Koc, M.; Gulyagci, S. Facebook addiction among Turkish college students: The role of psychological health, demographic, and usage characteristics. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.L.; Sun, X.J.; Zhou, Z.K.; Fan, C.Y.; Niu, G.F.; Liu, Q.Q. Social networking site addiction and undergraduate students’ irrational procrastination: The mediating role of social networking site fatigue and the moderating role of effortful control. PLoS ONE 2018, 13, e0208162. [Google Scholar] [CrossRef]
- Blumenthal, J.A.; Burg, M.M.; Barefoot, J.; Williams, R.B.; Haney, T.; Zimet, G. Social support, type A behavior, and coronary artery disease. Psychosom. Med. 1987, 49, 331–340. [Google Scholar] [CrossRef]
- Qiang, Q.J. The Perceived Social Support Scale. Chin. Ment. Health J. 1999, 131–133. [Google Scholar]
- Xu, S.; Qiu, D.; Hahne, J.; Zhao, M.; Hu, M. Psychometric properties of the short-form UCLA Loneliness Scale (ULS-8) among Chinese adolescents. Medicine 2018, 97, e12373. [Google Scholar] [CrossRef]
- Wolke, D.; Lee, K.; Guy, A. Cyberbullying: A storm in a teacup? Eur. Child Adolesc. Psychiatry 2017, 26, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.W.; Leung, P.Y.; Chung, L.P. Effects of the Satir Model on Mental Health: A Randomized Controlled Trial. Res. Soc. Work Pract. 2018, 29, 104973151881982. [Google Scholar] [CrossRef]
- Li, M.H.; Eschenauer, R.; Persaud, V. Between avoidance and problem solving: Resilience, self-efficacy, and social support seeking. J. Couns. Dev. 2018, 96, 132–143. [Google Scholar] [CrossRef]
- Sangthong, R.; Trangkasombat, U.; Kaewpoonsri, C.; Disayawanwat, P.; Panyakham, C. Effects of the Personal Iceberg Metaphor Model to Promote Self-Esteem and Self-understanding among Thai Adolescents: From Clinical Practice to A School-based Prevention Program. Int. J. Psychol. Psychoanal. 2016, 2, 010. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: London, UK, 1988. [Google Scholar]
- Haand, R.; Shuwang, Z. The relationship between social media addiction and depression: A quantitative study among university students in Khost, Afghanistan. Int. J. Adolesc. Youth 2020, 25, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Saikia, A.M.; Das, J.; Barman, P.; Bharali, M.D. Internet Addiction and its Relationships with Depression, Anxiety, and Stress in Urban Adolescents of Kamrup District, Assam. J. Fam. Community Med. 2019, 26, 108–112. [Google Scholar]
- Thorisdottir, I.E.; Sigurvinsdottir, R.; Kristjansson, A.L.; Allegrante, J.P.; Lilly, C.L.; Sigfusdottir, I.D. Longitudinal association between social media use and psychological distress among adolescents. Prev. Med. 2020, 141, 106270. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.G.; Marx, R.; Lipson, C.; Young, J. No More FOMO: Limiting Social Media Decreases Loneliness and Depression. J. Soc. Clin. Psychol. 2018, 37, 751–768. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Namdar, P.; Griffiths, M.; Pakpour, A.H. Mediated roles of generalized trust and perceived social support in the effects of problematic social media use on mental health: A cross-sectional study. Health Expect. 2021, 24, 165–173. [Google Scholar] [CrossRef]
- Mk, A.; Rnakb, C.; Aa, A. Effect of social media use on learning, social interactions, and sleep duration among university students—ScienceDirect. Saudi J. Biol. Sci. 2021, 28, 2216–2222. [Google Scholar]
- Lapierre, M.A.; Zhao, P. Smartphones and Social Support: Longitudinal Associations Between Smartphone Use and Types of Support. Soc. Sci. Comput. Rev. 2021, 089443932098876. [Google Scholar] [CrossRef]
- Gong, R.; Zhang, Y.; Long, R.; Zhu, R.; Cai, Y. The Impact of Social Network Site Addiction on Depression in Chinese Medical Students: A Serial Multiple Mediator Model Involving Loneliness and Unmet Interpersonal Needs. Int. J. Environ. Res. Public Health 2021, 18, 8614. [Google Scholar] [CrossRef]
- Meshi, D.; Cotten, S.R.; Bender, A.R. Problematic Social Media Use and Perceived Social Isolation in Older Adults: A Cross-Sectional Study. Gerontology 2020, 66, 160–168. [Google Scholar] [CrossRef]
- Sampasa-Kanyinga, H.; Hamilton, H.A. Use of Social Networking Sites and Risk of Cyberbullying Victimization: A Population-Level Study of Adolescents. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 704. [Google Scholar] [CrossRef] [PubMed]
- Spirito, A.; Esposito-Smythers, C.; Wolff, J.; Uhl, K. Cognitive-Behavioral Therapy for Adolescent Depression and Suicidality. Child Adolesc. Psychiatr. Clin. N. Am. 2011, 20, 191–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straub, J.; Sproeber, N.; Plener, P.L.; Fegert, J.M.; Bonenberger, M.; Koelch, M.G. A brief cognitive-behavioural group therapy programme for the treatment of depression in adolescent outpatients: A pilot study. Child Adolesc. Psychiatry Ment. Health 2014, 8, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Socio-Demographic Characteristics | n | Depressive Symptoms (Mean ± SD) | p-Value across Groups a | Depression Prevalence n (%) | p-Value across Groups b |
---|---|---|---|---|---|
Sex | |||||
Male | 8150 | 17.6 ± 10.3 | <0.001 | 3364 (41.3) | <0.001 |
Female | 10,955 | 15.7 ± 9.4 | 3466 (31.6) | ||
Grade | |||||
Freshman | 6823 | 16.0 ± 9.7 | <0.001 | 2291 (33.6) | <0.001 |
Sophomore | 5489 | 16.7 ± 9.7 | 1986 (36.2) | ||
Junior | 3153 | 17.2 ± 10.0 | 1235 (39.2) | ||
Senior | 2358 | 17.3 ± 10.1 | 954 (40.5) | ||
Post-graduate | 1282 | 14.6 ± 10.1 | 364 (28.4) | ||
Academic stress | |||||
No/relatively low | 3458 | 16.5 ± 10.6 | <0.001 | 1248 (36.1) | <0.001 |
Average/general | 11,221 | 15.7 ± 9.5 | 3667 (32.7) | ||
Relatively high/extremely heavy | 4426 | 18.5 ± 9.8 | 1915 (43.3) | ||
Smoking in past month | |||||
Yes | 3243 | 20.9 ± 10.9 | <0.001 | 1757 (54.2) | <0.001 |
No | 15,862 | 15.6 ± 9.4 | 5073 (32.0) | ||
Primary method used to access social media | |||||
Computer | 1000 | 19.0 ± 10.8 | <0.001 | 466 (46.6) | <0.001 |
Tablet computer | 605 | 24.9 ± 9.9 | 449 (74.2) | ||
Smartphone | 17,435 | 16.0 ± 9.6 | 5871 (33.7) | ||
Others | 65 | 24.8 ± 11.3 | 44 (67.7) | ||
Parental relationship satisfaction | |||||
Dissatisfied | 356 | 23.8 ± 10.6 | <0.001 | 227 (63.8) | <0.001 |
A little dissatisfied | 2120 | 20.8 ± 9.9 | 1132 (53.4) | ||
Quite satisfied | 8925 | 17.1 ± 9.5 | 3375 (37.8) | ||
Very satisfied | 7704 | 14.3 ± 9.5 | 2096 (27.2) | ||
Household income | |||||
CNY 0~40,000 | 11,413 | 16.4 ± 9.5 | 0.252 | 4025 (35.3) | 0.335 |
CNY 40,001~80,000 | 3962 | 16.8 ± 10.1 | 1455 (36.7) | ||
CNY 80,001~13,000 | 1983 | 16.5 ± 10.3 | 710 (35.8) | ||
CNY >13,000 | 1747 | 16.3 ± 10.6 | 640 (36.6) | ||
Highest paternal education | |||||
≤Junior middle school | 9750 | 16.6 ± 9.5 | 0.106 | 3479 (35.7) | 0.941 |
Senior middle school/vocational schools | 6194 | 16.4 ± 9.9 | 2225 (35.9) | ||
≥College | 3161 | 16.2 ± 10.6 | 1126 (35.6) | ||
Highest maternal education | |||||
≤Junior middle school | 11,167 | 16.5 ± 9.5 | 0.664 | 3921 (35.1) | 0.029 |
Senior middle school/vocational schools | 5399 | 16.4 ± 10.0 | 1948 (36.1) | ||
≥College | 2539 | 16.6 ± 10.9 | 961 (37.8) |
Variable | Sex | Mean ± SD | t/F | p across Sex |
---|---|---|---|---|
Problematic social media use a | Males | 19.64 ± 5.46 | −1.88 | 0.06 |
Females | 19.78 ± 5.05 | |||
All | 19.72 ± 5.15 | |||
Perceived social support b | Males | 60.00 ± 14.57 | −19.25 | <0.001 |
Females | 63.87 ± 13.12 | |||
All | 62.22 ± 13.89 | |||
Loneliness c | Males | 16.43 ± 4.34 | 4.37 | <0.001 |
Females | 16.16 ± 4.13 | |||
All | 16.27 ± 4.19 | |||
Social media violence d | Males | 5.82 ± 2.26 | 761.24 | <0.001 |
Females | 5.01 ± 1.76 | |||
All | 5.36 ± 2.01 |
Variables | |||
---|---|---|---|
Model 1: Depressive symptoms (A continuous dependent variable) a | Beta b | SE | p |
Problematic social media use | 0.18 | 0.01 | <0.001 |
Perceived social support | −0.17 | 0.01 | <0.001 |
Loneliness | 0.36 | 0.01 | <0.001 |
Social media violence | 0.14 | 0.03 | <0.001 |
Model 2: Probable depression (A binary dependent variable; CESD ≥ 16) a | OR | 95% CI | p |
Problematic social media use | 1.083 | 1.075, 1.092 | <0.001 |
Perceived social support | 0.967 | 0.965, 0.970 | <0.001 |
Loneliness | 1.24 | 1.23, 1.25 | <0.001 |
Social media violence | 1.22 | 1.19, 1.25 | <0.001 |
The Paths | Mediating Effect a | 95% CI | p-Value b | Percentage of Mediating Effects in the Total Effects (%) |
---|---|---|---|---|
1. Problematic social media use → Perceived social support → Depressive symptoms | 0.013 | 0.011, 0.016 | 0.007 | 4.545 |
2. Problematic social media use → Perceived social support → Loneliness → Depressive symptoms | 0.01 | 0.008, 0.012 | 0.01 | 3.497 |
3. Problematic social media use → Perceived social support → Social media violence → Loneliness → Depressive symptoms | 0.001 | 0.001, 0.001 | 0.008 | 0.350 |
4. Problematic social media use → Perceived social support → Social media violence → Depressive symptoms | 0.004 | 0.003, 0.005 | 0.009 | 1.399 |
5. Problematic social media use → Loneliness → Depressive symptoms | 0.06 | 0.055, 0.065 | 0.013 | 20.979 |
6. Problematic social media use → Social media violence → Loneliness → Depressive symptoms | 0.012 | 0.011, 0.014 | 0.007 | 4.196 |
7. Problematic social media use → Social media violence → Depressive symptoms | 0.044 | 0.039, 0.049 | 0.007 | 15.385 |
Indirect effects | 0.143 | 0.133, 0.156 | 0.003 | 50.000 |
Direct effects | 0.143 | 0.134, 0.158 | 0.011 | 50.000 |
Total effects | 0.286 | 0.270, 0.301 | 0.007 | 100.000 |
Group | Sex | Grade | Major | Probable Depression at Baseline (%) a | n | |||
---|---|---|---|---|---|---|---|---|
Males | Females | First Year | Second Year | Medical | Science | |||
Intervention group | 10 | 20 | 28 | 2 | 30 | 0 | 30.00 * | 30 |
Control group | 10 | 20 | 27 | 3 | 28 | 2 | 16.67 | 30 |
Variables | Time Point | Intervention Group (I) | Control Group (C) | Mean Difference (I-C) (95% CI) | p-Values of ANOVA a,b | Cohen’s d Effect Size c |
---|---|---|---|---|---|---|
Depressive symptoms | T1 | 16.00 ± 10.77 | 13.23 ± 10.57 | 2.77 (−2.75, 8.28) | 0.319 | |
T2 | 3.00 ± 4.65 | 15.70 ± 9.73 | −12.70 *** (−16.64, −8.76) | <0.001 * | 1.67 | |
T3 | 3.43 ± 5.14 | 12.13 ± 9.36 | −8.70 *** (−12.60, −4.80) | <0.001 * | 1.15 | |
Problematic social media use | T1 | 23.53 ± 7.12 | 20.50 ± 4.59 | 3.03 (−0.06, 6.13) | 0.055 | |
T2 | 12.87 ± 4.90 | 21.23 ± 4.92 | −8.37 *** (−10.91, −5.83) | <0.001 * | 1.70 | |
T3 | 12.67 ± 5.40 | 21.33 ± 5.37 | −8.67 *** (−11.45, −5.88) | <0.001 * | 1.61 | |
Perceived social support | T1 | 67.63 ± 12.15 | 67.00 ± 14.38 | 0.63 (−6.25, 7.51) | 0.854 | |
T2 | 78.50 ± 9.05 | 65.93 ± 12.13 | 12.57 *** (7.04, 18.10) | <0.001 * | −1.17 | |
T3 | 79.07 ± 9.71 | 65.50 ± 12.71 | 13.57 *** (7.72, 19.41) | <0.001 * | −1.20 | |
Social media violence | T1 | 4.87 ± 1.14 | 5.17 ± 1.76 | −0.30 (−1.07, 0.47) | 0.437 | |
T2 | 4.30 ± 0.84 | 5.60 ± 2.06 | −1.30 ** (−2.11, −0.49) | 0.002 * | 0.83 | |
T3 | 4.43 ± 0.97 | 5.87 ± 2.32 | −1.43 ** (−2.35, −0.52) | 0.003 | 0.80 | |
Loneliness | T1 | 18.23 ± 3.87 | 17.70 ± 3.94 | 0.53 (−1.48, 2.55) | 0.599 | |
T2 | 13.17 ± 3.04 | 17.07 ± 3.52 | −3.90 *** (−5.60, −2.20) | <0.001 * | 1.19 | |
T3 | 11.0 ± 4.14 | 15.93 ± 4.56 | −4.93 *** (−7.19, −2.68) | <0.001 * | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, X.; Chiu, D.T.; Li, Y.; Mi, B.; Zhang, Y.; Ma, L.; Yan, H. Problematic Social Media Use and Depressive Outcomes among College Students in China: Observational and Experimental Findings. Int. J. Environ. Res. Public Health 2022, 19, 4937. https://doi.org/10.3390/ijerph19094937
Chen Y, Liu X, Chiu DT, Li Y, Mi B, Zhang Y, Ma L, Yan H. Problematic Social Media Use and Depressive Outcomes among College Students in China: Observational and Experimental Findings. International Journal of Environmental Research and Public Health. 2022; 19(9):4937. https://doi.org/10.3390/ijerph19094937
Chicago/Turabian StyleChen, Yonghua, Xi Liu, Dorothy T. Chiu, Ying Li, Baibing Mi, Yue Zhang, Lu Ma, and Hong Yan. 2022. "Problematic Social Media Use and Depressive Outcomes among College Students in China: Observational and Experimental Findings" International Journal of Environmental Research and Public Health 19, no. 9: 4937. https://doi.org/10.3390/ijerph19094937
APA StyleChen, Y., Liu, X., Chiu, D. T., Li, Y., Mi, B., Zhang, Y., Ma, L., & Yan, H. (2022). Problematic Social Media Use and Depressive Outcomes among College Students in China: Observational and Experimental Findings. International Journal of Environmental Research and Public Health, 19(9), 4937. https://doi.org/10.3390/ijerph19094937