Analysis of Thermal and Roughness Effects on the Turbulent Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Description
2.2. The Hilbert–Huang Spectral Analysis
- 1.
- The number of local extrema and zero-crossings may differ by a maximum of one;
- 2.
- The mean value of the envelope defined by the local maxima and the envelope defined by the local minima is zero.
- 1.
- Identify all the local extrema in the data sample ;
- 2.
- Parameterize the local maxima/minima by a cubic spline line as the upper/lower envelope;
- 3.
- Evaluate the mean between the upper and lower envelopes;
- 4.
- Determine the first protomode
3. Experimental Results
Temperature and Velocity Profiles
Spectral Analysis Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cermak, J.E. Laboratory Simulation of the Atmospheric Boundary Layer. AIAA J. 1971, 9, 1746–1754. [Google Scholar] [CrossRef]
- Bienkiewicz, B.; Cermak, J.E. A flow visualization technique for low-speed wind-tunnel studies. Exp. Fluids 1987, 5, 212–214. [Google Scholar] [CrossRef]
- Panofsky, H.; Dutton, J. Atmospheric Turbulence: Models and Methods for Engineering Applications; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Steiros, K. Balanced nonstationary turbulence. Phys. Rev. E 2022, 105, 035109. [Google Scholar] [CrossRef]
- Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Chamorro, L.P.; Porté-Agel, F. Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study. Bound.-Layer Meteorol. 2010, 136, 515–533. [Google Scholar] [CrossRef] [Green Version]
- Demarco, G.; Puhales, F.; Acevedo, O.C.; Costa, F.D.; Avelar, A.C.; Fisch, G. Dependence of Turbulence-Related Quantities on the Mechanical Forcing for Wind Tunnel Stratified Flow. Am. J. Environ. Eng. 2015, 5, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Puhales, F.S.; Demarco, G.; Martins, L.G.N.; Acevedo, O.C.; Degrazia, G.A.; Welter, G.S.; Costa, F.D.; Fisch, G.F.; Avelar, A.C. Estimates of turbulent kinetic energy dissipation rate for a stratified flow in a wind tunnel. Phys. A Stat. Mech. Its Appl. 2015, 431, 175–187. [Google Scholar] [CrossRef]
- Arya, S.P.S. Buoyancy effects in a horizontal flat-plate boundary layer. J. Fluid Mech. 1975, 68, 321–343. [Google Scholar] [CrossRef]
- Williams, O.; Hohman, T.; Van Buren, T.; Bou-Zeid, E.; Smits, A.J. The effect of stable thermal stratification on turbulent boundary layer statistics. J. Fluid Mech. 2017, 812, 1039–1075. [Google Scholar] [CrossRef] [Green Version]
- Doosttalab, A.; Araya, G.; Newman, J.; Adrian, R.J.; Jansen, K.; Castillo, L. Effect of small roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds number. J. Fluid Mech. 2016, 787, 84–115. [Google Scholar] [CrossRef]
- Wittwer, A.R.; Möller, S.V. Characteristics of the low-speed wind tunnel of the UNNE. J. Wind. Eng. Ind. Aerodyn. 2000, 84, 307–320. [Google Scholar] [CrossRef]
- Iyengar, A.K.; Farell, C. Experimental issues in atmospheric boundary layer simulations: Roughness length and integral length scale determination. J. Wind. Eng. Ind. Aerodyn. 2001, 89, 1059–1080. [Google Scholar] [CrossRef]
- Balendra, T.; Shah, D.; Tey, K.; Kong, S. Evaluation of flow characteristics in the NUS-HDB Wind Tunnel. J. Wind. Eng. Ind. Aerodyn. 2002, 90, 675–688. [Google Scholar] [CrossRef]
- Liu, G.; Xuan, J.; Park, S.U. A new method to calculate wind profile parameters of the wind tunnel boundary layer. J. Wind. Eng. Ind. Aerodyn. 2003, 91, 1155–1162. [Google Scholar] [CrossRef]
- De Bortoli, M.; Natalini, B.; Paluch, M.; Natalini, M. Part-depth wind tunnel simulations of the atmospheric boundary layer. J. Wind. Eng. Ind. Aerodyn. 2002, 90, 281–291. [Google Scholar] [CrossRef]
- Ricciardelli, F.; Polimeno, S. Some characteristics of the wind flow in the lower Urban Boundary Layer. J. Wind. Eng. Ind. Aerodyn. 2006, 94, 815–832. [Google Scholar] [CrossRef]
- Snyder, W.H.; Castro, I.P. The critical Reynolds number for rough-wall boundary layers. J. Wind. Eng. Ind. Aerodyn. 2002, 90, 41–54. [Google Scholar] [CrossRef]
- Tieleman, H.W. Roughness estimation for wind-load simulation experiments. J. Wind. Eng. Ind. Aerodyn. 2003, 91, 1163–1173. [Google Scholar] [CrossRef]
- De Paepe, W.; Pindado, S.; Bram, S.; Contino, F. Simplified elements for wind-tunnel measurements with type-III-terrain atmospheric boundary layer. Measurement 2016, 91, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.; Hoxey, R.; Short, J. Spectral models for the neutral atmospheric surface layer. J. Wind. Eng. Ind. Aerodyn. 2000, 87, 167–185. [Google Scholar] [CrossRef]
- Wittwer, A.R.; Alvarez, G.M.A.y.; Welter, G.S.; Degrazia, G.A.; Loredo-Souza, A.M.; Dorado, R.; Bodmann, B.E.J. Turbulence spectral characteristics of surface boundary layer. In Proceedings of the 14th International Conference on Wind Engineering, ICWE14, Porto Alegre, Brazil, 21–26 June 2015. [Google Scholar]
- Wittwer, A.R.; Alvarez, G.M.A.y.; Demarco, G.; Martins, L.G.N.; Puhales, F.S.; Acevedo, O.C.; Degrazia, G.A.; Bodmann, B.E.J.; Loredo-Souza, A.M. Employing Wind Tunnel Data to Evaluate a Turbulent Spectral Model. Am. J. Environ. Eng. 2016, 6, 156–159. [Google Scholar]
- Kabir, I.F.S.A.; Ng, E. Effect of different atmospheric boundary layers on the wake characteristics of NREL phase VI wind turbine. Renew. Energy 2019, 130, 1185–1197. [Google Scholar] [CrossRef]
- Degeratu, M.; Georgescu, A.M.; Alboiu, N.I.; Bandoc, G. Meteorological revolving wind tunner with simulated atmospheric boundary layer. Ann. Oradea Univ. 2009, VIII, 190–197. [Google Scholar]
- Martins, L.G.N.; Degrazia, G.A.; Acevedo, O.C.; Puhales, F.S.; Oliveira, P.E.S.; Teichrieb, C.A.; Silva, S.M. Quasi-Experimental Determination of Turbulent Dispersion Parameters for Different Stability Conditions from a Tall Micrometeorological Tower. J. Appl. Meteorol. Climatol. 2018, 57, 1729–1745. [Google Scholar] [CrossRef]
- Martins, L.G.N.; Stefanello, M.B.; Degrazia, G.A.; Acevedo, O.C.; Puhales, F.S.; Demarco, G.; Mortarini, L.; Anfossi, D.; Roberti, D.R.; Costa, F.D.; et al. Employing the Hilbert–Huang Transform to analyze observed natural complex signals: Calm wind meandering cases. Phys. A Stat. Mech. Its Appl. 2016, 462, 1189–1196. [Google Scholar] [CrossRef]
- Blessmann, J. The boundary layer tv-2 wind tunnel of the UFRGS. J. Wind. Eng. Ind. Aerodyn. 1982, 10, 231–248. [Google Scholar] [CrossRef]
- Single Sensorminiature Wire Probes. Dantec Dynamics. 2019. Available online: https://www.dantecdynamics.com/products-and-services/single-sensor-miniature-wire-probes (accessed on 6 September 2019).
- Degrazia, G.A.; Bodmann, B.E.J.; Wittwer, A.; Dorado, R.M.; Degrazia, F.; Demarco, G.; Roberti, D.; Loredo-Souza, A.M.; Acevedo, O.C.; Martins, L.G.N. Wind Tunnel Experiments with Neutral and Convective Boundary Layer Stabilities. Am. J. Environ. Eng. 2018, 8, 154–158. [Google Scholar]
- Robins, A.; Castro, I.; Hayden, P.; Steggel, N.; Contini, D.; Heist, D. A wind tunnel study of dense gas dispersion in a neutral boundary layer over a rough surface. Atmos. Environ. 2001, 35, 2243–2252. [Google Scholar] [CrossRef]
- Robins, A.; Castro, I.; Hayden, P.; Steggel, N.; Contini, D.; Heist, D.; John Taylor, T. A wind tunnel study of dense gas dispersion in a stable boundary layer over a rough surface. Atmos. Environ. 2001, 35, 2253–2263. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Degrazia, G.; Rizza, U.; Mangia, C.; Tirabassi, T. Validation of a New Turbulent Parameterization for Dispersion Models in Convective Conditions. Bound.-Layer Meteorol. 1997, 85, 243–254. [Google Scholar] [CrossRef]
- Hinze, J.O. Turbulence; McGraw-Hill Classic Textbook Reissue Series; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Degrazia, G.; Rizza, U.; Puhales, F.; Welter, G.; Acevedo, O.; Maldaner, S. Employing Taylor and Heisenberg subfilter viscosities to simulate turbulent statistics in LES models. Phys. A Stat. Mech. Its Appl. 2012, 391, 1020–1031. [Google Scholar] [CrossRef]
- Lee, S.; Gohari, S.M.I.; Sarkar, S. Direct numerical simulation of stratified Ekman layers over a periodic rough surface. J. Fluid Mech. 2020, 902, A25. [Google Scholar] [CrossRef]
- Kaimal, J.C. Horizontal Velocity Spectra in an Unstable Surface Layer. J. Atmos. Sci. 1978, 35, 18–24. [Google Scholar] [CrossRef]
- Højstrup, J. Velocity Spectra in the Unstable Planetary Boundary Layer. J. Atmos. Sci. 1982, 39, 2239–2248. [Google Scholar] [CrossRef] [Green Version]
Smooth Surface | Roughness Surface | |||||||
---|---|---|---|---|---|---|---|---|
Mean velocity [m s] | 0.9 | 1.3 | 1.9 | 3.9 | 0.9 | 1.3 | 1.9 | 3.9 |
[K] | −8.5 | −8 | −7 | −6 | −9 | −11 | −11.5 | −11.5 |
[m s] | 0.3 | 0.45 | 0.75 | 1.53 | 0.41 | 0.59 | 0.78 | 1.6 |
−0.459 | −0.192 | −0.06 | −0.012 | −0.539 | −0.318 | −0.19 | −0.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarco, G.; Martins, L.G.N.; Bodmann, B.E.J.; Puhales, F.S.; Acevedo, O.C.; Wittwer, A.R.; Costa, F.D.; Roberti, D.R.; Loredo-Souza, A.M.; Degrazia, F.C.; et al. Analysis of Thermal and Roughness Effects on the Turbulent Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel. Int. J. Environ. Res. Public Health 2022, 19, 5134. https://doi.org/10.3390/ijerph19095134
Demarco G, Martins LGN, Bodmann BEJ, Puhales FS, Acevedo OC, Wittwer AR, Costa FD, Roberti DR, Loredo-Souza AM, Degrazia FC, et al. Analysis of Thermal and Roughness Effects on the Turbulent Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel. International Journal of Environmental Research and Public Health. 2022; 19(9):5134. https://doi.org/10.3390/ijerph19095134
Chicago/Turabian StyleDemarco, Giuliano, Luis Gustavo Nogueira Martins, Bardo Ernst Josef Bodmann, Franciano Scremin Puhales, Otávio Costa Acevedo, Adrian Roberto Wittwer, Felipe Denardin Costa, Debora Regina Roberti, Acir Mércio Loredo-Souza, Franco Caldas Degrazia, and et al. 2022. "Analysis of Thermal and Roughness Effects on the Turbulent Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel" International Journal of Environmental Research and Public Health 19, no. 9: 5134. https://doi.org/10.3390/ijerph19095134
APA StyleDemarco, G., Martins, L. G. N., Bodmann, B. E. J., Puhales, F. S., Acevedo, O. C., Wittwer, A. R., Costa, F. D., Roberti, D. R., Loredo-Souza, A. M., Degrazia, F. C., Tirabassi, T., & Degrazia, G. A. (2022). Analysis of Thermal and Roughness Effects on the Turbulent Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel. International Journal of Environmental Research and Public Health, 19(9), 5134. https://doi.org/10.3390/ijerph19095134