Impacts of Household Coal Combustion on Indoor Ultrafine Particles—A Preliminary Case Study and Implication on Exposure Reduction
Abstract
:1. Introduction
2. Methods
2.1. Experimental Description
2.2. Instrument and Quality Control
2.3. Data Analysis
3. Result and Discussion
3.1. Indoor and Outdoor UFP Number Concentrations
3.2. Distinct UFP Size Distribution
3.3. Ratio of Indoor-to-Outdoor UFP
3.4. Influence of Coal Combustion on PNSD (Particle Number Size Distribution) Indoors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ali, M.U.; Lin, S.; Yousaf, B.; Abbas, Q.; Munir, M.A.M.; Rashid, A.; Zheng, C.; Kuang, X.; Wong, M.H. Pollution characteristics, mechanism of toxicity and health effects of the ultrafine particles in the indoor environment: Current status and future perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 52, 436–473. [Google Scholar] [CrossRef]
- Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostal, M.; Pastorkova, A.; Bastian, S.; Cyrys, J.; Zscheppang, A.; et al. Associations between ultrafine and fine particles and mortality in five central European cities—Results from the UFIREG study. Environ. Int. 2016, 88, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hsiao, T.; Lee, K.; Chuang, H.; Cheng, T.; Chuang, K. Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. Sci. Total Environ. 2018, 627, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Robles, L.A.; Fu, J.S.; Vergara-Fernández, A.; Etcharren, P.; Schiappacasse, L.N.; Reed, G.D.; Silva, M.P. Health risks caused by short term exposure to ultrafine particles generated by residential wood combustion: A case study of Temuco, Chile. Environ. Int. 2014, 66, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution, BBA-Gen. Subjects 2016, 1860, 2844–2855. [Google Scholar] [CrossRef]
- AMoreno-Ríos, L.; Tejeda-Benítez, L.P.; Bustillo-Lecompte, C.F. Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geosci. Front. 2022, 13, 101147. [Google Scholar] [CrossRef]
- Merikanto, J.; Spracklen, D.V.; Mann, G.W.; Pickering, S.J.; Carslaw, K.S. Impact of nucleation on global CCN. Atmos. Chem. Phys. 2009, 9, 8601–8616. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Chen, L.; Fan, T.; Liu, J.; Jiang, S.; Zhang, F. The NPF effect on CCN number concentrations: A review and re-evaluation of observations from 35 sites worldwide. Geophys. Res. Lett. 2021, 48, e2021GL095190. [Google Scholar] [CrossRef]
- Paasonen, P.; Kupiainen, K.; Klimont, Z.; Visschedijk, A.; van der Gon, H.A.C.D.; Amann, M. Continental anthropogenic primary particle number emissions. Atmos. Chem. Phys. 2016, 16, 6823–6840. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hao, J.; Jiang, J. Ultrafine particle emission and its potential health risk from residential solid fuel combustion. Chin. Sci. Bull. 2019, 64, 3429–3440. [Google Scholar]
- Bond, T.C.; Covert, D.S.; Kramlich, J.C.; Larson, T.V.; Charlson, R.J. Primary particle emissions from residential coal burning: Optical properties and size distributions. J. Geophys. Res. Atmos. 2002, 107, ICC 9-1–ICC 9-14. [Google Scholar] [CrossRef]
- Jetter, J.; Zhao, Y.; Smith, K.R.; Khan, B.; Yelverton, T.; DeCarlo, P.; Hays, M.D. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 2012, 46, 10827–10834. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Li, X.; Chen, Y.; Shen, G. Household air pollution and personal exposure to air pollutants in rural China—A review. Environ. Pollut. 2018, 237, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Shupler, M.; Hystad, P.; Birch, A.; Miller-Lionberg, D.; Jeronimo, M.; Arku, R.E.; Chu, Y.L.; Mushtaha, M.; Heenan, L.; Rangarajan, S.; et al. Household and personal air pollution exposure measurements from 120 communities in eight countries: Results from the PURE-AIR study. Lancet Planet. Health 2020, 4, e451–e462. [Google Scholar] [CrossRef]
- Shen, G.; Du, W.; Luo, Z.; Li, Y.; Cai, G.; Lu, C.; Qiu, Y.; Chen, Y.; Cheng, H.; Tao, S. Fugitive emissions of CO and PM2.5 from indoor biomass burning in chimney stoves based on a newly developed carbon balance approach. Environ. Sci. Technol. Lett. 2020, 7, 128–134. [Google Scholar] [CrossRef]
- Franck, U.; Tuch, T.; Manjarrez, M.; Wiedensohler, A.; Herbarth, O. Indoor and outdoor submicrometer particles: Exposure and epidemiologic relevance (“the 3 indoor Ls”). Environ. Toxicol. 2006, 21, 606–613. [Google Scholar] [CrossRef]
- Canha, N.; Almeida, S.M.; Freitas, M.D.; Wolterbeek, H.T.; Cardoso, J.; Pio, C.; Caseiro, A. Impact of wood burning on indoor PM2.5 in a primary school in rural Portugal. Atmos. Environ. 2014, 94, 663–670. [Google Scholar] [CrossRef]
- Canha, N.; Lage, J.; Galinha, C.; Coentro, S.; Alves, C.; Almeida, S.M. Impact of Biomass Home Heating, Cooking Styles, and Bread Toasting on the Indoor Air Quality at Portuguese Dwellings: A Case Study. Atmosphere 2018, 9, 214. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, Z.; Le, L.T.; Masud, A.A.; Chang, K.C.; Alauddin, M.; Hossain, M.; Zakaria, A.; Hopke, P.K. Quantification of indoor air pollution from using cookstoves and estimation of its health effects on adult women in northwest Bangladesh. Aerosol Air Qual. Res. 2012, 12, 463–475. [Google Scholar] [CrossRef]
- de la Sota, C.; Lumbreras, J.; Pérez, N.; Ealo, M.; Kane, M.; Youm, I.; Viana, M. Indoor air pollution from biomass cookstoves in rural Senegal. Energy Sustain. Dev. 2018, 43, 224–234. [Google Scholar] [CrossRef]
- Stabile, L.; Buonanno, G.; Avino, P.; Frattolillo, A.; Guerriero, E. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population. Environ. Pollut. 2018, 235, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Bai, L.; Hatzopoulou, M.; van Ryswyk, K.; Kwong, J.C.; Jerrett, M.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T.; Lu, H.; et al. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: A cohort study. Environ. Health 2017, 16, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wang, S.; Hao, J.; Wan, L.; Jiang, J.; Zhang, M.; Mestl, H.E.S.; Alnes, L.W.H.; Aunan, K.; Mellouki, A.W. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China. Atmos. Environ. 2012, 51, 94–99. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, T.; Wang, S.; Hao, J.; Mest, H.E.S.; Alnes, L.W.H.; Chai, F.; Wang, S.; Aunan, K.; Dong, Z.; et al. Indoor Emissions of Carbonaceous Aerosol and Other Air Pollutants from Household Fuel Burning in Southwest China. Aerosol Air Qual. Res. 2014, 14, 1779–1788. [Google Scholar] [CrossRef] [Green Version]
- Salthammer, T.; Schripp, T.; Wientzek, S.; Wensing, M. Impact of operating wood-burning fireplace ovens on indoor air quality. Chemosphere 2014, 103, 205–211. [Google Scholar] [CrossRef]
- Wang, D.; Li, Q.; Shen, G.; Deng, J.; Zhou, W.; Hao, J.; Jiang, J. Significant ultrafine particle emissions from residential solid fuel combustion. Sci. Total Environ. 2020, 715, 136992. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, J.; Duan, L.; Hao, J. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process. Environ. Sci. Technol. 2016, 50, 7861–7869. [Google Scholar] [CrossRef]
- Shen, G.; Xiong, R.; Tian, Y.; Luo, Z.; Jiangtulu, B.; Meng, W.; Du, W.; Meng, J.; Chen, Y.; Xue, B.; et al. Substantial transition to clean household energy mix in rural households in China. Natl. Sci. Rev. 2022. [Google Scholar]
- Wang, Y.; Sun, Y.; Zhang, Z.; Cheng, Y. Spatiotemporal variation and source analysis of air pollutants in the Harbin-Changchun (HC) region of China during 2014–2020. Enivron. Sci. Ecotechnol. 2021, 8, 100126. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, Y.; Wang, B.; Zhao, X.; Shen, G.; Cao, S.; Huang, N.; Qian, Y.; Chen, Y.; Wang, L. Household fuel use for cooking and heating in China: Results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey (CEERHAPS). Appl. Energy 2014, 136, 692–703. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Krudysz, M.; Kuhn, T.; Froines, J.; Sioutas, C. Penetration of freeway ultrafine particles into indoor environments. J. Aerosol Sci. 2005, 36, 303–322. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, L.; Li, G.; Du, W.; Chen, Y.; Cheng, H.; Tao, S.; Shen, G. Evaluating co-emissions into indoor and outdoor air of EC, OC, and BC from in-home biomass burning. Atmos. Res. 2021, 248, 105247. [Google Scholar] [CrossRef]
- Tritscher, T.; Beeston, M.; Zerrath, A.F.; Elzey, S.; Krinke, T.J.; Filimundi, E.; Bischof, O.F. NanoScan SMPS—A novel, portable nanoparticle sizing and counting instrument. J. Phys. Conf. Ser. 2013, 429, 12061. [Google Scholar] [CrossRef] [Green Version]
- Yun, X.; Shen, G.; Shen, H.; Meng, W.; Chen, Y.; Xu, H.; Ren, Y.; Zhong, Q.; Du, W.; Ma, J.; et al. Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China. Sci. Adv. 2020, 6, eaba7621. [Google Scholar] [CrossRef]
- Kumar, P.; Kalaiarasan, G.; Porter, A.E.; Pinna, A.; Kłosowski, M.M.; Demokritou, P.; Chung, K.F.; Pain, C.; Arvind, D.K.; Arcucci, R.; et al. An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. Sci. Total Environ. 2021, 756, 143553. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Utell, M.J. Urban-Scale Seasonal and Spatial Variability of Ultrafine Particle Number Concentrations. Water Air Soil Pollut. 2012, 223, 2223–2235. [Google Scholar] [CrossRef]
- Sun, J.; Birmili, W.; Hermann, M.; Tuch, T.; Weinhold, K.; Spindler, G.; Schladitz, A.; Bastian, S.; Löschau, G.; Cyrys, J.; et al. Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: Results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations. Atmos. Environ. 2019, 202, 256–268. [Google Scholar] [CrossRef]
- Benka-Coker, M.L.; Peel, J.L.; Volckens, J.; Good, N.; Bilsback, K.R.; Orange, C.L.; Quinn, C.; Young, B.N.; Rajkumar, S.; Wilson, A.; et al. Kitchen concentrations of fine particulate matter and particle number concentration in households using biomass cookstoves in rural Honduras. Environ. Pollut. 2020, 258, 113697. [Google Scholar] [CrossRef]
- Shen, G.; Gaddam, C.K.; Ebersviller, S.M.; Wal, R.L.V.; Williams, C.; Faircloth, J.W.; Jetter, J.J.; Hays, M.D. A laboratory comparison of emission factors, number size distributions, and morphology of ultrafine particles from 11 different household cookstove-fuel systems. Environ. Sci. Technol. 2017, 51, 6522–6532. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, X.; Wei, S.; Zhu, R.; Wang, B.; Chen, B.; Kong, M.; Zhang, J.J. Sources, concentrations, and transport models of ultrafine particles near highways: A Literature Review. Build. Environ. 2020, 186, 107325. [Google Scholar] [CrossRef]
- Masekameni, D.M.; Brouwer, D.; Makonese, T.; Rampedi, I.T.; Gulumian, M. Size distribution of ultrafine particles generated from residential fixed-bed coal combustion in a typical brazier. Aerosol Air Qual. Res. 2018, 18, 2618–2632. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, T.B.; Falk, J.; Lindgren, R.; Andersen, C.; Malmborg, V.B.; Eriksson, A.C.; Korhonen, K.; Carvalho, R.L.; Boman, C.; Pagels, J.; et al. Properties and emission factors of cloud condensation nuclei from biomass cookstoves–observations of a strong dependency on potassium content in the fuel. Atmos. Chem. Phys. 2021, 21, 8023–8044. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Buonanno, G.; Fuoco, F.C.; Morawska, L.; Stabile, L. Airborne particle concentrations at schools measured at different spatial scales. Atmos. Environ. 2013, 67, 38–45. [Google Scholar] [CrossRef]
- Madureira, J.; Slezakova, K.; Costa, C.; Pereira, M.C.; Teixeira, J.P. Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments. Environ. Pollut. 2020, 264, 114746. [Google Scholar] [CrossRef]
- Men, Y.; Li, J.; Liu, X.; Li, Y.; Jiang, K.; Luo, Z.; Xiong, R.; Cheng, H.; Tao, S.; Shen, G. Contributions of internal emissions to peaks and incremental indoor PM2.5 in rural coal use households. Environ. Pollut. 2021, 288, 117753. [Google Scholar] [CrossRef]
- Lai, A.M.; Clark, S.; Carter, E.; Shan, M.; Ni, K.; Yang, X.; Baumgartner, J.; Schauer, J.J. Impacts of stove/fuel use and outdoor air pollution on chemical composition of household particulate matter. Indoor Air 2019, 30, 294–305. [Google Scholar] [CrossRef]
- Quang, T.N.; He, C.; Morawska, L.; Knibbs, L.D.; Falk, M. Vertical particle concentration profiles around urban office buildings. Atmos. Chem. Phys. 2012, 12, 5017–5030. [Google Scholar] [CrossRef] [Green Version]
- Boccuni, F.; Ferrante, R.; Tombolini, F.; Iavicoli, S.; Pelliccioni, A. Relationship between Indoor High Frequency Size Distribution of Ultrafine Particles and Their Metrics in a University Site. Sustainability 2021, 13, 5504. [Google Scholar] [CrossRef]
- Yang, L.; Wu, Y.; Song, S.; Hao, J. Particle number size distribution near a major road with different traffic conditions. Huanjing Kexue 2012, 33, 694–700. [Google Scholar] [PubMed]
- Kulmala, M. How Particles Nucleate and Grow. Science 2003, 302, 1000–1001. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Xing, R.; Huang, W.; Xiong, R.; Qin, L.; Ren, Y.; Li, Y.; Liu, X.; Men, Y.; Jiang, K.; et al. Impacts of Household Coal Combustion on Indoor Ultrafine Particles—A Preliminary Case Study and Implication on Exposure Reduction. Int. J. Environ. Res. Public Health 2022, 19, 5161. https://doi.org/10.3390/ijerph19095161
Luo Z, Xing R, Huang W, Xiong R, Qin L, Ren Y, Li Y, Liu X, Men Y, Jiang K, et al. Impacts of Household Coal Combustion on Indoor Ultrafine Particles—A Preliminary Case Study and Implication on Exposure Reduction. International Journal of Environmental Research and Public Health. 2022; 19(9):5161. https://doi.org/10.3390/ijerph19095161
Chicago/Turabian StyleLuo, Zhihan, Ran Xing, Wenxuan Huang, Rui Xiong, Lifan Qin, Yuxuan Ren, Yaojie Li, Xinlei Liu, Yatai Men, Ke Jiang, and et al. 2022. "Impacts of Household Coal Combustion on Indoor Ultrafine Particles—A Preliminary Case Study and Implication on Exposure Reduction" International Journal of Environmental Research and Public Health 19, no. 9: 5161. https://doi.org/10.3390/ijerph19095161
APA StyleLuo, Z., Xing, R., Huang, W., Xiong, R., Qin, L., Ren, Y., Li, Y., Liu, X., Men, Y., Jiang, K., Tian, Y., & Shen, G. (2022). Impacts of Household Coal Combustion on Indoor Ultrafine Particles—A Preliminary Case Study and Implication on Exposure Reduction. International Journal of Environmental Research and Public Health, 19(9), 5161. https://doi.org/10.3390/ijerph19095161