Food Addiction and Emotional Eating Behaviors Co-Occurring with Problematic Smartphone Use in Adolescents?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. The Dimensional Yale Food Addiction Scale for Children 2.0
2.2.2. Korean Smartphone Overdependence Scale for Adolescents
2.2.3. Child Eating Behavior Questionnaire
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Relationship between dYFAS-C2.0 and PSU
3.2. Sedentary Lifestyle and Food Addiction, and PSU
3.3. Eating Behaviors, FA, and PSU
3.4. Effect of Eating Behaviors and FA on PSU
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogers, P.J.; Smit, H.J. Food craving and food “addiction”: A critical review of the evidence from a biopsychosocial perspective. Pharm. Biochem. Behav. 2000, 66, 3–14. [Google Scholar] [CrossRef]
- Sengor, G.; Gezer, C. Food addiction and its relationship with disordered eating behaviours and obesity. Eat. Weight Disord. 2019, 24, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Stojek, M.M.; Maples-Keller, J.L.; Dixon, H.D.; Umpierrez, G.E.; Gillespie, C.F.; Michopoulos, V. Associations of childhood trauma with food addiction and insulin resistance in African-American women with diabetes mellitus. Appetite 2019, 141, 104317. [Google Scholar] [CrossRef] [PubMed]
- Pursey, K.M.; Stanwell, P.; Gearhardt, A.N.; Collins, C.E.; Burrows, T.L. The prevalence of food addiction as assessed by the Yale Food Addiction Scale: A systematic review. Nutrients 2014, 6, 4552–4590. [Google Scholar] [CrossRef] [Green Version]
- Raymond, K.L.; Lovell, G.P. Food addiction associations with psychological distress among people with type 2 diabetes. J. Diabetes Complicat. 2016, 30, 651–656. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, Y.; Han, Y.; Liu, Y.; Yang, K.; Zhen, S.; Wen, D. Psychosocial Correlates of Food Addiction and Its Association with Quality of Life in a Non-Clinical Adolescent Sample. Nutrients 2018, 10, 837. [Google Scholar] [CrossRef] [Green Version]
- Reche-García, C.; Martínez, P.S.; Díaz, M.G.; Guillén-Martínez, D.; Morales-Moreno, I.; Morante, J.J.H. Food Addiction Features Are Related to Worse Academic Performance in Adolescents. Int. J. Ment. Health Addict. 2022. [Google Scholar] [CrossRef]
- Swarna Nantha, Y.; Kalasivan, A.; Ponnusamy Pillai, M.; Suppiah, P.; Md Sharif, S.; Krishnan, S.G.; Samy Pullay, S.; Osman, N.A. The validation of the Malay Yale Food Addiction Scale 2.0: Factor structure, item analysis and model fit. Public Health Nutr. 2019, 23, 402–409. [Google Scholar] [CrossRef]
- Penzenstadler, L.; Soares, C.; Karila, L.; Khazaal, Y. Systematic Review of Food Addiction as Measured with the Yale Food Addiction Scale: Implications for the Food Addiction Construct. Curr. Neuropharmacol. 2019, 17, 526–538. [Google Scholar] [CrossRef]
- Kucukerdonmez, O.; Urhan, M.; Altin, M.; Haciraifoglu, O.; Yildiz, B. Assessment of the relationship between food addiction and nutritional status in schizophrenic patients. Nutr. Neurosci. 2019, 22, 392–400. [Google Scholar] [CrossRef]
- Mies, G.W.; Treur, J.L.; Larsen, J.K.; Halberstadt, J.; Pasman, J.A.; Vink, J.M. The prevalence of food addiction in a large sample of adolescents and its association with addictive substances. Appetite 2017, 118, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Imperatori, C.; Fabbricatore, M.; Lester, D.; Manzoni, G.M.; Castelnuovo, G.; Raimondi, G.; Innamorati, M. Psychometric properties of the modified Yale Food Addiction Scale Version 2.0 in an Italian non-clinical sample. Eat. Weight Disord. 2019, 24, 37–45. [Google Scholar] [CrossRef]
- Figueroa-Quinones, J.; Cjuno, J. Food addiction in Latin America. Medwave 2018, 18, e7171. [Google Scholar] [CrossRef]
- Linardon, J.; Messer, M. Assessment of food addiction using the Yale Food Addiction Scale 2.0 in individuals with binge-eating disorder symptomatology: Factor structure, psychometric properties, and clinical significance. Psychiatry Res. 2019, 279, 216–221. [Google Scholar] [CrossRef]
- Oulasvirta, A.; Rattenbury, T.; Ma, L.; Raita, E. Habits make smartphone use more pervasive. Pers. Ubiquitous Comput. 2012, 16, 105–114. [Google Scholar] [CrossRef]
- Chung, T.W.H.; Sum, S.M.Y.; Chan, M.W.L. Adolescent Internet Addiction in Hong Kong: Prevalence, Psychosocial Correlates, and Prevention. J. Adolesc. Health 2019, 64, S34–S43. [Google Scholar] [CrossRef]
- Eliacik, K.; Bolat, N.; Kocyigit, C.; Kanik, A.; Selkie, E.; Yilmaz, H.; Catli, G.; Dundar, N.O.; Dundar, B.N. Internet addiction, sleep and health-related life quality among obese individuals: A comparison study of the growing problems in adolescent health. Eat. Weight Disord. 2016, 21, 709–717. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Van Rooij, A.J.; Kardefelt-Winther, D.; Starcevic, V.; Király, O.; Pallesen, S.; Müller, K.; Dreier, M.; Carras, M.; Prause, N. Working towards an international consensus on criteria for assessing Internet gaming disorder: A critical commentary on Petry et al. (2014). Addiction 2016, 111, 167. [Google Scholar] [CrossRef] [Green Version]
- Kardefelt-Winther, D. A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Spada, M.M. An overview of problematic Internet use. Addict. Behav. 2014, 39, 3–6. [Google Scholar] [CrossRef]
- Anderson, E.L.; Steen, E.; Stavropoulos, V. Internet use and problematic internet use: A systematic review of longitudinal research trends in adolescence and emergent adulthood. Int. J. Adolesc. Youth 2017, 22, 430–454. [Google Scholar] [CrossRef] [Green Version]
- Bickham, D.S. Current research and viewpoints on internet addiction in adolescents. Curr. Pediatr. Rep. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Zou, Y.; Xia, N.; Zou, Y.; Chen, Z.; Wen, Y. Smartphone addiction may be associated with adolescent hypertension: A cross-sectional study among junior school students in China. BMC Pediatr. 2019, 19, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlAbdulwahab, S.S.; Kachanathu, S.J.; AlMotairi, M.S. Smartphone use addiction can cause neck disability. Musculoskelet. Care 2017, 15, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Nam, K.; Seo, B. The Survey on Internet Overdependence; Ministry of Science, ICT, and Future Planning, National Information Society Agency: Seoul, Korea, 2016; p. 97.
- Korean Information Society Agency. 2021 Korean Smartphone Overdependence Survey Report; Korean Information Society Agency: Daegu, Korea, 2022.
- Kim, E.Y.; Joo, S.W.; Han, S.J.; Kim, M.J.; Choi, S.Y. Depression, Impulse Control Disorder, and Life Style According to Smartphone Addiction. Stud. Health Technol. Inf. 2017, 245, 1272. [Google Scholar]
- Cousijn, J.; Luijten, M.; Feldstein Ewing, S.W. Adolescent resilience to addiction: A social plasticity hypothesis. Lancet Child Adolesc. Health 2018, 2, 69–78. [Google Scholar] [CrossRef]
- Hinojo-Lucena, F.J.; Aznar-Diaz, I.; Caceres-Reche, M.P.; Trujillo-Torres, J.M.; Romero-Rodriguez, J.M. Problematic Internet Use as a Predictor of Eating Disorders in Students: A Systematic Review and Meta-Analysis Study. Nutrients 2019, 11, 2151. [Google Scholar] [CrossRef] [Green Version]
- Domoff, S.E.; Sutherland, E.Q.; Yokum, S.; Gearhardt, A.N. Adolescents’ addictive phone use: Associations with eating behaviors and adiposity. Int. J. Environ. Res. Public Health 2020, 17, 2861. [Google Scholar] [CrossRef] [Green Version]
- Schiestl, E.T.; Gearhardt, A.N. Preliminary validation of the Yale Food Addiction Scale for Children 2.0: A dimensional approach to scoring. Eur. Eat. Disord. Rev. 2018, 26, 605–617. [Google Scholar] [CrossRef]
- Kim, D.; Lee, Y.; Lee, J.; Nam, J.K.; Chung, Y. Development of Korean smartphone addiction proneness scale for youth. PLoS ONE 2014, 9, e97920. [Google Scholar]
- Kyong Mee Chung, J.H.C. A psychometric evaluation of the Korean Version Children’s Eating Behaviour Questionnaire. Korean J. Health Psychol. 2012, 17, 19. [Google Scholar] [CrossRef]
- Wardle, J.; Guthrie, C.A.; Sanderson, S.; Rapoport, L. Development of the Children’s Eating Behaviour Questionnaire. J. Child Psychol. Psychiatry 2001, 42, 963–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.S.; Koh, Y.Y. Online social networking addiction among college students in Singapore: Comorbidity with behavioral addiction and affective disorder. Asian J. Psychiatr. 2017, 25, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaee, H.R.; Rezaianzadeh, A.; Jamshidi, M. Mediators in the Relationship between Internet Addiction and Body Mass Index: A Path Model Approach Using Partial Least Square. J. Res. Health Sci. 2018, 18, e00423. [Google Scholar]
- Goncalves, R.; Barreto, D.A.; Monteiro, P.I.; Zangeronimo, M.G.; Castelo, P.M.; van der Bilt, A.; Pereira, L.J. Smartphone use while eating increases caloric ingestion. Physiol. Behav. 2019, 204, 93–99. [Google Scholar] [CrossRef]
- Osatuyi, B.; Hiltz, S.R. The impact of cross-addiction on information sharing behaviors on social networking sites. J. Comput. Inf. Syst. 2019, 59, 105–115. [Google Scholar] [CrossRef]
- Burleigh, T.L.; Griffiths, M.D.; Sumich, A.; Stavropoulos, V.; Kuss, D.J. A systematic review of the co-occurrence of Gaming Disorder and other potentially addictive behaviors. Curr. Addict. Rep. 2019, 6, 383–401. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.M.; Couto, L.; Santos, D.A.; VHO, E.S.; Drumond, J.P.S.; Silva, L.; Malloy-Diniz, L.; Albuquerque, M.R.; das Neves, M.C.L.; Duarte Garcia, F. Bad Choices Make Good Stories: The Impaired Decision-Making Process and Skin Conductance Response in Subjects With Smartphone Addiction. Front. Psychiatry 2019, 10, 73. [Google Scholar] [CrossRef]
- Jimenez-Murcia, S.; Granero, R.; Wolz, I.; Bano, M.; Mestre-Bach, G.; Steward, T.; Aguera, Z.; Hinney, A.; Dieguez, C.; Casanueva, F.F.; et al. Food Addiction in Gambling Disorder: Frequency and Clinical Outcomes. Front. Psychol. 2017, 8, 473. [Google Scholar] [CrossRef] [Green Version]
- Nolan, L.J.; Jenkins, S.M. Food Addiction Is Associated with Irrational Beliefs via Trait Anxiety and Emotional Eating. Nutrients 2019, 11, 1711. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, E.; Gray, K.; Miller, G.; Tyler, R.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Food addiction: A common neurobiological mechanism with drug abuse. Front. Biosci. 2018, 23, 811–836. [Google Scholar] [CrossRef] [Green Version]
- Leigh, S.J.; Morris, M.J. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol. Psychol. 2018, 131, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Romer, A.L.; Su Kang, M.; Nikolova, Y.S.; Gearhardt, A.N.; Hariri, A.R. Dopamine genetic risk is related to food addiction and body mass through reduced reward-related ventral striatum activity. Appetite 2019, 133, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.L.; Quan, Z.F.; Zhao, T.; Yu, X.D.; Xie, Q.; Zeng, J.; Ma, F.K.; Wang, F.; Tang, Q.S.; Wu, H.; et al. Chronic stress increases susceptibility to food addiction by increasing the levels of DR2 and MOR in the nucleus accumbens. Neuropsychiatr. Dis. Treat. 2019, 15, 1211–1229. [Google Scholar] [CrossRef]
- Hsu, J.S.; Wang, P.W.; Ko, C.H.; Hsieh, T.J.; Chen, C.Y.; Yen, J.Y. Altered brain correlates of response inhibition and error processing in females with obesity and sweet food addiction: A functional magnetic imaging study. Obes. Res. Clin. Pract. 2017, 11, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Effendy, E.; Amin, M.M.; Nasution, F.A.; Hasbi, M.; Khaddafi, M.R.; Soraya, H.; Mardhiyah, S.A. Correlation between Depressive Syndrome and Dopamine Transporter (DAT) Serum Level with Smartphone Addiction among Medical Students of Universitas Sumatera Utara. J. Drug Alcohol. Res. 2021, 10, 1–5. [Google Scholar]
- Kim, Y.; Lee, N.; Lim, Y. Gender differences in the association of smartphone addiction with food group consumption among Korean adolescents. Public Health 2017, 145, 132–135. [Google Scholar] [CrossRef]
- Lazarevich, I.; Irigoyen Camacho, M.E.; del Consuelo Velázquez-Alva, M.; Zepeda Zepeda, M. Relationship among obesity, depression, and emotional eating in young adults. Appetite 2016, 107, 639–644. [Google Scholar] [CrossRef]
- Konttinen, H.; van Strien, T.; Männistö, S.; Jousilahti, P.; Haukkala, A. Depression, emotional eating and long-term weight changes: A population-based prospective study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 28. [Google Scholar] [CrossRef] [Green Version]
- Dalton, M.; Hollingworth, S.; Blundell, J.; Finlayson, G. Weak Satiety Responsiveness Is a Reliable Trait Associated with Hedonic Risk Factors for Overeating among Women. Nutrients 2015, 7, 7421–7436. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, S.A.P.; Amiri, P.; Saidpour, A.; Hosseinzadeh, N.; Abolhasani, M.; Ghorbani, A. The prevalence of food addiction and its associations with plasma oxytocin level and anthropometric and dietary measurements in Iranian women with obesity. Peptides 2019, 122, 170151. [Google Scholar] [CrossRef] [PubMed]
- Schulte, E.M.; Gearhardt, A.N. Associations of Food Addiction in a Sample Recruited to Be Nationally Representative of the United States. Eur. Eat. Disord. Rev. 2018, 26, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.C.; Van Wijk, M.; Rowsell, M. Symptoms of ‘food addiction’ in binge eating disorder using the Yale Food Addiction Scale version 2.0. Appetite 2019, 133, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Emirtekin, E.; Balta, S.; Sural, I.; Kircaburun, K.; Griffiths, M.D.; Billieux, J. The role of childhood emotional maltreatment and body image dissatisfaction in problematic smartphone use among adolescents. Psychiatry Res. 2019, 271, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Imperatori, C.; Innamorati, M.; Lamis, D.A.; Farina, B.; Fabbricatore, M.; Contardi, A. Body uneasiness is associated with food addiction symptoms: A cross-sectional study. Eur. Eat. Disord. Rev. 2018, 26, 638–644. [Google Scholar] [CrossRef]
- Kandeger, A.; Selvi, Y.; Tanyer, D.K. The effects of individual circadian rhythm differences on insomnia, impulsivity, and food addiction. Eat. Weight Disord. 2019, 24, 47–55. [Google Scholar] [CrossRef]
- Chung, J.E.; Choi, S.A.; Kim, K.T.; Yee, J.; Kim, J.H.; Seong, J.W.; Seong, J.M.; Kim, J.Y.; Lee, K.E.; Gwak, H.S. Smartphone addiction risk and daytime sleepiness in Korean adolescents. J. Paediatr. Child Health 2018, 54, 800–806. [Google Scholar] [CrossRef]
- Burrows, T.; Kay-Lambkin, F.; Pursey, K.; Skinner, J.; Dayas, C. Food addiction and associations with mental health symptoms: A systematic review with meta-analysis. J. Hum. Nutr. Diet. 2018, 31, 544–572. [Google Scholar] [CrossRef]
- Raymond, K.L.; Kannis-Dymand, L.; Lovell, G.P. A graduated food addiction classifications approach significantly differentiates depression, anxiety and stress among people with type 2 diabetes. Diabetes Res. Clin. Pract. 2017, 132, 95–101. [Google Scholar] [CrossRef]
- Cho, Y.G. Excessive and problematic smartphone use and poor mental health in adolescents. Korean J. Fam. Med. 2020, 41, 73. [Google Scholar] [CrossRef]
- Tateno, M.; Teo, A.R.; Ukai, W.; Kanazawa, J.; Katsuki, R.; Kubo, H.; Kato, T.A. Internet Addiction, Smartphone Addiction, and Hikikomori Trait in Japanese Young Adult: Social Isolation and Social Network. Front Psychiatry 2019, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Sok, S.R.; Seong, M.H.; Ryu, M.H. Differences of Self-Control, Daily Life Stress, and Communication Skills between Smartphone Addiction Risk Group and General Group in Korean Nursing Students. Psychiatr. Q. 2019, 90, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gligor, S.; Mozos, I. Indicators of smartphone addiction and stress score in university students. Wien. Klin. Wochenschr. 2019, 131, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Aker, S.; Sahin, M.K.; Sezgin, S.; Oguz, G. Psychosocial Factors Affecting Smartphone Addiction in University Students. J. Addict. Nurs. 2017, 28, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, Y.; Shypenka, V. Loneliness, Individualism, and Smartphone Addiction Among International Students in China. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 711–718. [Google Scholar] [CrossRef]
- Zhou, H.; Dang, L.; Lam, L.W.; Zhang, M.X.; Wu, A.M. A cross-lagged panel model for testing the bidirectional relationship between depression and smartphone addiction and the influences of maladaptive metacognition on them in Chinese adolescents. Addict. Behav. 2021, 120, 106978. [Google Scholar] [CrossRef]
- Ihm, J. Social implications of children’s smartphone addiction: The role of support networks and social engagement. J. Behav. Addict. 2018, 7, 473–481. [Google Scholar] [CrossRef]
- Purohit, A.K.; Barclay, L.; Holzer, A. Designing for digital detox: Making social media less addictive with digital nudges. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar]
- Schüll, N.D. Loseit!: Calorie tracking and the discipline of consumption. In Appified: Culture in the Age of Apps; University of Michigan Press: Ann Arbor, MI, USA, 2018; pp. 103–114. [Google Scholar]
- Tregarthen, J.P.; Lock, J.; Darcy, A.M. Development of a smartphone application for eating disorder self-monitoring. Int. J. Eat. Disord. 2015, 48, 972–982. [Google Scholar] [CrossRef]
- Linardon, J.; Shatte, A.; Rosato, J.; Fuller-Tyszkiewicz, M. Efficacy of a transdiagnostic cognitive-behavioral intervention for eating disorder psychopathology delivered through a smartphone app: A randomized controlled trial. Psychol. Med. 2020, 1–12. [Google Scholar] [CrossRef]
- Kim, J.P.; Sadeh-Sharvit, S.; Darcy, A.M.; Neri, E.; Vierhile, M.; Robinson, A.; Tregarthen, J.; Lock, J.D. The utility and acceptability of a self-help smartphone application for eating disorder behaviors. J. Technol. Behav. Sci. 2018, 3, 161–164. [Google Scholar] [CrossRef]
- Nunes-Neto, P.R.; Kohler, C.A.; Schuch, F.B.; Solmi, M.; Quevedo, J.; Maes, M.; Murru, A.; Vieta, E.; McIntyre, R.S.; McElroy, S.L.; et al. Food addiction: Prevalence, psychopathological correlates and associations with quality of life in a large sample. J. Psychiatr. Res. 2018, 96, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grammatikopoulou, M.G.; Gkiouras, K.; Markaki, A.; Theodoridis, X.; Tsakiri, V.; Mavridis, P.; Dardavessis, T.; Chourdakis, M. Food addiction, orthorexia, and food-related stress among dietetics students. Eat. Weight Disord. 2018, 23, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Matar Boumosleh, J.; Jaalouk, D. Depression, anxiety, and smartphone addiction in university students—A cross sectional study. PLoS ONE 2017, 12, e0182239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.W.; Kim, D.J.; Choi, J.S.; Ahn, H.; Choi, E.J.; Song, W.Y.; Kim, S.; Youn, H. Comparison of risk and protective factors associated with smartphone addiction and Internet addiction. J. Behav. Addict. 2015, 4, 308–314. [Google Scholar] [CrossRef]
- Tangmunkongvorakul, A.; Musumari, P.M.; Tsubohara, Y.; Ayood, P.; Srithanaviboonchai, K.; Techasrivichien, T.; Suguimoto, S.P.; Ono-Kihara, M.; Kihara, M. Factors associated with smartphone addiction: A comparative study between Japanese and Thai high school students. PLoS ONE 2020, 15, e0238459. [Google Scholar] [CrossRef]
- Kim, S.G.; Park, J.; Kim, H.T.; Pan, Z.; Lee, Y.; McIntyre, R.S. The relationship between smartphone addiction and symptoms of depression, anxiety, and attention-deficit/hyperactivity in South Korean adolescents. Ann. Gen. Psychiatry 2019, 18, 1. [Google Scholar] [CrossRef]
- Laghi, F.; Pompili, S.; Baumgartner, E.; Baiocco, R. The role of sensation seeking and motivations for eating in female and male adolescents who binge eat. Eat. Behav. 2015, 17, 119–124. [Google Scholar] [CrossRef]
- Dikshit, R.; Karia, S.; Shah, N.; Sonavane, S.; DeSousa, A. A study on binge eating behavior in urban adolescents. Asian J. Psychiatr. 2020, 50, 101998. [Google Scholar] [CrossRef]
- Gorrell, S.; Murray, S.B. Eating Disorders in Males. Child Adolesc. Psychiatr. Clin. N. Am. 2019, 28, 641–651. [Google Scholar] [CrossRef]
Total | Boys | Girls | t-Test | x2 Test | |
---|---|---|---|---|---|
n = 209 | 93 (44.5%) | 116 (55.5%) | |||
Age | 12.8 (±0.7) | 12.6 ± 0.5 | 12.9 ± 0.7 | p = 0.064 | |
BMI percentile | 39.2 ± 29.9 | 47.9 ± 31.7 | 32.6 ± 26.8 | p = 0.001 | |
≤5th | 14 (6.7%) | 4 (4.3%) | 30 (8.6%) | p = 0.019 | |
5th–10th | 11 (11.8%) | 11 (11.8%) | 21 (18.1%) | ||
10th–90th | 61 (65.6%) | 61 (65.6%) | 75 (64.7%) | ||
90th–95th | 13 (14.0%) | 13 (14.0%) | 6 (5.2%) | ||
≥95th | 4 (4.3%) | 4 (4.3%) | 4 (3.4%) | ||
SES | p = 0.771 | ||||
low to moderate | 22 (10.6%) | 11 (12.1%) | 11 (10.6%) | ||
moderate | 130 (62.8%) | 55 (60.4%) | 75 (62.8%) | ||
moderate to high | 55 (26.6%) | 25 (27.5%) | 30 (26.6%) | ||
Exercise time | |||||
less than 1 h/day | 116 (55.8%) | 36 (39.1%) | 80 (69%) | p < 0.001 | |
more than 1 h/day | 92 (44.2%) | 56 (60.9%) | 36 (31%) | ||
Multimedia use time | |||||
less than 2 h/day | 96 (46.2%) | 50 (54.3%) | 46 (39.7%) | p = 0.037 | |
more than 2 h/day | 112 (53.8%) | 42 (45.7%) | 70 (60.3%) | ||
Binge eating experiences | |||||
No | 101 (48.6%) | 37 (40.2%) | 64 (55.2%) | p = 0.037 | |
Yes | 107 (51.4%) | 55 (59.8%) | 52 (44.8%) | ||
Uncontrolled eating experiences | |||||
No | 138 (66.3%) | 55 (59.8%) | 66 (56.9%) | p = 0.777 | |
Yes | 87 (33.7%) | 37 (40.2%) | 50 (43.1%) | ||
CEBQ_EOE | 10.4 ± 4.7 | 9.3 ± 3.9 | 11.2 ± 4.1 | p = 0.001 | |
CEBQ_SR | 12.3 ± 3.9 | 10.7 ± 3.6 | 13.6 ± 3.7 | p < 0.001 | |
dYFAS-C2.0 | 8.7 ± 7.5 | 8.3 ± 7.6 | 9.0 ± 7.5 | p = 0.519 | |
Smartphone Overdependence Scale | 22.6 ± 8.5 | 21.4 ± 8.1 | 23.6 ± 8.7 | p = 0.061 |
Total | Problematic Smartphone Use | |||
---|---|---|---|---|
Group without Risk | Group with Risk | |||
n = 209 | n = 113 | n = 96 | p Value | |
Age (years) | 12.86 (±0.70) | 12.8 ± 0.6 | 12.9 ± 0.9 | 0.149 |
Girls (%) | 93 (44.5%) | 55 (48.7%) | 61 (63.5%) | 0.022 |
BMI percentile | 39.27 ± 29.94 | 43.1 ± 30.4 | 34.8 ± 28.9 | 0.074 |
CEBQ_EOE | 10.40 ± 4.17 | 9.4 ± 3.9 | 11.4 ± 4.1 | 0.001 |
CEBQ_SR | 12.36 ± 3.98 | 11.8 ± 4.0 | 12.9 ± 3.8 | 0.041 |
dYFAS_C2.0 | 8.7 ± 7.5 | 6.1 ± 5.3 | 11.7 ± 8.7 | <0.001 |
Smartphone Overdependence Scale | 22.63 ± 8.52 | 16.2 ± 3.9 | 30.1 ± 5.9 | <0.001 |
95% Confident Interval | |||||||
---|---|---|---|---|---|---|---|
B | S.E. | F | p-Value | Exp(B) | Lowest | Highest | |
dYFAS_C2.0 | 0.105 | 0.031 | 1 | 0.001 | 1.111 | 1.045 | 1.180 |
CEBQ_EOE | 0.112 | 0.052 | 1 | 0.032 | 1.119 | 1.009 | 1.240 |
CEBQ_SR | 0.111 | 0.050 | 1 | 0.027 | 1.117 | 1.013 | 1.232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.-J.; Hwang, S.S.-H.; Lee, M.-S.; Bhang, S.-Y. Food Addiction and Emotional Eating Behaviors Co-Occurring with Problematic Smartphone Use in Adolescents? Int. J. Environ. Res. Public Health 2022, 19, 4939. https://doi.org/10.3390/ijerph19094939
Park E-J, Hwang SS-H, Lee M-S, Bhang S-Y. Food Addiction and Emotional Eating Behaviors Co-Occurring with Problematic Smartphone Use in Adolescents? International Journal of Environmental Research and Public Health. 2022; 19(9):4939. https://doi.org/10.3390/ijerph19094939
Chicago/Turabian StylePark, Eun-Jin, Samuel Suk-Hyun Hwang, Mi-Sun Lee, and Soo-Young Bhang. 2022. "Food Addiction and Emotional Eating Behaviors Co-Occurring with Problematic Smartphone Use in Adolescents?" International Journal of Environmental Research and Public Health 19, no. 9: 4939. https://doi.org/10.3390/ijerph19094939
APA StylePark, E. -J., Hwang, S. S. -H., Lee, M. -S., & Bhang, S. -Y. (2022). Food Addiction and Emotional Eating Behaviors Co-Occurring with Problematic Smartphone Use in Adolescents? International Journal of Environmental Research and Public Health, 19(9), 4939. https://doi.org/10.3390/ijerph19094939