Natriuretic Peptides and Troponins to Predict Cardiovascular Events in Patients Undergoing Major Non-Cardiac Surgery
Abstract
:1. Introduction
2. Risk Evaluation Using Cardiac Biomarkers in Patients Undergoing Non-Cardiac Surgery
3. Analytical and Pathophysiological Correlates in Cardiac-Specific Biomarkers
3.1. NP Assay
3.2. cTnI and cTnT Assay
3.3. Combined Measurement of NPs and hs-cTn
4. Evaluation of Myocardial Injury in Patients Undergoing Major Non-Cardiac Surgery
5. Clinical Considerations about Cardio-Specific Biomarkers Assay in Patients Undergoing Major Non-Cardiac Surgery
5.1. Critical Relevance of Biomarker Assay in the Pre-Operative Evaluation
5.2. Influence of Cardiac-Protective Drugs
5.3. Chronic HF
5.4. Cardiac Arrhythmias
5.5. Acute Myocardial Infarction (AMI)
5.6. Alterations in Biomarker Concentration Due to Interfering Substances or Drugs
6. Future Perspectives
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Priebe, H.J. Peri-operative myocardial infarction: Aetiology and prevention. Br. J. Anaesth. 2005, 95, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devereaux, P.J.; Goldman, L.; Cook, D.J.; Gilbert, K.; Leslie, K.; Guyatt, G.H. Perioperative cardiac events in patients undergoing noncardiac surgery: A review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. Can. Med. Assoc. J. 2005, 173, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Struthers, A.; Lang, C. The potential to improve primary prevention in the future by using BNP/N-BNP as an indicator of silent ‘pancardiac’ target organ damage: BNP/N-BNP could become for the heart what microalbuminuria is for the kidney. Eur. Heart J. 2007, 28, 1678–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poldermans, D.; Hoeks, S.E.; Feringa, H.H. Pre-operative risk assessment and risk reduction before surgery. J. Am. Coll Cardiol 2008, 51, 1913–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poldermans, D.; Bax, J.J.; Boersma, E.; De Hert, S.; Eeckhout, E.; Fowkes, G.; Gorenek, B.; Hennerici, M.G.; Iung, B.; Kelm, M.; et al. Task force for preoperative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery; European Society of Cardiology (ESC). Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur. Heart J. 2009, 30, 2769–2812. [Google Scholar]
- Devereaux, P.J.; Chan, M.T.; Alonso-Coello, P.; Walsh, M.; Berwanger, O.; Villar, J.C.; Wang, C.Y.; Garutti, R.I.; Jacka, M.J.; Sigamani, A.; et al. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. J. Am. Med. Assoc. 2012, 307, 2295–2304. [Google Scholar]
- Grobben, R.B.; Van Klei, W.A.; Grobbee, D.E.; Nathoe, H.M. The aetiology of myocardial injury after non-cardiac surgery. Neth. Heart J. 2013, 21, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Botker, H.E.; Hert, S.D.; Ford, I.; Gonzalez-Juanatey, J.R.; Gorenek, B.; Heyndrickx, G.R.; et al. 2014 ESC/ESA guidelines on non-cardiac surgery: Cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 2014, 35, 2383–2431. [Google Scholar]
- Karakas, M.; Koenig, W. Improved peri-operative risk stratification in non-cardiac surgery: Going beyond established clinical scores. Eur. Heart J. 2013, 34, 796–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerico, A.; Emdin, M.; Passino, C. Cardiac biomarkers and risk assessment in patients undergoing major non-cardiac surgery: Time to revise the guidelines? Clin. Chem. Lab. Med. 2014, 52, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Kalesan, B.; Nicewarner, H.; Intwala, S.; Leung, C.; Balady, G.J. Pre-operative stress testing in the evaluation of patients undergoing non-cardiac surgery: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0219145. [Google Scholar] [CrossRef]
- Cao, D.; Chandiramani, R.; Capodanno, D.; Berger, J.S.; Levin, M.A.; Hawn, M.T.; Angiolillo, D.J.; Mehran, R. Non-cardiac surgery in patients with coronary artery disease: Risk evaluation and periprocedural management. Nat. Rev. Cardiol. 2021, 18, 37–57. [Google Scholar] [CrossRef]
- Duceppe, E.; Parlow, J.; MacDonald, P.; Lyons, K.; McMullen, M.; Srinathan, S.; Graham, M.; Tandon, V.; Styles, K.; Bessissow, A.; et al. Canadian Cardiovascular Society guidelines on perioperative cardiac risk assessment and management for patients who undergo noncardiac surgery. Can. J. Cardiol. 2017, 33, 17–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthikeyan, G.; Moncur, R.A.; Levine, O.; Heels-Ansdell, D.; Chan, M.T.; Alonso-Coello, P.; Yusuf, S.; Sessler, D.; Villar, J.C.; Berwanger, O.; et al. Is a pre-operative brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide measurement an independent predictor of adverse cardiovascular outcomes within 30 days of noncardiac surgery? A systematic review and meta-analysis of observational studies. J. Am. Coll Cardiol. 2009, 54, 1599–1606. [Google Scholar] [PubMed] [Green Version]
- Oscarsson, A.; Fredrikson, M.; Sörliden, M.; Anskär, S.; Gupta, A.; Swahn, E.; Eintrei, C. Predictors of cardiac events in high-risk patients undergoing emergency surgery. Acta Anaesthesiol. Scand 2009, 53, 986–994. [Google Scholar] [CrossRef]
- Ryding, A.D.; Kumar, S.; Worthington, A.M.; Burgess, D. Prognostic value of brain natriuretic peptide in noncardiac surgery: A meta-analysis. Anesthesiology 2009, 111, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodseth, R.N.; Padayachee, L.; Biccard, B.M. A meta-analysis of the utility of pre-operative brain natriuretic peptide in predicting early and intermediate-term mortality and major adverse cardiac events in vascular surgical patients. Anaesthesia 2008, 63, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Biccard, B.M.; Lurati Buse, G.A.; Burkhart, C.; Cuthbertson, B.H.; Filipovic, M.; Gibson, S.C.; Mahla, E.; Leibowitz, D.W.; Rodseth, R.N. The influence of clinical risk factors on pre-operative B-type natriuretic peptide risk stratification of vascular surgical patient. Anaesthesia 2012, 67, 55–59. [Google Scholar] [CrossRef]
- Beattie, W.S.; Wijeysundera, D.N. Perioperative cardiac biomarkers: The utility and timing. Curr. Opin. Crit. Care 2013, 19, 334–341. [Google Scholar] [CrossRef]
- Rodseth, R.N.; Biccard, B.M.; Le Manach, Y.; Sessler, D.I.; Lurati Buse, G.A.; Thabane, L.; Schutt, R.C.; Bolliger, D.; Cagini, L.; Cardinale, D.; et al. The prognostic value of pre-operative and post-operative B-type natriuretic peptides in patients undergoing noncardiac surgery: B-type natriuretic peptide and N-terminal fragment of pro-B-type natriuretic peptide: A systematic review and individual patient data meta-analysis. J. Am. Coll Cardiol. 2014, 63, 170–180. [Google Scholar]
- Young, Y.R.; Sheu, B.F.; Li, W.C.; Hsieh, T.M.; Hung, C.W.; Chang, S.S.; Lee, C.C. Predictive value of plasma brain natriuretic peptide for postoperative cardiac complications; a systemic review and meta-analysis. J. Crit. Care 2014, 29, 696.e1–696.e10. [Google Scholar] [CrossRef] [PubMed]
- Domanski, M.J.; Mahaffey, K.; Hasselblad, V.; Brener, S.J.; Smith, P.K.; Hillis, G.; Engoren, M.; Alexander, J.H.; Levy, J.H.; Chaitman, B.R.; et al. Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery. J. Am. Med. Ass. 2011, 305, 585–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, F.K.; Devereaux, P.J. Physicians should obtain perioperative cardiac toponin measurements in at-risk patients undergoing noncardiac surgery. Clin. Chem. 2021, 67, 50–53. [Google Scholar] [CrossRef]
- Borges, F.K.; Furtado, M.V.; Rossini, A.P.; Bertoluci, C.; Gonzalez, V.L.; Bertoldi, E.G.; Pezzali, L.G.; Machado, D.L.; Grutcki, D.M.; Rech, L.G.; et al. Clinical use of ultrasensitive cardiac troponin I assay in intermediate- and high-risk surgery patients. Dis. Markewrs 2013, 35, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Braga, J.R.; Tu, J.V.; Austin, P.C.; Chong, A.; You, J.J.; Farkouh, M.E.; Ross, H.J.; Lee, D.S. Outcomes and care of patients with acute heart failure syndromes and cardiac troponin elevation clinical perspective. Circ. Heart Fail 2013, 6, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.; Luchner, A.; Seeberger, M.; Mueller, C.; Liebetrau, C.; Schlitt, A.; Apostolovic, S.; Jankovic, R.; Bankovic, D.; Jovic, M.; et al. Incremental value of high-sensitive troponin T in addition to the revised cardiac index for peri-operative risk stratification in non-cardiac surgery. Eur. Heart J. 2013, 34, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Wolfgang, C.L. Role of fourth-generation troponin in predicting mortality in noncardiac surgery. JAMA Surg. 2013, 148, 12–13. [Google Scholar] [CrossRef] [PubMed]
- Botto, F.; Alonso-Coello, P.; Chan, M.T.; Villar, J.C.; Xavier, D.; Srinathan, S.; Guyatt, G.; Cruz, P.; Graham, M.; Wang, C.Y.; et al. Myocardial injury after noncardiac surgery: A large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology 2014, 120, 564–578. [Google Scholar]
- Foucrier, A.; Rodseth, R.; Aissaoui, M.; Ibanes, C.; Goarin, J.P.; Landais, P.; Coriat, P.; Le Manach, Y. The long-term impact of early cardiovascular therapy intensification for postoperative troponin elevation after major vascular surgery. Anesth. Analg. 2014, 119, 1053–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekeloef, S.; Alamili, M.; Devereaux, P.J.; Gögenur, I. Troponin elevations after non-cardiac, non-vascular surgery are predictive of major adverse cardiac events and mortality: A systematic review and meta-analysis. Br. J. Anaest. 2016, 117, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Devereaux, P.J.; Biccard, B.M.; Sigamani, A.; Xavier, D.; Chan, M.T.V.; Srinathan, S.K.; Walsh, M.; Abraham, V.; Pearse, R.; Wang, C.Y.; et al. Writing Committee for the VISION Study Investigators. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. J. Am. Med. Assoc. 2017, 317, 1642–1651. [Google Scholar]
- Macfarlane, A.I.; Rudd, D.; Knight, E.; Marshman, L.A.; Guazzo, E.P.; Anderson, D.S. Prospective controlled cohort study of Troponin I levels in patients undergoing elective spine surgery for degenerative conditions: Prone versus supine position. J. Clin. Neurosci. 2017, 35, 62–66. [Google Scholar] [CrossRef]
- Suzumura, E.A.; Ribeiro, R.A.; Kawano-Dourado, L.; de Barros, E.; Silva, P.G.; Oliveira, C.; Figueiró, M.F.; Cavalcanti, A.B.; Lopes, R.D.; Berwanger, O. Effects of perioperative statin use on cardiovascular complications in patients submitted to non-cardiac surgery: Protocol for a systematic review, meta-analysis, and trial sequential analysis. Syst. Rev. 2017, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Górka, J.; Polok, K.; Fronczek, J.; Górka, K.; Kózka, M.; Iwaszczuk, P.; Frołow, M.; Devereaux, P.J.; Biccard, B.; Musiał, J.; et al. Myocardial injury is more common than deep venous thrombosis after vascular surgery and is associated with a high one year mortality risk. Eur. J. Vasc. Endovasc. Surg. 2018, 56, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Humble, C.A.S.; Huang, S.; Jammer, I.; Björk, J.; Chew, M.S. Prognostic performance of preoperative cardiac troponin and perioperative changes in cardiac troponin for the prediction of major adverse cardiac events and mortality in noncardiac surgery: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0215094. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, X.; Fang, X.; Zheng, J.; Chen, T.; Huang, J. Effects of mitochondrial ATP-sensitive potassium channel activation (nicorandil) in patients with angina pectoris undergoing elective percutaneous coronary interventions: A meta-analysis of randomized controlled trials. Medicine 2019, 98, e14165. [Google Scholar] [CrossRef]
- Ackland, G.L.; Abbott, T.E.F.; Jones, T.F.; Leuwer, M.; Pearse, R.M.; VISION-UK Investigators. Early elevation in plasma high-sensitivity troponin T and morbidity after elective noncardiac surgery: Prospective multicentre observational cohort study. Br. J. Anaesth. 2020, 124, 535–543. [Google Scholar] [CrossRef]
- Borg Caruana, C.; Jackson, S.M.; Ngyuen Khuong, J.; Campbell, R.; Liu, Z.; Ramson, D.M.; Douglas, N.; Kok, J.; Perry, L.A.; Penny-Dimri, J.C. Systematic review and meta-analysis of postoperative troponin as a predictor of mortality and major adverse cardiac events after vascular surgery. J. Vasc. Surg. 2020, 72, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.J.; Lighfoot, N.J. The prognostic implication of perioperative cardiac enzyme elevation in patients with fractured neck of femur: A systematic review and meta-analysis. Injury 2020, 51, 164–173. [Google Scholar] [CrossRef]
- Costa, M.C.D.B.G.; Furtado, M.V.; Borges, F.K.; Ziegelmann, P.K.; Suzumura, É.A.; Berwanger, O.; Devereaux, P.J.; Polanczyk, C.A. Perioperative troponin screening identifies patients at higher risk for major cardiovascular events in noncardiac surgery. Curr. Probl. Cardiol. 2021, 46, 100429. [Google Scholar] [CrossRef]
- Serrano, A.B.; Gomez-Rojo, M.; Ureta, E.; Nuñez, M.; Fernández Félix, B.; Velasco, E.; Burgos, J.; Popova, E.; Urrutia, G.; Gomez, V.; et al. Preoperative clinical model to predict myocardial injury after non-cardiac surgery: A retrospective analysis from the MANAGE cohort in a Spanish hospital. BMJ Open 2021, 11, e045052. [Google Scholar] [CrossRef] [PubMed]
- Vasireddi, S.K.; Pivato, E.; Soltero-Mariscal, E.; Chava, R.; James, L.O.; Gunzler, D.; Leo, P.; Kondapaneni, M.D. Postoperative myocardial injury in patients classified as low risk preoperatively is associated with a particularly increased risk of long-term mortality after noncardiac surgery. J. Am. Heart Assoc. 2021, 10, e019379. [Google Scholar] [CrossRef] [PubMed]
- Vittorini, S.; Clerico, A. Cardiovascular biomarkers: Increasing impact of laboratory medicine in cardiology practice. Clin. Chem. Lab. Med. 2008, 46, 748–763. [Google Scholar] [CrossRef]
- Perrone, M.A.; Zaninotto, M.; Masotti, S.; Musetti, V.; Padoan, A.; Prontera, C.; Plebani, M.; Passino, C.; Romeo, F.; Bernardini, S.; et al. The combined measurement of high-sensitivity cardiac troponins and natriuretic peptides: A useful tool for clinicians? J. Cardiovasc. Med. 2020, 21, 953–963. [Google Scholar] [CrossRef]
- Perrone, M.A.; Storti, S.; Salvadori, S.; Pecori, A.; Bernardini, S.; Romeo, F.; Guccione, P.; Clerico, A. Cardiac troponins: Are there any differences between T and I? J. Cardiovasc. Med. 2021, 22, 797–805. [Google Scholar] [CrossRef]
- Emdin, M.; Passino, C.; Prontera, C.; Fontana, M.; Poletti, R.; Gabutti, A.; Mammini, C.; Giannoni, A.; Zyw, L.; Zucchelli, G.; et al. Comparison of brain natriuretic peptide (BNP) and aminoterminal ProBNP for early diagnosis of heart failure. Clin. Chem. 2007, 53, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. ESC Scientific Document Group; 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Clerico, A.; Giannoni, A.; Prontera, T.; Giovannini, S. High-sensitivity troponin: A new tool for pathophysiological investigation and clinical practice. Adv. Clin. Chem 2009, 49, 1–30. [Google Scholar]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; The Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardal Infarction. J. Am. Coll Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef] [PubMed]
- Passino, C.; Aimo, A.; Masotti, S.; Musetti, V.; Prontera, C.; Emdin, M.; Clerico, A. Cardiac troponins as biomarkers for cardiac disease. Biomark Med. 2019, 13, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Giannoni, A.; Vittorini, S.; Passino, C. Thirty years of the heart as an endocrine organ: Physiological role and clinical utility of cardiac natriuretic hormones. Am. J. Physiol Heart Circ. Physiol 2011, 301, H12–H20. [Google Scholar] [CrossRef] [Green Version]
- van der Meer, P.; Gaggin, H.K.; Dec, G.W. ACC/AHA Versus ESC Guidelines on Heart Failure: JACC Guideline Comparison. J. Am. Coll Cardiol. 2019, 73, 2756–2768. [Google Scholar] [CrossRef] [PubMed]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- Cordey, J.; Schneider, M.; Buhler, M. The epidemiology of fractures of the proximal femur. Injury 2000, 31 (Suppl. 3), C56–C61. [Google Scholar] [CrossRef]
- Hlatky, M.A.; Greenland, P.; Arnett, D.K.; Ballantyne, C.M.; Criqui, M.H.; Elkind, M.S.; Go, A.S.; Harrell, F.E., Jr.; Hong, Y.; Howard, B.V.; et al. Criteria for evaluation of novel markers of cardiovascular risk: A scientific statement from the American Heart Association. Circulation 2009, 119, 2408–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.J. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation 2011, 123, 551–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunwald, E. Heart Failure. J. Am. Coll. Cardiol. Heart Fail. 2013, 1, 1–20. [Google Scholar] [CrossRef]
- Clerico, A.; Zaninotto, M.; Padoan, A.; Masotti, S.; Musetti, V.; Prontera, C.; Ndreu, R.; Zucchelli, G.; Passino, C.; Migliardi, M.; et al. Evaluation of analytical performance of immunoassay methods for cTnI and cTnT: From theory to practice. Adv. Clin. Chem. 2019, 93, 239–262. [Google Scholar]
- Clerico, A.; Zaninotto, M.; Passino, C.; Padoan, A.; Migliardi, M.; Plebani, M. High-sensitivity methods for cardiac troponins: The mission is not over yet. Adv. Clin. Chem. 2021, 103, 215–252. [Google Scholar]
- Clerico, A.; Passino, C.; Franzini, M.; Emdin, M. Cardiac biomarker testing in the clinical laboratory: Where do we stand? General overview of the methodology with special emphasis on natriuretic peptides. Clin. Chim. Acta 2015, 443, 17–24. [Google Scholar] [CrossRef]
- Emdin, M.; Aimo, A.; Vergaro, G.; Pastormerlo, L.E.; Clerico, A. Natriuretic peptides. D’où venons-nous? Que sommes-nous? Où allons-nous? Int. J. Cardiol. 2018, 254, 256–257. [Google Scholar] [CrossRef]
- Pastormerlo, L.E.; Maffei, S.; Latta, D.D.; Chubuchny, V.; Susini, C.; Berti, S.; Clerico, A.; Prontera, C.; Passino, C.; Januzzi, J.L., Jr.; et al. N-terminal prob-type natriuretic peptide is a marker of vascular remodelling and subclinical atherosclerosis in asymptomatic hypertensives. Eur. J. Prev. Cardiol. 2016, 23, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Schaub, J.A.; Coca, S.G.; Moledina, D.G.; Gentry, M.; Testani, J.M.; Parikh, C.R. Amino-terminal pro-B-type natriuretic peptide for diagnosis and prognosis in patients with renal dyfunction: A systematic Review and meta-analysis. J. Am. Coll Cardiol. Heart Fail 2015, 3, 977–989. [Google Scholar]
- Clerico, A.; Zucchelli, G.C.; Pilo, A.; Passino, C.; Emdin, M. Clinical relevance of biological variation: The lesson of brain natriuretic peptide (BNP) and NT-proBNP assay. Clin. Chem. Lab. Med. 2006, 44, 366–378. [Google Scholar] [CrossRef]
- Fraser, C.G. Reference change values. Clin. Chem. Lab. Med. 2011, 50, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Zaninotto, M.; Prontera, C.; Giovannini, S.; Ndreu, R.; Franzini, M.; Zucchelli, G.C.; Plebani, M. State of the art of BNP and NT-proBNP immunoassays: The CardioOrmoCheck study. Clin. Chim. Acta 2012, 414, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.B.; Christenson, R.H.; Greene, D.N.; Jaffe, A.S.; Kavsak, P.A.; Ordonez-Lianos, J.; Apple, F.S. Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: Expert opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin. Chem. 2018, 64, 645–655. [Google Scholar] [PubMed]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1387. [Google Scholar]
- Apple, F.S.; Collinson, P.O.; Kavsak, P.A.; Body, R.; Ordóñez-Llanos, J.; Saenger, A.K.; Omland, T.; Hammarsten, O.; Jaffe, A.S. The IFCC Clinical Application of Cardiac Biomarkers Committee’s Appraisal of the 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Getting cardiac troponin right. Clin. Chem. 2021, 67, 730–735. [Google Scholar] [CrossRef] [PubMed]
- NICE. High-Sensitivity Troponin Tests for the Early Rule out of NSTEMI. Diagnostics Guidance. Available online: www.nice.org.uk/guidance/dg40 (accessed on 26 August 2020).
- Bergmann, O.; Zdunek, S.; Felker, A.; Salhpoor, M.; Alkass, K.; Bernard, S.; Sjostrom, S.L.; Szewczykowska, M.; Jackowska, T.; Dos Remedios, C.; et al. Dynamics of cell generation and turnover in the human heart. Cell 2015, 161, 1566–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marjot, J.; Kaier, T.E.; Martin, E.D.; Reji, S.S.; Copeland, O.; Iqbal, M.; Goodson, B.; Hamren, S.; Harding, S.E.; Marber, M.S. Quantifying the release of biomarkers of myocardial necrosis from cardiac myocytes and intact myocardium. Clin. Chem. 2017, 63, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Mair, J.; Lindahl, B.; Hammarsten, O.; Müller, C.; Giannitsis, E.; Huber, K.; Möckel, M.; Plebani, M.; Thygesen, K.; Jaffe, A.S. How is cardiac troponin released from injured myocardium? Eur. Heart J. Acute Cardiovasc. Care 2018, 6, 553–560. [Google Scholar] [CrossRef]
- Sandoval, Y.; Apple, F.S. The global need to define normality: The 99th percentile value of cardiac troponin. Clin. Chem. 2014, 60, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Apple, F.S.; Sandoval, Y.; Jaffe, A.S.; Ordóñez-Llanos, J.; IFCC Task Force on Clinical Application of Cardiac Bio-Markers. Cardiac troponin assays: Guide to understanding analytical characteristics and their impact on clinical care. Clin. Chem. 2017, 63, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Zaninotto, M.; Ripoli, M.; Masotti, S.; Prontera, C.; Passino, C.; Plebani, M. The 99th percentile of reference population for cTnI and cTnT assay: Methodology, pathophysiology, and clinical implications. Clin. Chem. Lab. Med. 2017, 55, 1634–1651. [Google Scholar] [CrossRef]
- Clerico, A.; Padoan, A.; Zaninotto, M.; Passino, C.; Plebani, M. Clinical relevance of biological variation of cardiac troponins. Clin. Chem. Lab. Med. 2021, 59, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Franzini, M.; Lorenzoni, V.; Masotti, S.; Prontera, C.; Chiappino, D.; Della Latta, D.; Daves, M.; Deluggi, I.; Zuin, M.; Ferrigno, L.; et al. The calculation of the cardiac troponin T 99th percentile of the reference population is affected by age, gender, and population selection: A multicenter study in Italy. Clin. Chim. Acta 2015, 438, 376–381. [Google Scholar] [CrossRef]
- Clerico, A.; Ripoli, A.; Zaninotto, M.; Masotti, S.; Musetti, V.; Ciaccio, M.; Aloe, R.; Rizzardi, S.; Dittadi, R.; Carrozza, C.; et al. Head-to-head comparison of plasma cTnI concentration values measured with three high-sensitivity methods in a large Italian population of healthy volunteers and patients admitted to emergency department with acute coronary syndrome: A multi-center study. Clin. Chim. Acta 2019, 496, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ndreu, R.; Musetti, V.; Masotti, S.; Zaninotto, M.; Prontera, C.; Zucchelli, G.C.; Plebani, M.; Clerico, A. Evaluation of the cTnT immunoassay using quality control samples. Clin. Chim. Acta 2019, 495, 269–270. [Google Scholar] [CrossRef]
- Masotti, S.; Prontera, C.; Musetti, V.; Storti, S.; Ndreu, R.; Zucchelli, G.C.; Passino, C.; Clerico, A. Evaluation of analytical performance of a new high-sensitivity immunoassay for cardiac troponin I. Clin. Chem. Lab. Med. 2018, 56, 492–501. [Google Scholar] [CrossRef]
- Masotti, S.; Musetti, V.; Prontera, C.; Storti, S.; Passino, C.; Zucchelli, G.; Clerico, A. Evaluation of analytical performance of a chemiluminescence enzyme immunoassay (CLEIA) for cTnI using the automated AIA-CL2400 platform. Clin. Chem. Lab. Med. 2018, 56, e174–e176. [Google Scholar] [CrossRef]
- Musetti, V.; Masotti, S.; Prontera, C.; Storti, S.; Ndreu, R.; Zucchelli, G.C.; Passino, C.; Emdin, M.; Clerico, A. Evaluation of the analytical performance of a new ADVIA immunoassay using the Centaur XPT platform system for the measurement of cardiac troponin I. Clin. Chem. Lab. Med. 2018, 56, e229–e231. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Zaninotto, M.; Passino, C.; Aspromonte, N.; Piepoli, M.F.; Migliardi, M.; Perrone, M.; Fortunato, A.; Padoan, A.; Testa, A.; et al. Evidence on clinical relevance of cardiovascular risk evaluation in the general population using cardio-specific biomarkers. Clin. Chem. Lab. Med. 2021, 59, 79–90. [Google Scholar] [CrossRef]
- Farmakis, D.; Mueller, C.; Apple, F.S. High-sensitivity cardiac troponin assays for cardiovascular risk stratification in the general population. Eur. Heart J. 2020, 41, 4050–4056. [Google Scholar] [CrossRef]
- du Fay de Lavallaz, J.; Badertscher, P.; Nestelberger, T.; Zimmermann, T.; Mirò, O.; Salgado, E.; Christ, M.; Geigy, N.; Cullen, L.; Than, M.; et al. B-type natriuretic peptides and cardiac troponins for diagnosis and risk-stratification of syncope. Circulation 2019, 139, 2403–2418. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.J.; Kwon, H.M.; Jung, K.W.; Kim, K.S.; Shin, W.J.; Jun, I.G.; Song, J.G.; Hwang, G.S. Preoperative high-sensitivity troponin I and B-type natriuretic peptide, alone and in combination, for risk stratification of mortality after liver transplantation. Korean J. Anesthesiol. 2021, 74, 242–253. [Google Scholar] [CrossRef]
- Kler, A.; Dave, M.; Blatatzis, M.; Satyadas, T. Elevation of high-sensitive Troponin T predicts mortality after open pancreaticoduodenectomy. World J. Surg. 2021, 45, 1913–1920. [Google Scholar] [CrossRef]
- Lee, S.; Allen, A.J.H.; Morley, E.; Swart, P.; Henderson, W.; Jen, R.; Ayas, N. Perioperative myocardial injury risk after elective knee and hip arthroplasty in patients with a high risk of obstructive sleep apnea. Sleep Breath 2021, 25, 513–515. [Google Scholar] [CrossRef]
- Sousa, J.; Rocha-Neves, J.; Oliveira-Pinto, J.; Mansilha, A. Myocardial injury after non-cardiac surgery (MINS) in EVAR patients: A retrospective single-centered study. J. Cardiovasc. Sur. 2021, 62, 130–135. [Google Scholar] [CrossRef]
- Turan, A.; Cohen, B.; Rivas, E.; Liu, L.; Pu, X.; Maheshwari, K.; Farag, E.; Onal, O.; Wang, J.; Ruetzler, K.; et al. Association between postoperative haemoglobin and myocardial injury after noncardiac surgery: A retrospective cohort analysis. Br. J. Anaesthesiol. 2021, 126, 94–101. [Google Scholar] [CrossRef]
- Spence, J.; LeManach, Y.; Chan, M.T.V.; Wang, C.Y.; Sigamani, A.; Xavier, D.; Pearse, R.; Alonso-Coello, P.; Garutti, I.; Srinathan, S.K.; et al. Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between complications and death within 30 days after noncardiac surgery. CMAJ 2019, 191, E830–E837. [Google Scholar]
- Pearse, R.M.; Moreno, R.P.; Bauer, P.; Pelosi, P.; Metnitz, P.; Spies, C.; Vallet, B.; Vincent, J.L.; Hoeft, A.; Rhodes, A. Mortality after surgery in Europe: A 7-day cohort study. Lancet 2012, 380, 1059–1065. [Google Scholar] [CrossRef] [Green Version]
- Devereaux, P.J.; Szczeklik, W. Myocardial injury after non-cardiac surgery: Diagnosis and management. Eut. Heart J. 2020, 41, 3083–3091. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Georgiopoulos, G.; Panichella, G.; Vergaro, G.; Passino, C.; Emdin, M.; Clerico, A. High-sensitivity troponins for outcome prediction in the general population: A systematic review and meta-analysis. Eur. Int. Med. 2022, in press. [CrossRef]
- Emdin, M.; Clerico, A.; Clemenza, F.; Galvani, M.; Latini, R.; Masson, S.; Mulè, P.; Panteghini, M.; Valle, R.; Zaninotto, M.; et al. Recommendations for the clinical use of cardiac natriuretic peptides. Ital. Heart J. 2005, 6, 430–446. [Google Scholar] [PubMed]
- Hammill, B.G.; Curtis, L.H.; Bennett-Guerrero, E.; O’Connor, C.M.; Jollis, J.G.; Schulman, K.A.; Hernandez, A.F. Impact of heart failure on patients undergoing major noncardiac surgery. Anesthesiology 2008, 108, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Upshaw, J.; Kiernan, M.S. Pre-operative cardiac risk assessment for noncardiac surgery in patients with heart failure. Curr. Heart Fail. Rep. 2013, 10, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Kazmers, A.; Cerqueira, M.D.; Zierler, R.E. Peri-operative and late outcome in patients with left ventricular ejection fraction of 35% or less who require major vascular surgery. J. Vasc. Surg. 1988, 8, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, S.; Croal, B.L.; Reeve, J.; Bachoo, P.; Brittenden, J. N-terminal pro-B-type natriuretic peptide is an independent predictor of all-cause mortality and MACE after major vascular surgery in medium-term follow-up. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 657–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerico, A.; Zaninotto, M.; Passino, C.; Plebani, M. New issues on measurement of B-type natriuretic peptides. Clin. Chem. Lab. Med. 2018, 56, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aimo, A.; Vergaro, G.; Passino, C.; Clerico, A. Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: From theory to routine clinical practice in patients with heart failure. Crit. Rev. Clin. Lab. Sci 2021, 58, 530–545. [Google Scholar] [CrossRef]
- Toufektzian, L.; Zisis, C.; Balaka, C.; Roussakis, A. Effectiveness of brain natriuretic peptide in predicting postoperative atrial fibrillation in patients undergoing non-cardiac thoracic surgery. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 654–657. [Google Scholar] [CrossRef] [Green Version]
- Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Epling, J.W., Jr.; Kubik, M.; et al. US Preventive Services Task Force. Screening for atrial fibrillation: US Preventive Services Task Force recommendation statement. JAMA 2022, 327, 360–367. [Google Scholar] [PubMed]
- Chang, K.W.; Hsu, J.C.; Toomu, A.; Fox, S.; Maisel, A.S. Using biomarkers to guide heart failure management. Expert Rev. Cardiovasc. Ther. 2017, 15, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Zaninotto, M.; Aimo, A.; Dittadi, R.; Cosseddu, D.; Perrone, M.; Padoan, A.; Masotti, S.; Belloni, L.; Migliardi, M.; et al. Use of high-sensitivity cardiac troponins in the emergency department for the early rule-in and rule-out of acute myocardial infarction without persistent ST-segment elevation (NSTEMI) in Italy. Clin. Chem. Lab. Med. 2021, 60, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.; Ward, G. Interferences in immunoassay. Clin. Biochem. Rev. 2004, 25, 105–120. [Google Scholar]
- Sturgeon, C.M.; Viljoen, A. Analytical error and interference in immunoassay: Minimizing risk. Ann. Clin. Biochem. 2011, 48, 418–432. [Google Scholar] [CrossRef]
- Perrone, M.A.; Pieri, M.; Marchei, M.; Sergi, D.; Bernardini, S.; Romeo, F. Serum free light chains in patients with ST elevation myocardial infarction (STEMI): A possible correlation with left ventricle dysfunction. Int. J. Cardiol. 2019, 292, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Plebani, M. Biotin interference on immunoassay methods: Sporadic case or epidemic? Clin. Chem. Lab. Med. 2017, 55, 777–779. [Google Scholar] [CrossRef]
- Collinson, P.O.; Saenger, A.K.; Apple, F.S.; IFCC C-CB. High sensitivity, contemporary and point-of-care cardiac troponin assays: Educational aids developed by the IFCC Committee on Clinical Application of Cardiac Bio-Markers. Clin. Chem. Lab. Med. 2019, 57, 623–632. [Google Scholar] [CrossRef]
- Clerico, A.; Zaninotto, M.; Plebani, M. High-sensitivity assay for cardiac troponins with POCT methods. The future is soon. Clin. Chem. Lab. Med. 2021, 59, 1477–1478. [Google Scholar] [CrossRef]
- Perrone, M.A.; Donatucci, B.; Salvati, A.; Gualtieri, P.; De Lorenzo, A.; Romeo, F.; Bernardini, S. Inflammation, oxidative stress and gene expression: The postprandial approach in professional soccer players to reduce the risk of muscle injuries and early atherosclerosis. Med. Sport 2019, 72, 234–243. [Google Scholar] [CrossRef]
- Favresse, J.; Bayart, J.L.; Gruson, D.; Bernardini, S.; Clerico, A.; Perrone, M. The underestimated issue of non-reproducible cardiac troponin I and T results: Case series and systematic review of the literature. Clin. Chem. Lab. Med. 2021, 59, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Cardinale, D.M.; Zaninotto, M.; Aspromonte, N.; Sandri, M.T.; Passino, C.; Migliardi, M.; Perrone, M.; Fortunato, A.; Padoan, A.; et al. High-sensitivity cardiac troponin I and T methods for the early detection of myocardial injury in patients on chemotherapy. Clin. Chem. Lab. Med. 2020, 59, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.A.; Passino, C.; Vassalle, C.; Masotti, S.; Romeo, F.; Guccione, P.; Bernardini, S.; Clerico, A. Early evaluation of myocardial injury by means of high-sensitivity methods for cardiac troponins after strenuous and prolonged exercise. J. Sports Med. Phys. Fitness. 2020, 60, 1297–1305. [Google Scholar] [CrossRef]
- Perrone, M.A.; Macrini, M.; Maregnani, A.; Ammirabile, M.; Clerico, A.; Bernardini, S.; Romeo, F. The effects of a 50 km ultramarathon race on high sensitivity cardiac troponin I and NT-proBNP in highly trained athletes. Minerva Cardioangiol. 2020, 68, 305–312. [Google Scholar] [CrossRef]
- Ruetzler, K.; Smilowitz, N.R.; Berger, J.S.; Devereaux, P.J.; Maron, B.A.; Newby, L.K.; de Jesus Perez, V.; Sessler, D.I.; Wijeysundera, D.N. Diagnosis and Management of Patients with Myocardial Injury After Noncardiac Surgery: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e287–e305. [Google Scholar] [CrossRef]
1 | Cardiac troponins (especially the cTnI) are produced and released into circulation exclusively by cardiomyocytes, so they are absolutely cardio-specific biomarkers [45,48,50,58,59]. |
2 | Cardiac troponins are more stable in vitro at room temperature than natriuretic peptides [60]. |
3 | Both plasma (with lithium heparin or EDTA) and serum (usually ≤300 mL) can be used for hs-cTnI and hs-TnT assay [58,59,60]. |
4 | Due to their high analytical sensitivity (ranging from 1 to 3 ng/L), hs-cTnI and hs-cTnT methods are able to measure the biomarker levels in the major part of healthy adult subjects [45,48,50,58,59,67]. |
5 | Cardiac troponins have an intra-individual biological variation < 10% CV and an index of individuality of 0.3, i.e., much lower than natriuretic peptides and other cardiovascular biomarkers [64]. |
6 | The laboratory tests for hs-cTnI and hs-cTnT are fully automated and are commercialized at lower cost than other cardiac biomarkers [60]. |
7 | The concentration values can be measured within 30′ min. using the more popular automated platforms for hs-cTn and hs-cTnT methods [45,48,50,58,59]. |
8 | Even if the hs-cTnI and hs-cTnT methods actually show significant differences in measured circulating levels and cut-off values, however, the RCV (Reference Change Value) values are very similar (≥30%), due to their very low intra-individual biological variations and the excellent level of imprecision (about 4–6 CV%) around the cut-off value (i.e., the 99th percentile URL) [58,59,60,65]. |
Myocardial Injury Related to Acute Myocardial Ischaemia (Related to Type 1 AMI) |
|
Myocardial injury related to acute myocardial ischaemia because of oxygen supply/demand imbalance (related to Type 2 AMI) |
|
|
|
|
Other causes of myocardial injury |
|
|
|
|
Authors (Year) | Method | Type of Study | Enrolled Population | Statistical Results | Ref. |
---|---|---|---|---|---|
Górka J et al. (2018) | hs-cTnT | Prospective observational cohort study | 164 adult patients (≥45 years, men 79.9%, mean age 66.1 ± 9.1 years) undergoing surgery for PAD (88.4%) or AAA (23.8%). | 1-year mortality was higher in patients with MINS (23.1%), evaluated by increased hs-cTnT, than non-MINS patients (7.2%; p = 0.006). | [34] |
Ackland GL et al. (2020) | hs-cTnT | Prospective multicentre observational cohort study | 4335 patients aged ≥ 45 years undergoing elective noncardiac surgery (mean age, 65 ± 11 years, men 54.9%). | Patients with elevated troponin (49.8%) have more frequently noncardiac morbidity (OR: 1.95; 95% CI:1.69–2.25), and are also at higher risk of infectious morbidity (OR:1.54; 95% CI: 1.24–1.91) and critical care utilisation (OR:2.05; 95% CI: 1.73–2.43). | [37] |
Costa MCDBG et al. (2021) | hs-cTnT | Prospective multicentre observational cohort study | 2504 adult (≥45 years) patients (mean age 61.9 ± 11.0 years; men 49%) undergoing noncardiac surgery at two tertiary hospitals. | MINS, evaluated by increased hs-cTnT within 30 days after noncardiac surgery, was related to higher mortality (HR: 3.17, 95% CI: 1.56–6.41), major bleeding (HR 5.76; 95% CI 2.75–12.05), sepsis (HR: 5.08; 95% CI: 2.25–11.46), and active cancer (HR 4.22, 95% CI 1.98–8.98). | [40] |
Serrano SK et al. (2021) | hs-cTnI | Prospective cohort with retrospective analysis. Multivariable logistic regression analysis was used to study risk factors associated with MINS, evaluated by increased hs-cTnI levels. | 3363 adult (≥45 years) patients (mean age 72.9 ± 11.7 years; men 47.1%) undergoing major non-cardiac surgery. | The incidence of MINS was 9%. Preoperative risk factors that increased the risk of MINS were age, ASA classification and vascular surgery. | [41] |
Kler A et al. (2021) | hs-cTnT | Retrospective single centre study | 109 consecutive patients (men 48.6%) who underwent open pancreaticoduodenectomy (median age 66 years, range 20–85 years). | ROC curves demonstrated a strong correlation between elevated mean hs-TnT and 30-day (AUC = 0.937), 90-day (AUC = 0.852) mortality and MACEs (AUC = 0.779). In multivariate analysis hs-TnT was significantly associated with 90-day mortality (OR: 43.928, p = 0.004) and MACEs (OR: 8.177, p = 0.048). | [88] |
Turan A et al. (2021) | hs-cTnT | Single centre retrospective analysis | 4480 of adults (≥45 years) with routine postoperative TnT monitoring after noncardiac surgery (mean age 62.9 years, men 51.1%). | The incidence of MINS was 155/4480 (3.5%). Lower postoperative haemoglobin values associated with MINS. | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrone, M.A.; Aimo, A.; Bernardini, S.; Clerico, A. Natriuretic Peptides and Troponins to Predict Cardiovascular Events in Patients Undergoing Major Non-Cardiac Surgery. Int. J. Environ. Res. Public Health 2022, 19, 5182. https://doi.org/10.3390/ijerph19095182
Perrone MA, Aimo A, Bernardini S, Clerico A. Natriuretic Peptides and Troponins to Predict Cardiovascular Events in Patients Undergoing Major Non-Cardiac Surgery. International Journal of Environmental Research and Public Health. 2022; 19(9):5182. https://doi.org/10.3390/ijerph19095182
Chicago/Turabian StylePerrone, Marco Alfonso, Alberto Aimo, Sergio Bernardini, and Aldo Clerico. 2022. "Natriuretic Peptides and Troponins to Predict Cardiovascular Events in Patients Undergoing Major Non-Cardiac Surgery" International Journal of Environmental Research and Public Health 19, no. 9: 5182. https://doi.org/10.3390/ijerph19095182
APA StylePerrone, M. A., Aimo, A., Bernardini, S., & Clerico, A. (2022). Natriuretic Peptides and Troponins to Predict Cardiovascular Events in Patients Undergoing Major Non-Cardiac Surgery. International Journal of Environmental Research and Public Health, 19(9), 5182. https://doi.org/10.3390/ijerph19095182