Increased Risk Perception, Distress Intolerance and Health Anxiety in Stricter Lockdowns: Self-Control as a Key Protective Factor in Early Response to the COVID-19 Pandemic
Abstract
:1. Introduction
1.1. Strict vs. Mild Lockdown Measures in Romania vs. Hungary and Their Psychological Consequences
1.2. Protective Psychological Factors in Early Response to the COVID-19 Pandemic
1.3. The Present Research
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Statistical Procedures
3. Results
3.1. Governmental Restrictions and the Early COVID-19 Situation in Hungary and Romania
3.1.1. Research Question 1: Differences between Hungary and Romania
3.1.2. Research Question 2: Lockdown Stringency Conditions and Protective Factors as Predictors of COVID-19 Related Outcome Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batterham, P.J.; Calear, A.L.; McCallum, S.M.; Morse, A.R.; Banfield, M.; Farrer, L.M.; Gulliver, A.; Cherbuin, N.; Rodney Harris, R.M.; Shou, Y.; et al. Trajectories of Depression and Anxiety Symptoms during the COVID-19 Pandemic in a Representative Australian Adult Cohort. Med. J. Aust. 2021, 214, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Fancourt, D.; Steptoe, A.; Bu, F. Trajectories of Anxiety and Depressive Symptoms during Enforced Isolation Due to COVID-19 in England: A Longitudinal Observational Study. Lancet Psychiatry 2021, 8, 141–149. [Google Scholar] [CrossRef]
- Saunders, R.; Buckman, J.E.J.; Fonagy, P.; Fancourt, D. Understanding Different Trajectories of Mental Health across the General Population during the COVID-19 Pandemic. Psychol. Med. 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Prati, G.; Mancini, A.D. The Psychological Impact of COVID-19 Pandemic Lockdowns: A Review and Meta-Analysis of Longitudinal Studies and Natural Experiments. Psychol. Med. 2021, 51, 201–211. [Google Scholar] [CrossRef]
- Daly, M.; Robinson, E. High-Risk Drinking in Midlife Before Versus During the COVID-19 Crisis: Longitudinal Evidence From the United Kingdom. Am. J. Prev. Med. 2021, 60, 294–297. [Google Scholar] [CrossRef]
- Jackson, S.E.; Garnett, C.; Shahab, L.; Oldham, M.; Brown, J. Association of the COVID-19 Lockdown with Smoking, Drinking and Attempts to Quit in England: An Analysis of 2019–2020 Data. Addiction 2021, 116, 1233–1244. [Google Scholar] [CrossRef]
- Lei, L.; Huang, X.; Zhang, S.; Yang, J.; Yang, L.; Xu, M. Comparison of Prevalence and Associated Factors of Anxiety and Depression Among People Affected by versus People Unaffected by Quarantine During the COVID-19 Epidemic in Southwestern China. Med. Sci. Monit. 2020, 26, e924609. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y.; Cao, H.; Leung, D.Y.P.; Mak, Y.W. The Psychological Impacts of a COVID-19 Outbreak on College Students in China: A Longitudinal Study. Int. J. Environ. Res. Public Health 2020, 17, 3933. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, F.; Wei, C.; Jia, Y.; Shang, Z.; Sun, L.; Wu, L.; Sun, Z.; Zhou, Y.; Wang, Y.; et al. Prevalence and Predictors of PTSS during COVID-19 Outbreak in China Hardest-Hit Areas: Gender Differences Matter. Psychiatry Res. 2020, 287, 112921. [Google Scholar] [CrossRef]
- Zimmermann, M.; Bledsoe, C.; Papa, A. Initial Impact of the COVID-19 Pandemic on College Student Mental Health: A Longitudinal Examination of Risk and Protective Factors. Psychiatry Res. 2021, 305, 114254. [Google Scholar] [CrossRef]
- Bojanowska, A.; Kaczmarek, Ł.D.; Koscielniak, M.; Urbańska, B. Changes in Values and Well-Being amidst the COVID-19 Pandemic in Poland. PLoS ONE 2021, 16, e0255491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Miller, S.O.; Xu, W.; Yin, A.; Chen, B.Z.; Delios, A.; Dong, R.K.; Chen, R.Z.; McIntyre, R.S.; Wan, X.; et al. Meta-Analytic Evidence of Depression and Anxiety in Eastern Europe during the COVID-19 Pandemic. Eur. J. Psychotraumatol. 2022, 13, 2000132. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T. Thinking and Depression: I. Idiosyncratic Content and Cognitive Distortions. Arch. Gen. Psychiatry 1963, 9, 324–333. [Google Scholar] [CrossRef]
- Chatterjee, S.S.; Barikar, C.M.; Mukherjee, A. Impact of COVID-19 Pandemic on Pre-Existing Mental Health Problems. Asian J. Psychiatr. 2020, 51, 102071. [Google Scholar] [CrossRef] [PubMed]
- Scarella, T.M.; Laferton, J.A.C.; Ahern, D.K.; Fallon Brian, A.; Barsky, A.; Brian, A.F.; Barsky, A. The Relationship of Hypochondriasis to Anxiety, Depressive, and Somatoform Disorders. Psychosomatics 2016, 57, 200–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salanti, G.; Cipriani, A.; Furukawa, T.A.; Peter, N.; Tonia, T.; Papakonstantinou, T.; Holloway, A.; Leucht, S. An Efficient Way to Assess the Effect of COVID-19 on Mental Health in the General Population. Lancet Psychiatry 2021, 366, 19–21. [Google Scholar] [CrossRef]
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus (accessed on 20 April 2021).
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-blake, E.; Hallas, L.; Majumdar, S.; et al. A Global Panel Database of Pandemic Policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef]
- Plümper, T.; Neumayer, E. Lockdown Policies and the Dynamics of the First Wave of the SARS-CoV-2 Pandemic in Europe. J. Eur. Public Policy 2022, 29, 321–341. [Google Scholar] [CrossRef]
- Binder, K.; Diaz Crego, M.; Eckert, G.; Kotanidis, S.; Manko, R.; Del Monte, M. States of Emergency in Response to the Coronavirus Crisis: Situation in Certain Member States. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/649408/EPRS_BRI(2020)649408_EN.pdf (accessed on 23 April 2021).
- Dascalu, S. The Successes and Failures of the Initial COVID-19 Pandemic Response in Romania. Front. Public Health 2020, 8, 1–6. [Google Scholar] [CrossRef]
- Mantu, S. EU Citizenship, Free Movement, and COVID-19 in Romania. Front. Hum. Dyn. 2020, 2, 1–7. [Google Scholar] [CrossRef]
- IHME. The Institute for Health Metrics and Evaluation. Available online: https://vizhub.healthdata.org/gbd-compare (accessed on 23 April 2021).
- Gruber, J.; Prinstein, M.J.; Clark, L.A.; Rottenberg, J.; Abramowitz, J.S.; Albano, A.M.; Aldao, A.; Borelli, J.L.; Chung, T.; Davila, J.; et al. Mental Health and Clinical Psychological Science in the Time of COVID-19: Challenges, Opportunities, and a Call to Action. Am. Psychol. 2020, 76, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Witte, K.; Allen, M. A Meta-Analysis of Fear Appeals: Implications for Effective Public Health Campaigns. Health Educ. Behav. 2000, 27, 591–615. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change1. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Tagini, S.; Brugnera, A.; Ferrucci, R.; Mazzocco, K.; Compare, A.; Silani, V.; Pravettoni, G.; Poletti, B. It Won’t Happen to Me! Psychosocial Factors Influencing Risk Perception for Respiratory Infectious Diseases: A Scoping Review. Appl. Psychol. Health Well-Being 2021, 13, 835–852. [Google Scholar] [CrossRef]
- Alegria, K.E.; Fleszar-Pavlović, S.E.; Ngo, D.D.; Beam, A.; Halliday, D.M.; Hinojosa, B.M.; Hua, J.; Johnson, A.E.; McAnally, K.; McKinley, L.E.; et al. The Role of Risk Perceptions and Affective Consequences in COVID-19 Protective Behaviors. Int. J. Behav. Med. 2021, 28, 801–807. [Google Scholar] [CrossRef]
- Kim, A.W.; Nyengerai, T.; Mendenhall, E. Evaluating the Mental Health Impacts of the COVID-19 Pandemic: Perceived Risk of COVID-19 Infection and Childhood Trauma Predict Adult Depressive Symptoms in Urban South Africa. Psychol. Med. 2020, 1–13. [Google Scholar] [CrossRef]
- Mohd Salleh Sahimi, H.; Azman, N.; Nik Jaafar, N.R.; Mohd Daud, T.I.; Baharudin, A.; Ismail, A.K.; Abdul Malek, A.Z.; Hassan, M.R.; Mohammed Nawi, A. Health Anxiety and Its Correlations with Self-Perceived Risk and Attitude on COVID-19 among Malaysian Healthcare Workers during the Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 4879. [Google Scholar] [CrossRef]
- Romero, E.; López-Romero, L.; Domínguez-álvarez, B.; Villar, P.; Gómez-Fraguela, J.A. Testing the Effects of COVID-19 Confinement in Spanish Children: The Role of Parents’ Distress, Emotional Problems and Specific Parenting. Int. J. Environ. Res. Public Health 2020, 17, 6975. [Google Scholar] [CrossRef]
- Simons, J.S.; Gaher, R.M. The Distress Tolerance Scale: Development and Validation of a Self-Report Measure. Motiv. Emot. 2005, 29, 83–102. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhang, E.; Wong, G.T.F.; Hyun, S.; Hahm, H. “Chris” Factors Associated with Depression, Anxiety, and PTSD Symptomatology during the COVID-19 Pandemic: Clinical Implications for U.S. Young Adult Mental Health. Psychiatry Res. 2020, 290, 113172. [Google Scholar] [CrossRef]
- Fergus, T.A.; Bardeen, J.R.; Orcutt, H.K. Examining the Specific Facets of Distress Tolerance That Are Relevant to Health Anxiety. J. Cogn. Psychother. 2015, 29, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Asmundson, G.J.G.; Taylor, S. How Health Anxiety Influences Responses to Viral Outbreaks like COVID-19: What All Decision-Makers, Health Authorities, and Health Care Professionals Need to Know. J. Anxiety Disord. 2020, 71, 102211. [Google Scholar] [CrossRef] [PubMed]
- Rosebrock, L.; Cernis, E.; Lambe, S.; Waite, F.; Rek, S.; Petit, A.; Ehlers, A.; Clark, D.M.; Freeman, D. Catastrophic Cognitions about Coronavirus: The Oxford Psychological Investigation of Coronavirus Questionnaire [TOPIC-Q]. Psychol. Med. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lábadi, B.; Arató, N.; Budai, T.; Inhóf, O.; Stecina, D.T.; Sík, A.; Zsidó, A.N. Psychological Well-Being and Coping Strategies of Elderly People during the COVID-19 Pandemic in Hungary. Aging Ment. Health 2022, 26, 570–577. [Google Scholar] [CrossRef]
- Marschalko, E.E.; Kotta, I.; Kalcza-Janosi, K.; Szabo, K.; Jancso-Farcas, S. Psychological Predictors of COVID-19 Prevention Behavior in Hungarian Women Across Different Generations. Front. Psychol. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Szabo, A.; Ábel, K.; Boros, S. Attitudes toward COVID-19 and Stress Levels in Hungary: Effects of Age, Perceived Health Status, and Gender. Psychol. Trauma Theory Res. Pract. Policy 2020, 12, 572–575. [Google Scholar] [CrossRef]
- Ştefănuţ, A.M.; Vintilă, M.; Bucur, V.M.; Blaboli, T. Gender and Age-Related Differences in Depression, Anxiety and Stress during the COVID-19 Pandemic: A Cross-Sectional Study. Available online: https://search.ebscohost.com/login.aspx?direct=true&db=sih&AN=149558942&site=ehost-live (accessed on 18 April 2021).
- Tei, S.; Fujino, J. Roles of Trait Resilience, Flexibility, and Volitional Self-Control in Social Adaptation: An FMRI Study. Eur. Psychiatry 2021, 64, 734–735. [Google Scholar] [CrossRef]
- Kashdan, T.B.; Rottenberg, J. Psychological Flexibility as a Fundamental Aspect of Health. Clin. Psychol. Rev. 2010, 30, 865–878. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.Y.; Chien, W.T.; Cheng, H.Y.; Kassianos, A.P.; Gloster, A.T.; Karekla, M. Can Psychological Flexibility and Prosociality Mitigate Illness Perceptions toward COVID-19 on Mental Health? A Cross-Sectional Study among Hong Kong Adults. Global. Health 2021, 17, 1–13. [Google Scholar] [CrossRef]
- Dawson, D.L.; Golijani-Moghaddam, N. COVID-19: Psychological Flexibility, Coping, Mental Health, and Wellbeing in the UK during the Pandemic. J. Context. Behav. Sci. 2020, 17, 126–134. [Google Scholar] [CrossRef]
- Smith, B.M.; Twohy, A.J.; Smith, G.S. Psychological Inflexibility and Intolerance of Uncertainty Moderate the Relationship between Social Isolation and Mental Health Outcomes during COVID-19. J. Context. Behav. Sci. 2020, 18, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Dyer, J.G.; McGuinness, T.M. Resilience: Analysis of the Concept. Arch. Psychiatr. Nurs. 1996, 10, 276–282. [Google Scholar] [CrossRef]
- Song, S.; Yang, X.; Yang, H.; Zhou, P.; Ma, H.; Teng, C.; Chen, H.; Ou, H.; Li, J.; Mathews, C.A.; et al. Psychological Resilience as a Protective Factor for Depression and Anxiety Among the Public During the Outbreak of COVID-19. Front. Psychol. 2021, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Osimo, S.A.; Aiello, M.; Gentili, C.; Ionta, S.; Cecchetto, C. The Influence of Personality, Resilience, and Alexithymia on Mental Health During COVID-19 Pandemic. Front. Psychol. 2021, 12, 341. [Google Scholar] [CrossRef] [PubMed]
- Tangney, J.P.; Baumeister, R.F.; Boone, A.L. High Self-Control Predicts Good Adjustment, Less Pathology, Better Grades, and Interpersonal Success. J. Pers. 2004, 72, 271–324. [Google Scholar] [CrossRef]
- Lindner, C.; Nagy, G.; Retelsdorf, J. The Dimensionality of the Brief Self-Control Scale—An Evaluation of Unidimensional and Multidimensional Applications. Pers. Individ. Dif. 2015, 86, 465–473. [Google Scholar] [CrossRef]
- Schnell, T.; Krampe, H. Meaning in Life and Self-Control Buffer Stress in Times of COVID-19: Moderating and Mediating Effects With Regard to Mental Distress. Front. Psychiatry 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Kokkoris, M.D.; Stavrova, O. Staying on Track in Turbulent Times: Trait Self-Control and Goal Pursuit during Self-Quarantine. Pers. Individ. Dif. 2021, 170, 110454. [Google Scholar] [CrossRef]
- Li, J.-B.; Yang, A.; Dou, K.; Cheung, R.Y.M.M. Self-Control Moderates the Association Between Perceived Severity of Coronavirus Disease 2019 (COVID-19) and Mental Health Problems Among the Chinese Public. Int. J. Environ. Res. Public Health 2020, 17, 4820. [Google Scholar] [CrossRef]
- Kukowski, C.; Bernecker, K.; Brandstätter, V. Self-Control and Beliefs Surrounding Others’ Cooperation Predict Own Health-Protective Behaviors and Support for COVID-19 Government Regulations: Evidence from Two European Countries. Soc. Psychol. Bull. 2021, 16, 1–28. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Ng, A.-K. Psychosocial Factors Predicting SARS-Preventive Behaviors in Four Major SARS-Affected Regions. J. Appl. Soc. Psychol. 2006, 36, 222–247. [Google Scholar] [CrossRef]
- Brug, J.; Aro, A.R.; Oenema, A.; de Zwart, O.; Richardus, J.H.; Bishop, G.D. SARS Risk Perception, Knowledge, Precautions, and Information Sources, the Netherlands. Emerg. Infect. Dis. 2004, 10, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Commodari, E. The Role of Sociodemographic and Psychological Variables on Risk Perception of the Flu. SAGE Open 2017, 7, 215824401771889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibuka, Y.; Chapman, G.B.; Meyers, L.A.; Li, M.; Galvani, A.P. The Dynamics of Risk Perceptions and Precautionary Behavior in Response to 2009 (H1N1) Pandemic Influenza. BMC Infect. Dis. 2010, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Harrington, N. The Frustration Discomfort Scale: Development and Psychometric Properties. Clin. Psychol. Psychother. 2005, 12, 374–387. [Google Scholar] [CrossRef]
- Salkovskis, P.M.; Rimes, K.A.; Warwick, H.M.C.C.; Clark, D.M. The Health Anxiety Inventory: Development and Validation of Scales for the Measurement of Health Anxiety and Hypochondriasis. Psychol. Med. 2002, 32, 843–853. [Google Scholar] [CrossRef]
- Netemeyer, R.G.; Williamson, D.A.; Burton, S.; Biswas, D.; Jindal, S.; Landreth, S.; Mills, G.; Primeaux, S. Psychometric Properties of Shortened Versions of the Automatic Thoughts Questionnaire. Educ. Psychol. Meas. 2002, 62, 111–129. [Google Scholar] [CrossRef]
- Ben-Itzhak, S.; Bluvstein, I.; Maor, M. The Psychological Flexibility Questionnaire (PFQ): Development, Reliability and Validity. Webmed Cent. Psychol. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Sinclair, V.G.; Wallston, K.A. The Development and Psychometric Evaluation of the Brief Resilient Coping Scale. Assessment 2004, 11, 94–101. [Google Scholar] [CrossRef]
- He, H.; Wu, P.; Chen, D.-G. Statistical Causal Inferences and Their Applications in Public Health Research; He, H., Wu, P., Chen, D.-G., Eds.; ICSA Book Series in Statistics; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-41257-3. [Google Scholar]
- Austin, P.C.; Mamdani, M.M.; Stukel, T.A.; Anderson, G.M.; Tu, J.V. The Use of the Propensity Score for Estimating Treatment Effects: Administrative versus Clinical Data. Stat. Med. 2005, 24, 1563–1578. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochran, W.G.; Rubin, D.B. Controlling Bias in Observational Studies: A Review. Matched Sampl. Causal Eff. 2006, 35, 30–58. [Google Scholar] [CrossRef]
- Rubin, D.B. Using Propensity Scores to Help Design Observational Studies: Application to the Tobacco Litigation. Health Serv. Outcomes Res. Methodol. 2001, 2, 365–382. [Google Scholar] [CrossRef]
- Austin, P.C. Comparing Paired vs. Non-paired Statistical Methods of Analyses When Making Inferences about Absolute Risk Reductions in Propensity-score Matched Samples. Stat. Med. 2011, 30, 1292–1301. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.A.D.; de Brito, T.R.S.; Pereira, C.R. Anxiety Associated with COVID-19 and Concerns about Death: Impacts on Psychological Well-Being. Pers. Individ. Dif. 2021, 176, 110772. [Google Scholar] [CrossRef]
- Muthén, L.; Muthén, B. Mplus User’s Guide (8th ed.). Available online: https://www.statmodel.com/download/usersguide/MplusUserGuideVer_8.pdf (accessed on 15 March 2021).
- Preacher, K.J.; Selig, J.P. Advantages of Monte Carlo Confidence Intervals for Indirect Effects. Commun. Methods Meas. 2012, 6, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.B.; Bowers, J. Covariate Balance in Simple, Stratified and Clustered Comparative Studies. Stat. Sci. 2008, 23, 219–236. [Google Scholar] [CrossRef]
- Carvalho, P.O.; Hülsdünker, T.; Carson, F. The Impact of the COVID-19 Lockdown on European Students’ Negative Emotional Symptoms: A Systematic Review and Meta-Analysis. Behav. Sci. 2022, 12, 3. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-Being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef]
- Schutte, N.S.; Malouff, J.M. Basic Psychological Need Satisfaction, Affect and Mental Health. Curr. Psychol. 2021, 40, 1228–1233. [Google Scholar] [CrossRef]
- Asmundson, G.J.G.; Taylor, S. Coronaphobia: Fear and the 2019-NCoV Outbreak. J. Anxiety Disord. 2020, 70, 102196. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, F.J.; Odriozola-González, P. El Papel de La Inflexibilidad Psicológica En El Modelo Cognitivo de La Depresión de Beck En Una Muestra de Universitarios. An. Psicol. 2016, 32, 441–447. [Google Scholar] [CrossRef]
- Ruiz, F.J.; Suárez-Falcón, J.C.; Riaño-Hernández, D. Validity Evidence of the Spanish Version of the Automatic Thoughts Questionnaire–8 in Colombia. Span. J. Psychol. 2017, 20, E12. [Google Scholar] [CrossRef]
- Joyce, S.; Shand, F.; Tighe, J.; Laurent, S.J.; Bryant, R.A.; Harvey, S.B. Road to Resilience: A Systematic Review and Meta-Analysis of Resilience Training Programmes and Interventions. BMJ Open 2018, 8, e017858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, A.; Tully, E.C. The Role of Mindfulness and Psychological Flexibility in Somatization, Depression, Anxiety, and General Psychological Distress in a Nonclinical College Sample. J. Evid. Based. Complementary Altern. Med. 2012, 17, 66–71. [Google Scholar] [CrossRef]
- Østergaard, T.; Lundgren, T.; Zettle, R.D.; Landrø, N.I.; Haaland, V.Ø. Psychological Flexibility in Depression Relapse Prevention: Processes of Change and Positive Mental Health in Group-Based ACT for Residual Symptoms. Front. Psychol. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Friese, M.; Frankenbach, J.; Job, V.; Loschelder, D.D. Does Self-Control Training Improve Self-Control? A Meta-Analysis. Perspect. Psychol. Sci. 2017, 12, 1077–1099. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, J.; Chen, Y.; Zu, S.; Zhao, J. Comprehensive Self-Control Training Benefits Depressed College Students: A Six-Month Randomized Controlled Intervention Trial. J. Affect. Disord. 2018, 226, 251–260. [Google Scholar] [CrossRef]
- YouGov COVID-19: Level of Support for Actions Governments Could Take. Available online: https://yougov.co.uk/topics/international/articles-reports/2020/03/17/level-support-actions-governments-could-take (accessed on 12 April 2021).
- Su, C.W.; Dai, K.; Ullah, S.; Andlib, Z. COVID-19 Pandemic and Unemployment Dynamics in European Economies. Econ. Res. Istraz. 2021, 1–13. [Google Scholar] [CrossRef]
- Blustein, D.L.; Duffy, R.; Ferreira, J.A.; Cohen-Scali, V.; Cinamon, R.G.; Allan, B.A. Unemployment in the Time of COVID-19: A Research Agenda. J. Vocat. Behav. 2020, 119, 103436. [Google Scholar] [CrossRef] [PubMed]
- Böckerman, P.; Ilmakunnas, P. Unemployment and Self-Assessed Health: Evidence from Panel Data. Health Econ. 2009, 18, 161–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Harder, V.S.; Stuart, E.A.; Anthony, J.C. Propensity Score Techniques and the Assessment of Measured Covariate Balance to Test Causal Associations in Psychological Research. Psychol. Methods 2010, 15, 234–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoemmes, F.J.; Kim, E.S. A Systematic Review of Propensity Score Methods in the Social Sciences. Multivar. Behav. Res. 2011, 46, 90–118. [Google Scholar] [CrossRef]
- Thoemmes, F. Propensity Score Matching in SPSS. arXiv 2012, arXiv:1201.6385. [Google Scholar] [CrossRef]
Sample N = 406 after PSM | Sample N = 1001 before PSM | ||||||||
---|---|---|---|---|---|---|---|---|---|
Characteristics | Category | Hungary (n = 203) | Romania (n = 203) | Hungary (n = 761) | Romania (n = 240) | ||||
Fn (%); M (SD) | Fn (%); M (SD) | SMD | Fn (%); M (SD) | Fn (%); M (SD) | SMD | p | |||
Gender | Male | 21 (10.3%) | 21 (10.3%) | 0.00 | 54 (7.1%) | 31 (12.9%) | 0.20 | 0.020 | |
Female | 182 (89.7%) | 182 (89.7%) | 0.00 | 707 (92.9%) | 209 (87.1%) | −0.20 | |||
Age [range] | 41.41 (10.02) (23–67) | 40.44 (12.16) (19–79) | −0.09 | 50.43 (11.01) (23–81) | 38.35 (12.46) (19–79) | −1.03 | <0.001 | ||
Residency | Village City | 27 (13.3%) 176 (86.7%) | 34 (16.7%) 169 (83.3%) | 0.10 −0.10 | 151 (19.8%) 610 (80.2%) | 39 (16.3%) 201 (83.8%) | −0.08 0.10 | 0.251 | |
Household size | 2.78 (1.29) | 2.74 (1.10) | −0.03 | 2.61 (1.29) | 2.71 (1.10) | 0.08 | 0.166 | ||
Nr. of children | 1.01 (1.09) | 0.92 (1.03) | −0.08 | 1.60 (1.21) | 0.79 (1.00) | −0.73 | <0.001 | ||
Education | University degree | 203 (100%) | 203 (100%) | 0.00 | 761 (100%) | 240 (100%) | 0.00 | 1.000 | |
Occupation | Unemployed | 27 (13.3%) | 29 (14.3%) | 0.03 | 154 (20.2%) | 32 (13.3%) | −0.18 | 0.102 | |
Employee | 119 (58.6%) | 119 (58.6%) | 0.00 | 407 (53.5%) | 144 (60.0%) | 0.12 | |||
Manager | 50 (24.6%) | 44 (21.7%) | −0.07 | 163 (21.4%) | 51 (21.3%) | 0.00 | |||
CEO | 7 (3.4%) | 11 (5.4%) | 0.10 | 37 (4.9%) | 13 (5.4%) | 0.02 | |||
Finance | Bank loan | 57 (28.1%) | 62 (30.5%) | 0.05 | 236 (31.0%) | 66 (27.5%) | −0.07 | 0.301 | |
COVID−19 | COVID-Knowledge (Max. = 7 points) | 6.11 (0.87) | 6.24 (0.73) | 0.16 | 6.13 (0.83) | 6.27 (0.72) | 0.18 | 0.022 | |
Already tested | 2 (1.0%) | 6 (3.0%) | 0.14 | 31 (4.1%) | 6 (2.5%) | −0.08 | 0.989 | ||
Diagnosed | 0 (0.0%) | 0 (0.0%) | 0.00 | 0 (0.0%) | 0 (0.0%) | 0.00 | 1.000 | ||
Cases acquaintances | 41 (20.2%) | 43 (21.2%) | 0.02 | 99 (13.0%) | 58 (24.2%) | 0.29 | <0.001 | ||
Deaths acquaintances | 5 (2.5%) | 5 (2.5%) | 0.00 | 13 (1.7%) | 8 (3.3%) | 0.10 | 0.038 | ||
Protective factors | Trait self-control | 3.50 (0.60) | 3.52 (0.60) | 0.03 | 3.72 (0.62) | 3.46 (0.62) | −0.42 | <0.001 | |
Psych. flexibility | 4.90 (0.63) | 4.88 (0.65) | −0.03 | 4.96 (0.65) | 4.85 (0.66) | −0.17 | 0.033 | ||
Resilient coping | 3.83 (0.64) | 3.82 (0.74) | −0.01 | 3.99 (0.66) | 3.76 (0.76) | −0.32 | <0.001 | ||
Propensity score (logit) | 0.35 (0.19) | 0.36 (0.20) | 0.05 | 0.18 (0.16) | 0.42 (0.23) | 1.21 | <0.001 | ||
Hungary (n = 203) | Romania (n = 203) | ||||||||
M (SD) | M (SD) | t | p | Cohen’s dz | |||||
Treatment check | PSIW | 1.32 (0.14) | 1.57 (0.18) | −14.975 | <0.001 | 1.061 | |||
t | p | Cohen’s dz | |||||||
Dependent variables | Per. risk of infection | 3.03 (0.87) | 3.22 (0.88) | −2.052 | 0.042 | 0.148 | |||
Distress intolerance | 2.41 (1.00) | 2.64 (0.99) | −2.564 | 0.011 | 0.180 | ||||
COVID Health anxiety | 1.74 (0.48) | 1.87 (0.44) | −2.810 | 0.005 | 0.204 | ||||
Neg. automatic thoughts | 1.79 (0.79) | 1.90 (0.80) | −1.357 | 0.117 | 0.095 |
Variable | M | SD | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(01) | COVID-19 knowledge | 6.17 | 0.80 | ― | ||||||||||||
(02) | Already tested (1 = yes) | 0.02 | 0.14 | 0.08 | ― | |||||||||||
(03) | Cases acquaintances (1 = yes) | 0.21 | 0.41 | 0.08 | 0.10 | ― | ||||||||||
(04) | Deaths acquaintances (1 = yes) | 0.03 | 0.16 | 0.03 | −0.02 | 0.19 | ― | |||||||||
(05) | Perceived risk of infection | 3.13 | 0.88 | 0.22 | 0.11 | 0.14 | 0.02 | ― | ||||||||
(06) | Distress intolerance | 2.52 | 1.00 | 0.03 | 0.08 | 0.02 | 0.04 | 0.15 | ― | |||||||
(07) | COVID-19 health anxiety | 1.81 | 0.47 | 0.18 | 0.08 | 0.10 | 0.03 | 0.58 | 0.29 | ― | ||||||
(08) | Negative automatic thoughts | 1.84 | 0.79 | 0.03 | 0.05 | 0.00 | 0.00 | 0.19 | 0.64 | 0.29 | ― | |||||
(09) | Trait self-control | 3.51 | 0.60 | −0.08 | 0.00 | 0.07 | 0.08 | −0.15 | −0.37 | −0.14 | −0.42 | ― | ||||
(10) | Psychological flexibility | 4.89 | 0.64 | −0.02 | 0.00 | 0.06 | −0.02 | 0.02 | −0.26 | −0.18 | −0.32 | 0.19 | ― | |||
(11) | Resilient coping | 3.83 | 0.70 | 0.01 | 0.02 | 0.01 | −0.07 | 0.03 | −0.25 | −0.16 | −0.38 | 0.34 | 0.60 | ― | ||
(12) | Pers. stringency index (PSIW) | 1.45 | 0.20 | 0.13 | 0.04 | −0.02 | 0.04 | 0.22 | 0.09 | 0.25 | 0.12 | 0.01 | −0.03 | −0.07 | ― | |
(13) | Age | 40.93 | 11.14 | −0.09 | −0.08 | 0.13 | 0.06 | −0.08 | −0.09 | −0.16 | −0.10 | −0.01 | 0.11 | 0.01 | −0.11 | ― |
(14) | Gender (1 = female) | 0.90 | 0.31 | −0.01 | 0.05 | 0.07 | 0.00 | 0.05 | 0.09 | 0.06 | 0.08 | −0.01 | 0.06 | −0.03 | −0.01 | −0.01 |
Outcome | Direct | Indirect | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
via RC | via RC & PROI | via RC & DI | via TSC | via TSC & PROI | via TSC & DI | via PF | via PF & PROI | via PF & DI | via PROI | via DI | |||
Personalized stringency index weighted (PSIW) to outcome | |||||||||||||
RC | −0.086 | – | – | – | – | – | – | – | – | – | – | – | −0.086 |
[−0.175, 0.002] | [−0.175, 0.002] | ||||||||||||
TSC | −0.036 | – | – | – | – | – | – | – | – | – | – | – | −0.036 |
[−0.121, 0.049] | [−0.121, 0.049] | ||||||||||||
PF | −0.012 | – | – | – | – | – | – | – | – | – | – | – | −0.012 |
[−0.093, 0.067] | [−0.093, 0.067] | ||||||||||||
PROI | 0.240 *** | −0.006 | – | – | 0.005 | – | – | 0.001 | – | – | – | – | 0.239 *** |
[0.169, 0.312] | [−0.022, 0.000] | [−0.006, 0.018] | [−0.003, 0.009] | [0.167, 0.311] | |||||||||
DI | −0.024 | 0.008 | – | – | 0.014 | – | – | 0.001 | – | – | – | – | −0.001 |
[−0.096, 0.047] | [0.000, 0.024] | [−0.019, 0.047] | [−0.005, 0.010] | [−0.088, 0.086] | |||||||||
NAT | 0.078 * | 0.010 | 0.000 | 0.004 | 0.006 | 0.000 | 0.007 | 0.001 | 0.000 | 0.000 | 0.011 | −0.012 | 0.106 * |
[0.015, 0.142] | [0.001, 0.027] | [−0.002, 0.000] | [0.000, 0.012] | [−0.009, 0.023] | [0.000, 0.001] | [−0.010, 0.024] | [−0.004, 0.008] | [0.000, 0.001] | [−0.003, 0.005] | [0.000, 0.025] | [−0.048, 0.024] | [0.017, 0.192] | |
CHA | 0.125 *** | 0.009 | −0.003 | 0.002 | −0.002 | 0.002 | 0.003 | 0.001 | 0.000 | 0.000 | 0.118 *** | −0.004 | 0.250 *** |
[0.061, 0.189] | [0.001, 0.023] | [−0.011, 0.000] | [0.000, 0.005] | [−0.011, 0.002] | [−0.003, 0.009] | [−0.003, 0.009] | [−0.006, 0.010] | [−0.003, 0.009] | [−0.001, 0.002] | [0.082, 0.156] | [−0.018, 0.009] | [0.177, 0.323] | |
Resilient coping to outcome | |||||||||||||
PROI | 0.074 | – | – | – | – | – | – | – | – | – | – | – | 0.074 |
[−0.010, 0.158] | [−0.010, 0.158] | ||||||||||||
DI | −0.096 ** | – | – | – | – | – | – | – | – | – | – | – | −0.096 ** |
[−0.171, −0.018] | [−0.171, −0.018] | ||||||||||||
NAT | −0.118 *** | – | – | – | – | – | – | – | – | – | 0.003 | −0.048 * | −0.163 *** |
[−0.180, −0.055] | [0.000, 0.012] | [−0.088, −0.010] | [−0.238, −0.086] | ||||||||||
CHA | −0.101 ** | – | – | – | – | – | – | – | – | – | 0.036 | −0.018 * | −0.083 |
[−0.171, −0.032] | [−0.005, 0.078] | [−0.035, −0.004] | [−0.172, 0.005] | ||||||||||
Trait self-control to outcome | |||||||||||||
PROI | −0.126 *** | – | – | – | – | – | – | – | – | – | – | – | −0.126 *** |
[−0.192, −0.061] | [−0.192, −0.061] | ||||||||||||
DI | −0.387 *** | – | – | – | – | – | – | – | – | – | – | – | −0.387 *** |
[−0.445, −0.326] | [−0.445, −0.326] | ||||||||||||
NAT | −0.179 *** | – | – | – | – | – | – | – | – | – | −0.006 | −0.194 *** | −0.379 *** |
[−0.235, −0.123] | [−0.014, 0.000] | [−0.232, −0.161] | [−0.437, −0.320] | ||||||||||
CHA | 0.059 | – | – | – | – | – | – | – | – | – | −0.062 *** | −0.071 *** | −0.074 * |
[−0.001, 0.116] | [−0.096, −0.030] | [−0.098, −0.046] | [−0.141, −0.007] | ||||||||||
Psychological flexibility to outcome | |||||||||||||
PROI | −0.048 | – | – | – | – | – | – | – | – | – | – | – | −0.048 |
[−0.124, 0.029] | [−0.124, 0.029] | ||||||||||||
DI | −0.078 * | – | – | – | – | – | – | – | – | – | – | – | −0.078 * |
[−0.145, −0.011] | [−0.145, −0.011] | ||||||||||||
NAT | −0.066 * | – | – | – | – | – | – | – | – | – | −0.002 | −0.039 * | −0.107 ** |
[−0.122, −0.010] | [−0.009, 0.001] | [−0.074, −0.006] | [−0.178, −0.039] | ||||||||||
CHA | −0.089 ** | – | – | – | – | – | – | – | – | – | −0.023 | −0.014 * | −0.126 ** |
[−0.151, −0.026] | [−0.060, 0.014] | [−0.029, −0.003] | [−0.201, −0.050] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindner, C.; Kotta, I.; Marschalko, E.E.; Szabo, K.; Kalcza-Janosi, K.; Retelsdorf, J. Increased Risk Perception, Distress Intolerance and Health Anxiety in Stricter Lockdowns: Self-Control as a Key Protective Factor in Early Response to the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 5098. https://doi.org/10.3390/ijerph19095098
Lindner C, Kotta I, Marschalko EE, Szabo K, Kalcza-Janosi K, Retelsdorf J. Increased Risk Perception, Distress Intolerance and Health Anxiety in Stricter Lockdowns: Self-Control as a Key Protective Factor in Early Response to the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2022; 19(9):5098. https://doi.org/10.3390/ijerph19095098
Chicago/Turabian StyleLindner, Christoph, Ibolya Kotta, Eszter Eniko Marschalko, Kinga Szabo, Kinga Kalcza-Janosi, and Jan Retelsdorf. 2022. "Increased Risk Perception, Distress Intolerance and Health Anxiety in Stricter Lockdowns: Self-Control as a Key Protective Factor in Early Response to the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 19, no. 9: 5098. https://doi.org/10.3390/ijerph19095098
APA StyleLindner, C., Kotta, I., Marschalko, E. E., Szabo, K., Kalcza-Janosi, K., & Retelsdorf, J. (2022). Increased Risk Perception, Distress Intolerance and Health Anxiety in Stricter Lockdowns: Self-Control as a Key Protective Factor in Early Response to the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(9), 5098. https://doi.org/10.3390/ijerph19095098