Lower-Limb Range of Motion Predicts Sagittal Spinal Misalignments in Children: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Procedures
2.3.1. Anthropometric Measurements
2.3.2. Measurements of Sagittal Spinal Alignment
2.3.3. Measurements of ROM
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvo-Muñoz, I.; Gómez-Conesa, A.; Sánchez-Meca, J. Prevalence of low back pain in children and adolescents: A meta-analysis. BMC Pediatr. 2013, 13, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayed, H.; Yaich, S.; Trigui, M.; Hmida, M.; Jemaa, M.; Ammar, A.; Jedidi, J.; Karray, R.; Feki, H.; Mejdoub, Y.; et al. Prevalence, Risk Factors and Outcomes of Neck, Shoulders and Low-Back Pain in Secondary-School Children. J. Res. Health Sci. 2019, 19, e00440. [Google Scholar] [PubMed]
- Jones, G.T.; Macfarlane, G.J. Epidemiology of low back pain in children and adolescents. Arch. Dis. Child. 2005, 90, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.; Bass, A. Research describing pelvifemoral rhythm: A systematic review. J. Phys. Ther. Sci. 2017, 29, 2039–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazirian, M.; Van Dillen, L.; Bazrgari, B. Lumbopelvic rhythm during trunk motion in the sagittal plane: A review of the kinematic measurement methods and characterization approaches. Phys. Ther. Rehabil. 2016, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cejudo, A.; Centenera-Centenera, J.; Santonja-Medina, F. The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8654. [Google Scholar] [CrossRef] [PubMed]
- Prather, H.; van Dillen, L. Links between the Hip and the Lumbar Spine (Hip Spine Syndrome) as they Relate to Clinical Decision Making for Patients with Lumbopelvic Pain. PM&R 2019, 11, S64–S72. [Google Scholar] [CrossRef]
- Zhou, J.; Ning, X.; Fathallah, F. Differences in lumbopelvic rhythm between trunk flexion and extension. Clin. Biomech. 2016, 32, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Van Houcke, J.; Pattyn, C.; Bossche, L.; Redant, C.; Maes, J.; Audenaert, E. The pelvifemoral rhythm in cam-type femoroacetabular impingement. Clin. Biomech. 2014, 29, 63–67. [Google Scholar] [CrossRef]
- Bogduk, N.; Pearcy, M.; Hadfield, G. Anatomy and biomechanics of psoas major. Clin. Biomech. 1992, 7, 109–119. [Google Scholar] [CrossRef]
- Kendall, F.; McCreary, E.; Provance, P.; Rodgers, M.; Romani, W. Muscles: Testing and Function with Posture and Pain; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2005; ISBN 0781747805. [Google Scholar]
- Fasuyi, F.; Fabunmi, A.; Adegoke, B. Hamstring muscle length and pelvic tilt range among individuals with and without low back pain. J. Bodyw. Mov. Ther. 2017, 21, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Norris, C.; Matthews, M. Correlation between hamstring muscle length and pelvic tilt range during forward bending in healthy individuals: An initial evaluation. J. Bodyw. Mov. Ther. 2006, 10, 122–126. [Google Scholar] [CrossRef]
- Vandenbroucke, J.; von Elm, E.; Altman, D.; Gøtzsche, P.; Mulrow, C.; Pocock, S.; Poole, C.; Schlesselman, J.; Egger, M.; Blettner, M.; et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marfell-Jones, M.; Stewart, A.; Olds, T. ISAK Accreditation Handbook. International Society for the Advancement of Kinanthropometry (ISAK). In Proceedings of the Kinanthropometry IX, Thessaloniki, Greece, 9 August 2004; Routledge: New York, NY, USA, 2006. [Google Scholar]
- Santonja-Medina, F.; Collazo-Diéguez, M.; Martínez-Romero, M.; Rodríguez-Ferrán, O.; Aparicio-Sarmiento, A.; Cejudo, A.; Andújar, P.; Sainz de Baranda, P. Classification System of the Sagittal Integral Morphotype in Children from the ISQUIOS Programme (Spain). Int. J. Environ. Res. Public Health 2020, 17, 2467. [Google Scholar] [CrossRef] [Green Version]
- Saur, P.; Ensink, F.; Frese, K.; Seeger, D.; Hildebrandt, J. Lumbar range of motion: Reliability and validity of the inclinometer technique in the clinical measurement of trunk flexibility. Spine 1996, 21, 1332–1338. [Google Scholar] [CrossRef]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; De Ste Croix, M.; Santonja-Medina, F. Assessment of the Range of Movement of the Lower Limb in Sport: Advantages of the ROM-SPORT I Battery. Int. J. Environ. Res. Public Health 2020, 17, 7606. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, A.; Ayala, F.; Sainz de Baranda, P.; Santonja, F. Reliability of two methods of clinical examination of the flexibility of the hip adductor muscles. Int. J. Sports Phys. Ther. 2015, 10, 976–983. [Google Scholar] [PubMed]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; Santonja, F. Test-retest reliability of seven common clinical tests for assessing lower extremity muscle flexibility in futsal and handball players. Phys. Ther. Sport 2015, 16, 107–113. [Google Scholar] [CrossRef]
- O’Sullivan, P.; Smith, A.; Beales, D.; Straker, L. Association of biopsychosocial factors with degree of slump in sitting posture and self-report of back pain in adolescents: A cross-sectional study. Phys. Ther. 2011, 91, 470–483. [Google Scholar] [CrossRef] [Green Version]
- Mauricienė, V.; Bačiulienė, K. Spine’s sagittal plane curves’ coherence with anthropometric parameters in schoolchildren. Balt. J. Sport Health Sci. 2005, 3, 25–29. [Google Scholar] [CrossRef]
- Sainz de Baranda, P.; Andújar, P.; Collazo-Diéguez, M.; Pastor, A.; Santonja-Renedo, F.; Martínez-Romero, M.; Aparicio-Sarmiento, A.; Cejudo, A.; Rodríguez-Ferrán, O.; Santonja-Medina, F. Sagittal standing spinal alignment and back pain in 8 to 12-year-old children from the Region of Murcia, Spain: ISQUIOS programme. J. Back Musculoskelet. Rehabil. 2020, 33, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Sainz de Baranda, P.; Cejudo, A.; Martínez-Romero, M.; Aparicio-Sarmiento, A.; Rodríguez-Ferrán, O.; Collazo-Diéguez, M.; Hurtado-Avilés, J.; Andújar, P.; Santonja-Medina, F. Sitting Posture, Sagittal Spinal Curvatures and Back Pain in 8 to 12-Year-Old Children from the Region of Murcia (Spain): ISQUIOS Programme. Int. J. Environ. Res. Public Health 2020, 17, 2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poussa, M.; Heliövaara, M.; Seitsamo, J.; Könönen, M.; Hurmerinta, K.; Nissinen, M. Development of spinal posture in a cohort of children from the age of 11 to 22 years. Eur. Spine J. 2005, 14, 738–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widhe, T. Spine: Posture, mobility and pain. A longitudinal study from childhood to adolescence. Eur. Spine J. 2001, 10, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamaci, S.; Yucekul, A.; Demirkiran, G.; Berktas, M.; Yazici, M. The Evolution of Sagittal Spinal Alignment in Sitting Position During Childhood. Spine 2015, 40, E787–E793. [Google Scholar] [CrossRef]
- Ferreira, E. Posture and Postural Control: Development and Application of a Quantitative Method for Postural Evaluation; University of São Paulo: São Paulo, Brazil, 2005. [Google Scholar]
- Chernukha, K.; Daffner, R.; Reigel, D. Lumbar lordosis measurement: A new method versus Cobb technique. Spine 1998, 23, 74–79. [Google Scholar] [CrossRef]
- Kobayashi, T.; Atsuta, Y.; Matsuno, T.; Takeda, N. A longitudinal study of congruent sagittal spinal alignment in an adult cohort. Spine 2004, 29, 671–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlösser, T.; Shah, S.; Rogers, K.; Vincken, K.; Castelein, R. Natural sagittal spino-pelvic alignment in boys and girls before, at and after adolescent peak height velocity. Scoliosis 2015, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Harreby, M.; Nygaard, B.; Jessen, T.; Larsen, E.; Storr-Paulsen, A.; Lindahl, A.; Fisker, I.; Lægaard, E. Risk factors for low back pain in a cohort of 1389 Danish school children: An epidemiologic study. Eur. Spine J. 1999, 8, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.; Comesaña, M.; Sánchez, L.; Hidalgo, I.; Albadalejo, D. FRI0574-PC Prevalence of the tight hamstring syndrome (THS) in a school population. Ann. Rheum. Dis. 2013, 72, A569–A570. [Google Scholar] [CrossRef]
- Liyanage, E.; Krasilshchikov, O.; Arhashim, H.; Jawis, N. Prevalence of hamstring tightness and hamstring flexibility of 9–11 years old children of different obesity and physical activity levels in Malaysia and Sri Lanka. J. Phys. Educ. Sport 2020, 20, 338–343. [Google Scholar] [CrossRef]
- Espada, D.; Montesinos, J.; Vicente, J. Diferencias en las amplitudes articulares entre varones y mujeres en edad escolar. Apunt. Educ. Física Y Deportes 2007, 42, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Kett, A.; Milani, T.; Sichting, F. Sitting for Too Long, Moving Too Little: Regular Muscle Contractions Can Reduce Muscle Stiffness During Prolonged Periods of Chair-Sitting. Front. Sports Act. Living 2021, 3, 760533. [Google Scholar] [CrossRef] [PubMed]
- Visser, B.; Van Dieën, J. Pathophysiology of upper extremity muscle disorders. J. Electromyogr. Kinesiol. 2006, 16, 1–16. [Google Scholar] [CrossRef]
- Kell, R.; Bhambhani, Y. Relationship between erector spinae muscle oxygenation via in vivo near infrared spectroscopy and static endurance time in healthy males. Eur. J. Appl. Physiol. 2008, 102, 243–250. [Google Scholar] [CrossRef]
- Proske, U.; Morgan, D. Do cross-bridges contribute to the tension during stretch of passive muscle? J. Muscle Res. Cell Motil. 1999, 20, 433–442. [Google Scholar] [CrossRef]
- McGill, S.; Hughson, R.; Parks, K. Lumbar Erector Spinae Oxygenation During Prolonged Contractions: Implications for Prolonged Work. Ergonomics 2000, 43, 486–493. [Google Scholar] [CrossRef]
- Campbell, K.; Lakie, M. A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle. J. Physiol. 1998, 510, 941–962. [Google Scholar] [CrossRef]
- Coelho, J.; Graciosa, M.; Medeiros, D.; Pacheco, S.; Costa, L.; Ries, L. Influence of Flexibility and Gender on the Posture of School Children. Rev. Paul. Pediatr. 2014, 32, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Sainz de Baranda, P.; Cejudo, A.; Moreno-Alcaraz, V.; Martinez-Romero, M.; Aparicio-Sarmiento, A.; Santonja, F. Sagittal spinal morphotype assessment in 8 to 15 years old Inline Hockey players. PeerJ 2020, 8, e8229. [Google Scholar] [CrossRef] [Green Version]
- Dreischarf, M.; Shirazi-Adl, A.; Arjmand, N. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies. J. Biomech. 2016, 49, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Le Huec, J.; Thompson, W.; Mohsinaly, Y.; Barrey, C.; Faundez, A. Sagittal balance of the spine. Eur. Spine J. 2019, 28, 1889–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzman, W.; Parimi, N.; Gladin, A.; Fan, B.; Wong, S.; Mergenthaler, J.; Lane, N. Reliability of sagittal vertical axis measurement and association with measures of age-related hyperkyphosis. J. Phys. Ther. Sci. 2018, 30, 1417–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, W.; Clothier, P.; Otago, L.; Bruce, L.; Liddell, D. Acute effects of static stretching on hip flexor and quadriceps flexibility, range of motion and foot speed in kicking a football. J. Sci. Med. Sport 2004, 7, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Cejudo, A.; Moreno-Alcaraz, V.J.; Izzo, R.; Santonja-Medina, F.; Sainz de Baranda, P. External and Total Hip Rotation Ranges of Motion Predispose to Low Back Pain in Elite Spanish Inline Hockey Players. Int. J. Environ. Res. Public Health 2020, 17, 4858. [Google Scholar] [CrossRef]
Variables | Total (n = 201) | Male (n = 103) | Female (n = 98) | p-Value | Hedges’ g | |||
---|---|---|---|---|---|---|---|---|
Age (Years) | 10.9 ± 0.7 | 10.9 ± 0.8 | 10.9 ± 0.7 | 0.811 | −0.000 (trivial) | |||
Stature (Centimetre) | 148.4 ± 7.3 | 148.1 ± 7.6 | 148.8 ± 7.1 | 0.480 | −0.094 (small) | |||
Weight Mass (kg) | 45.7 ± 11.6 | 44.5 ±11.2 | 46.9 ± 12.0 | −2.368 | −0.206 (small) | |||
BMI (kg/m2) | 20.5 ± 4.3 | 20.0 ± 4.1 | 21.0 ± 4.5 | 0.083 | −0.231 (small) | |||
Thoracic Curve (Degrees) | SSP * | 38.2 ± 11.9 | 41.9 ± 10.0 | 34.3 ± 12.5 | 0.000 | 0.670 (moderate) | ||
RSP | 37.4 ± 9.4 | 39.1 ± 9.4 | 35.6 ± 9.1 | 0.008 | 0.376 (small) | |||
MTFP | 54.4 ± 11.8 | 55.4 ± 11.4 | 53.3 ± 12.1 | 0.197 | 0.178 (trivial) | |||
Lumbar curve (Degrees) | SSP * | 10.0 ± 11.0 | 13.3 ± 10.7 | 6.6 ±10.2 | 0.000 | 0.638 (moderate) | ||
RSP * | −34.6 ± 10.1 | −31.7 ± 9.6 | −37.7 ± 9.7 | 0.000 | −0.619 (moderate) | |||
MTFP * | 25.0 ± 8.0 | 26.8 ± 7.5 | 23.1 ± 8.2 | 0.001 | 0.640 (moderate) | |||
RL | LL | RL | LL | |||||
ROM (Degrees) | ADF-KF | 36.9 ± 6.8 | 36.6± 7.4 | 35.8 ± 6.9 | 38.1 ± 7.2 | 37.2 ± 6.6 | 0.138 | −0.209 (small) |
HE | 14.1 ± 7.3 | 13.2 ± 7.5 | 14.0 ± 7.3 | 14.4 ± 7.4 | 14.8 ± 7.6 | 0.308 | −0.143 (trivial) | |
HF-KE * | 71.4 ± 9.9 | 68.7 ± 9.1 | 67.3 ± 9.1 | 75.6 ± 9.8 | 74.4 ± 9.7 | 0.000 | −0.749 (moderate) |
Males (n = 103) | Females (n = 98) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ankle Dorsiflexion with Knee Flexed Range of Motion (Degrees) | |||||||||||
Curve | Normal | N | Misalignment | N | p-Value | Normal | N | Misalignment | N | p-Value | |
Thoracic | SSP | 36.9 ± 6.4 | 56 | 35.3 ± 7.4 | 47 | 0.220 | 37.6 ± 6.8 | 36 | 37.6 ± 6.7 | 61 | 0.994 |
RSP | 36.2 ± 6.2 | 36 | 36.2 ± 7.3 | 67 | 0.973 | 37.7 ± 7.4 | 36 | 37.6 ± 6.3 | 61 | 0.920 | |
MTFP | 36.2 ± 7.6 | 40 | 36.1 ± 6.5 | 63 | 0.948 | 36.6 ± 6.0 | 47 | 38.5 ± 7.2 | 50 | 0.165 | |
Lumbar | SSP | 36.0 ± 6.7 | 62 | 36.4 ± 7.4 | 41 | 0.795 | 37.6 ± 6.9 | 31 | 37.6 ± 6.6 | 66 | 0.963 |
RSP | 37.4 ± 6.6 | 37 | 35.5 ± 7.1 | 66 | 0.167 | 39.8 ± 6.4 | 23 | 36.9 ± 6.6 | 74 | 0.076 | |
MTFP | 35.9 ± 7.6 | 64 | 36.7 ± 5.7 | 39 | 0.523 | 37.1 ± 6.3 | 65 | 38.8 ± 7.3 | 32 | 0.213 | |
Hip Extension Range of Motion (Degrees) | |||||||||||
Curve | Normal | N | Misalignment | N | p-Value | Normal | N | Misalignment | N | p-Value | |
Thoracic | SSP | 15.0 ± 7.1 | 56 | 11.8 ± 7.1 | 47 | 0.026 * | 14.5 ± 8.3 | 37 | 14.6 ± 6.6 | 61 | 0.993 |
RSP | 15.3 ± 8.2 | 36 | 12.2 ± 6.5 | 67 | 0.048 * | 14.9 ± 7.9 | 36 | 14.4 ± 6.9 | 62 | 0.728 | |
MTFP | 13.8 ± 6.8 | 40 | 13.4 ± 7.5 | 63 | 0.767 | 14.4 ± 7.2 | 48 | 14.8 ± 7.4 | 50 | 0.776 | |
Lumbar | SSP | 14.3 ± 7.5 | 62 | 12.4 ± 6.6 | 41 | 0.204 | 14.7 ± 6.7 | 31 | 14.5 ± 7.6 | 67 | 0.897 |
RSP | 14.3 ± 7.5 | 37 | 13.1 ± 7.1 | 66 | 0.439 | 18.3 ± 7.6 | 23 | 13.5 ± 6.8 | 75 | 0.005 * | |
MTFP | 13.1 ± 7.4 | 64 | 14.4 ± 6.8 | 39 | 0.339 | 13.8 ± 6.6 | 65 | 16.2 ± 8.4 | 33 | 0.121 | |
Hip Flexion with Knee Extended Range of Motion (Degrees) | |||||||||||
Curve | Normal | N | Misalignment | N | p-Value | Normal | N | Misalignment | N | p-Value | |
Thoracic | SSP | 69.1 ± 8.5 | 56 | 66.6 ± 9.3 | 47 | 0.150 | 75.6 ± 10.2 | 37 | 74.5 ± 9.1 | 61 | 0.606 |
RSP | 68.6 ± 8.7 | 36 | 67.6 ± 9.1 | 67 | 0.573 | 77.0 ± 10.4 | 36 | 73.7 ± 8.8 | 62 | 0.096 | |
MTFP | 71.4 ± 10.1 | 40 | 65.8 ± 7.4 | 63 | 0.003 * | 75.8 ± 9.2 | 48 | 74.1 ± 9.8 | 50 | 0.400 | |
Lumbar | SSP | 66.4 ± 8.1 | 62 | 77.2 ± 10.1 | 31 | 0.031 * | 70.3 ± 9.7 | 41 | 73.9 ± 9.1 | 67 | 0.098 |
RSP | 70.0 ± 8.7 | 37 | 66.8 ± 8.9 | 66 | 0.092 | 74.3 ± 7.3 | 23 | 75.1 ± 10.1 | 75 | 0.700 | |
MTFP | 66.0 ± 8.7 | 64 | 71.2 ± 8.4 | 39 | 0.004 * | 75.3 ± 9.7 | 65 | 74.3 ± 9.2 | 33 | 0.635 |
Predictors | Sample | Curve | Posture | Odds Ratio (OR) 1 | Standard Error | 95% CI | p-Value |
---|---|---|---|---|---|---|---|
HE | Male | Thoracic | SSP | 1.066 (Small) | 0.174 | 0.886 to 0.993 | 0.028 |
Male | Thoracic | RSP | 1.861 (Medium) | 0.207 | 0.885 to 0.998 | 0.003 | |
Female | Lumbar | RSP | 1.694 (Medium) | 0.210 | 0.954 to 1.088 | 0.012 | |
HF-KE | Male | Thoracic | MTFP | 1.095 (Small) | 0.033 | 0.856 to 0.973 | 0.005 |
Male | Lumbar | SSP | 1.094 (Small) | 0.032 | 1.028 to 1.165 | 0.005 | |
Male | Lumbar | MTFP | 1.089 (Small) | 0.025 | 1.021 to 1.126 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cejudo, A. Lower-Limb Range of Motion Predicts Sagittal Spinal Misalignments in Children: A Case-Control Study. Int. J. Environ. Res. Public Health 2022, 19, 5193. https://doi.org/10.3390/ijerph19095193
Cejudo A. Lower-Limb Range of Motion Predicts Sagittal Spinal Misalignments in Children: A Case-Control Study. International Journal of Environmental Research and Public Health. 2022; 19(9):5193. https://doi.org/10.3390/ijerph19095193
Chicago/Turabian StyleCejudo, Antonio. 2022. "Lower-Limb Range of Motion Predicts Sagittal Spinal Misalignments in Children: A Case-Control Study" International Journal of Environmental Research and Public Health 19, no. 9: 5193. https://doi.org/10.3390/ijerph19095193
APA StyleCejudo, A. (2022). Lower-Limb Range of Motion Predicts Sagittal Spinal Misalignments in Children: A Case-Control Study. International Journal of Environmental Research and Public Health, 19(9), 5193. https://doi.org/10.3390/ijerph19095193