Impact of P-Chloroaniline on Oxidative Stress and Biomacromolecules Damage in the Clam Ruditapes philippinarums: A Simulate Toxicity Test of Spill Incident
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Acute Toxicity Test
2.3. Chronic Toxicity Test
2.3.1. Experimental Design
2.3.2. Measurement of Biomarkers
2.4. Data Analysis
3. Results
3.1. Effect of P-Chloroaniline on the Activity of Detoxifying and Metabolizing Enzymes in R. philippinarum
3.2. Effect of P-Chloroaniline Stress on Antioxidant Defense System in R. philippinarum
3.3. Effect of P-Chloroaniline on Tissue Damage in R. philippinarum
3.4. Correlation Analysis
4. Discussion
4.1. Damage Mechanism of P-Chloroaniline on Biomacromolecules in R. philippinarum
4.2. Screening and Evaluation of Biomarkers of P-Chloroaniline Leakage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunha, I.; Moreira, S.; Santos, M.M. Review on hazardous and noxious substances (HNS) involved in marine spill incidents—An online database. J. Hazard. Mater. 2015, 285, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.F.; Law, R.J. Accidental spills at sea-risk, impact, mitigation and the need for coordinated post-incident monitoring. Mar. Pollut. Bull. 2010, 60, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Cunha, I.; Torres, T.; Oliveira, H.; Martins, R.; McGowan, T.; Sheahan, D.; Santos, M.M. Using early life stages of marine animals to screen the toxicity of priority hazardous and noxious substances. Environ. Sci. Pollut. Res. Int. 2017, 24, 10510–10518. [Google Scholar] [CrossRef] [PubMed]
- Neuparth, T.; Moreira, S.; Santos, M.M.; Reis-Henriques, M.A. Hazardous and Noxious Substances (HNS) in the marine environment: Prioritizing HNS that pose major risk in a European context. Mar. Pollut. Bull. 2011, 62, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.C.S.; Reis-Henriques, M.A.; Galhano, V.; Ferreira, M.; Guimarães, L. Toxicity of Seven Priority Hazardous and Noxious Substances (HNSs) to Marine Organisms: Current Status, Knowledge Gaps and Recommendations for Future Research. Sci. Total Environ. 2016, 542, 728–749. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.; Fernandes, R.; Brito, D.; Oliveira, H.; Neuparth, T.; Martins, I.; Santos, M.M. Environmental Risk Assessment of Accidental Marine Spills: A New Approach Combining an Online Dynamic Hazardous and Noxious Substances Database with Numerical Dispersion, Risk and Population Modelling. Sci. Total Environ. 2020, 715, 136801. [Google Scholar] [CrossRef] [PubMed]
- Boon, N.; Goris, J.; DeVos, P.; Verstraete, W.; Top, E.M. Genetic diversity among 3-Chloroaniline-and aniline-degrading strains of theComamonadaceae. Appl. Environ. Microbiol. 2001, 67, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Pizon, A.F.; Schwartz, A.R.; Shum, L.M.; Rittenberger, J.C.; Lower, D.R.; Giannoutsos, S.; Virji, M.A.; Krasowski, M.D. Toxicology laboratory analysis and human exposure to p-chloroaniline. Clin. Toxicol. 2009, 47, 132–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.J.; Zhang, H.X.; Yu, X.; Qiu, L.Q. Toxicological responses of Chlorella vulgaris to dichloromethane and dichloroethane. Environ. Eng. Sci. 2014, 31, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Pan, L.Q.; Lin, P.F.; Miao, J.J.; Wang, X.F.; Lin, Y.F.; Wu, J.Y. Evaluating the toxic effects of three priority hazardous and noxious substances (HNS) to rotifer Brachionus plicatilis. Environ. Sci. Pollut. Res. Int. 2017, 24, 27277–27287. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, R.S.; Huff, J.E.; Haseman, J.K.; Elwell, M.R.; Peters, A.C. Carcinogenicity of para-chloroaniline in rats and mice. Food Chem. Toxic. 1991, 29, 119–124. [Google Scholar] [CrossRef]
- Dumpert, K. Embryotoxic effects of environmental chemicals: Tests with the South African clawed toad (Xenopus laevis). Ecotox. Environ. Saf. 1987, 13, 324–338. [Google Scholar] [CrossRef]
- Kačmár, P.; Pistl, J.; Mikula, I. The effect of p-chloroaniline on leucocytes of sheep peripheral blood under the migration-inhibition test conditions. Immunopharm. Immunot. 1995, 17, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, R.S.; Thompson, M.; Elwell, M.R.; Gerken, D.K. Toxicity of p-chloroaniline in rats and mice. Food. Chem. Toxicol. 1990, 28, 717–722. [Google Scholar] [CrossRef]
- Julin, A.M.; Sanders, H.O. Toxicity of the IGR, diflubenzuron, to freshwater invertebrates and fishes. Mosq. News. 1978, 38, 256–259. [Google Scholar]
- Bradbury, S.P.; Dady, J.M.; Fitzsimmons, P.N.; Voit, M.M.; Hammermeister, D.E.; Erickson, R.J. Toxicokinetics and metabolism of aniline and 4-chloroaniline in medaka (Oryzias latipes). Toxicol. Appl. Pharm. 1993, 118, 205–214. [Google Scholar] [CrossRef]
- Wu, B.L.; Cao, Y.; Luo, S.; Wang, J.W. Sensitivity of rare minnow (Gobiocypris rarus, IHB) to several common chemicals. China Environ. Sci. 2014, 34, 1059–1066. [Google Scholar]
- Wei, S.X.; Miao, J.J.; Li, Y.H.; Li, Y.S.; Wang, X.F.; Pan, L.Q.; Li, Y.; Wu, J.Y.; Lin, Y.F. Toxic effect of p-chloroaniline and butyl acrylateon Nannochloropsis Oculata based on water samples from two sea areas. Environ. Toxicol. Phar. 2021, 83, 103582. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Miao, J.J.; Pan, L.Q.; Li, Y.H.; Lin, Y.F.; Wu, J.Y. Toxicity effects of p-choroaniline on the growth, photosynthesis, respiration capacity and antioxidant enzyme activities of a diatom, Phaeodactylum tricornutu. Ecotox. Environ. Saf. 2019, 169, 654–661. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, Y.; Pan, L.Q.; Miao, J.J.; Li, Y.S.; Wei, S.X.; Lin, Y.F.; Wu, J.Y. Toxicity assessment of p-choroaniline on platymonas subcordiformis and its biodegradation. Ecotox. Environ. Saf. 2020, 189, 109995. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt-Holm, P.; Oulmi, Y.; Schroeder, A.; Storch, V.; Braunbeck, T. Toxicity of 4-chloroaniline in early life stages of zebrafish (Danio rerio): II. Cytopathology and regeneration of liver and gills after prolonged exposure to waterborne 4-chloroaniline. Arch. Environ. Contam. Toxicol. 1999, 37, 85–102. [Google Scholar] [CrossRef]
- Dantzger, D.D.; Jonsson, C.M.; Aoyama, H. Mixtures of diflubenzuron and p-chloroaniline changes the activities of enzymes biomarkers on tilapia fish (Oreochromis niloticus) in the presence and absence of soil. Ecotox. Environ. Saf. 2018, 148, 367–376. [Google Scholar] [CrossRef]
- Astley, K.N.; Meigh, H.C.; Glegg, G.A.; Braven, J.; Depledge, M.H. Multi-variate analysis of biomarker responses in Mytilus edulis and Carcinus maenas from the Tees Estuary (UK). Mar. Pollut. Bull. 1999, 39, 145–154. [Google Scholar] [CrossRef]
- Puppo, J.; Forja, J.; Blasco, J. Biochemical characteristics of aspartate aminotransferase from gills and digestive gland of the Manile clam (Ruditapes philippinarum). Comp. Biochem. Physiol. 1992, 103, 209–216. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Greenwald, R.A. Handbook of Methods for Oxygen Radical Research; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Wills, E.D. Evaluation of lipid peroxidation in lipids and biological membranes. In Biochemical Toxicology; A Practical Approach; Snell, K., Mullock, B., Eds.; IRL Press: Oxford, UK, 1987; pp. 127–152. [Google Scholar]
- Mecocci, P.; Fanó, G.; Fulle, S.; MacGarvey, U.; Shinobu, L.; Polidori, M.C.; Cherubini, A.; Vecchiet, J.; Senin, U.; Beal, M.F. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Biol. Med. 1999, 26, 303–308. [Google Scholar] [CrossRef]
- Ching, E.W.; Siu, W.H.; Lam, P.K.; Xu, L.; Zhang, Y.; Richardson, B.J.; Wu, R.S. DNA adduct formation and DNA strand breaks in green-lipped mussels (Perna viridis) exposed to benzo[a]pyrene: Dose-and time-dependent relationships. Mar. Pollut. Bull. 2001, 42, 603–610. [Google Scholar] [CrossRef]
- Yin, J.; Wang, A.P.; Li, W.F.; Shi, R.; Jin, H.T.; Wei, J.F. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish. Fish Shellfish Immunol. 2018, 72, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.J.; Wang, J.M.; Zhu, L.S.; Wang, J.; Li, S.Y.; Kim, Y.M. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. Sci. Total. Environ. 2021, 754, 141873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.N.; Zhang, J.L.; Ren, H.T.; Zhou, B.H.; Wu, Q.J.; Ping, S. Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio). Ecotox. Environ. Saf. 2017, 138, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 1993, 62, 797–821. [Google Scholar] [CrossRef] [PubMed]
- Almroth, B.C.; Sturve, J.; Berglund, A.; Forlin, L. Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers. Aquat. Toxicol. 2005, 73, 171–180. [Google Scholar] [CrossRef]
- Davies, K.J.; Goldberg, A.L. Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes. J. Biol. Chem. 1987, 262, 8220–8226. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.X.; Zhang, X.L.; Xu, Y.; Liao, T.; Song, S.B.; Wang, J.W. Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquat. Toxicol. 2008, 86, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.R.; Alagawany, M.; Taha, H.S.A.; Ismail, T.A.; Khalil, S.R.; Abou-Zeid, S.M. Immune response and susceptibility of Nile tilapia fish to Aeromonas hydrophila infection following the exposure to Bifenthrin and/or supplementation with Petroselinum crispum essential oil. Ecotox. Environ. Saf. 2021, 216, 112205. [Google Scholar] [CrossRef]
- Kaur, P.; Purewal, S.S.; Sandhu, K.S.; Kaur, M. DNA damage protection: An excellent application of bioactive compounds. Bioresour. Bioprocess. 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.Q.; Pan, L.Q.; Wang, L. Effects of tetrabromodiphenyl ether (BDE-47) on metabolic enzymes and DNA damages in tissues of Ruditapes philippinarum. Mar. Environ. Sci. 2011, 30, 653–658. [Google Scholar]
- Bian, G.P.; Liu, R.X.; Shi, B.Z.; Jiao, H.H. DNA damages in mouse hepatocytes and lymphocytes induced by aniline and their repair dynamics. Acta Lab. Anim. Sci. Sin. 2016, 24, 139–143. [Google Scholar]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotox. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.L.; Wu, H.F.; Zhou, M.; Zhao, J.M. Multiple biomarkers of biological effects induced by cadmium in clam Ruditapes philippinarum. Fish Shellfish Immunol. 2015, 44, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Xiong, D.M.; Wu, M.N.; Wang, L.X.; Yang, J. Induction of time-and dose-dependent oxidative stress of triazophos to brain and liver in zebrafish (Danio rerio). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 228, 108640. [Google Scholar] [CrossRef] [PubMed]
- Oost, R.V.D.; Beyer, J.; Vermeulen, N.P.E. Fish bioaccumulation and biomarkers in environmental riskassessment: A review. Environ. Toxicol. Phar. 2003, 13, 57–149. [Google Scholar] [CrossRef]
- Ma, Y.C.; Wang, T.; Liao, J.X.; Gu, H.L.; Lin, X.P.; Jiang, Q.; Bulsara, M.K.; Zheng, M.H.; Zheng, Q.J. Efficacy of autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of femoral head: A prospective, double-blinded, randomized, controlled study. Stem. Cell. Res. Ther. 2014, 5, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.X.; Pan, L.Q.; Zhang, H.; Liu, N. Identification of genes differentially expressed in clams Ruditapes philippinarum in response to endosulfan after different exposure time. Ecotox. Environ. Saf. 2013, 89, 108–116. [Google Scholar] [CrossRef] [PubMed]
Organization | Index | p of Pearson’s Correlation Coefficient | |||
---|---|---|---|---|---|
1 d | 3 d | 8 d | 15 d | ||
gill | GST | 0.963 ** | 0.965 ** | 0.970 ** | 0.957 ** |
CAT | 0.189 | 0.924 * | 0.223 | −0.122 | |
SOD | 0.394 | −0.618 * | −0.859 ** | −0.907 ** | |
GSH | 0.961 ** | 0.326 | 0.166 | 0.594 * | |
MDA | 0.582 * | 0.773 * | 0.891 ** | 0.808 ** | |
PC | 0.525 | 0.934 ** | 0.233 | 0.730 ** | |
F value | −0.592 * | −0.768 ** | −0.502 | −0.638 * | |
Digestivegland | GST | 0.962 ** | 0.979 ** | 0.978 ** | 0.974 ** |
CAT | 0.462 | 0.783 ** | 0.450 | 0.128 | |
SOD | −0.620 * | −0.665 * | −0.810 ** | −0.886 ** | |
GSH | 0.971 ** | 0.967 ** | 0.926 ** | 0.872 ** | |
MDA | 0.675 * | 0.866 ** | 0.460 | 0.345 | |
PC | 0.675 * | 0.964 ** | 0.864 ** | 0.301 | |
F value | −0.957 ** | −0.936 ** | −0.775 ** | −0.926 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Miao, J.; Li, Y.; Wu, J.; Wang, G.; Zhang, D.; Pan, L. Impact of P-Chloroaniline on Oxidative Stress and Biomacromolecules Damage in the Clam Ruditapes philippinarums: A Simulate Toxicity Test of Spill Incident. Int. J. Environ. Res. Public Health 2022, 19, 5092. https://doi.org/10.3390/ijerph19095092
Wu M, Miao J, Li Y, Wu J, Wang G, Zhang D, Pan L. Impact of P-Chloroaniline on Oxidative Stress and Biomacromolecules Damage in the Clam Ruditapes philippinarums: A Simulate Toxicity Test of Spill Incident. International Journal of Environmental Research and Public Health. 2022; 19(9):5092. https://doi.org/10.3390/ijerph19095092
Chicago/Turabian StyleWu, Manni, Jingjing Miao, Yuhan Li, Jiangyue Wu, Guoshan Wang, Dasheng Zhang, and Luqing Pan. 2022. "Impact of P-Chloroaniline on Oxidative Stress and Biomacromolecules Damage in the Clam Ruditapes philippinarums: A Simulate Toxicity Test of Spill Incident" International Journal of Environmental Research and Public Health 19, no. 9: 5092. https://doi.org/10.3390/ijerph19095092
APA StyleWu, M., Miao, J., Li, Y., Wu, J., Wang, G., Zhang, D., & Pan, L. (2022). Impact of P-Chloroaniline on Oxidative Stress and Biomacromolecules Damage in the Clam Ruditapes philippinarums: A Simulate Toxicity Test of Spill Incident. International Journal of Environmental Research and Public Health, 19(9), 5092. https://doi.org/10.3390/ijerph19095092