Steam-Exploded Pruning Waste as Peat Substitute: Physiochemical Properties, Phytotoxicity and Their Implications for Plant Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Treatment of PW
2.2. Analysis of Physiochemical Properties
2.3. Analysis of Phytotoxicity
2.4. Plant Cultivation
2.5. Statistical Analysis
3. Results
3.1. Impact of SE on Physical Properties of PW
3.2. Impact of SE on Chemical Properties of PW
3.3. Impact of SE and Torrefaction on Phytotoxicity of PW
3.4. Impact of SE-Treated PW on Plant Cultivation
4. Discussion
4.1. Physical Properties
4.2. Chemical Properties
4.3. Phytotoxicity and Plant Cultivation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruda, N.S. (Ed.) Soilless culture systems and growing media in horticulture: An overview. In Advances in Horticultural Soilless Culture; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2021; pp. 1–20. [Google Scholar]
- Meng, X.; Liu, X. Peat Engineering; Chemical Industry Press, Co., Ltd.: Beijing, China, 2019; ISBN 978-7-122-32986-8. [Google Scholar]
- Nieto, A.; Gascó, G.; Paz-Ferreiro, J.; Fernández, J.M.; Plaza, C.; Méndez, A. The effect of pruning waste and biochar addition on brown peat based growing media properties. Sci. Hortic. 2016, 199, 142–148. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Sun, X. Improvement of two-stage composting of green waste by addition of eggshell waste and rice husks. Bioresour. Technol. 2021, 320, 124388. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ou, Y.L.; Lin, J.G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Langsdorf, A.; Volkmar, M.; Holtmann, D.; Ulber, R. Material utilization of green waste: A review on potential valorization methods. Bioresour. Bioprocess. 2021, 8, 19. [Google Scholar] [CrossRef]
- Belyaeva, O.N.; Haynes, R.J.; Sturm, E.C. Chemical, physical and microbial properties and microbial diversity in manufactured soils produced from co-composting green waste and biosolids. Waste Manag. 2012, 32, 2248–2257. [Google Scholar] [CrossRef]
- Arias, O.; Viña, S.; Uzal, M.; Soto, M. Composting of pig manure and forest green waste amended with industrial sludge. Sci. Total Environ. 2017, 586, 1228–1236. [Google Scholar] [CrossRef]
- Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. Co-composting of green waste mixed with unprocessed and processed food waste: Influence on the composting process and product quality. Waste Biomass Valoriz. 2019, 10, 63–74. [Google Scholar] [CrossRef]
- Raviv, M. SWOT analysis of the use of composts as growing media components. Acta Hortic. 2013, 1013, 191–202. [Google Scholar] [CrossRef]
- RAL Kompost Gütesicherung RAL-GZ 251 (Compost Quality Assurance RAL-GZ 251); RAL Deutsches Institut für Gütesicherung und Kennzeichnung E.V.: Saint Augustin, Germany, 2007.
- Tian, Y.; Sun, X.; Li, S.; Wang, H.; Wang, L.; Cao, J.; Zhang, L. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Sci. Hortic. 2012, 143, 15–18. [Google Scholar] [CrossRef]
- Neumaier, D.; Lohr, D.; Voßeler, R.; Girmann, S.; Kolbinger, S.; Meinken, E. Hydrochars as peat substitute in growing media for organically grown potted herbs. Acta Hortic. 2017, 1168, 377–386. [Google Scholar] [CrossRef]
- Bach, M.; Wilske, B.; Breuer, L. Current economic obstacles to biochar use in agriculture and climate change mitigation. Carbon Manag. 2016, 7, 183–190. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Q.; Rizwan, M.; Zhao, X.; Li, G. Steam explosion of crop straws improves the characteristics of biochar as a soil amendment. J. Integr. Agric. 2019, 18, 1486–1495. [Google Scholar] [CrossRef]
- Lynd, L.R.; Laser, M.S.; Bransby, D.; Dale, B.E.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; et al. How biotech can transform biofuels. Nat. Biotechnol. 2008, 26, 169–172. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E.; Gascoigne, J.A. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. A 1987, 321, 523–536. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Qi, Z.; Wang, H.; Yang, R.; Lin, W.; Li, J.; Zhou, W.; Ronsse, F. Superheated steam as carrier gas and the sole heat source to enhance biomass torrefaction. Bioresour. Technol. 2021, 331, 124955. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Han, P.; Yang, R.; Wang, H.; Lin, W.; Zhou, W.; Yan, Z.; Qi, Z. Fuel properties and combustion behaviors of fast torrefied pinewood in a heavily loaded fixed-bed reactor by superheated steam. Bioresour. Technol. 2021, 342, 125929. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresour. Technol. 2013, 131, 68–75. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; ASA-SSSA: Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- ASTM International ASTM-D5142-04: Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures; ASTM International: West Conshohocken, PA, USA, 2004.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Mehlich, A. Determination of P, Ca, Mg, K, Na, NH4. North Carolina Soil Test; Div. Publ. No. 1–53; Department of Agriculture: Raleigh, NC, USA, 1953. [Google Scholar]
- Zucconi, F.; Monaco, A.; Forte, M.; De Bertoldi, M. Phytotoxins during the stabilization of organic matter. In Composting of Agricultural and Other Wastes; Gasser, J.K.R., Ed.; Elsevier: London, UK, 1985; pp. 73–86. [Google Scholar]
- Wang, Y.; Gao, S.; He, X.; Li, Y.; Zhang, Y.; Chen, W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ 2020, 2020, e8354. [Google Scholar] [CrossRef]
- Deepa, B.; Abraham, E.; Cherian, B.M.; Bismarck, A.; Blaker, J.J.; Pothan, L.A.; Leao, A.L.; de Souza, S.F.; Kottaisamy, M. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour. Technol. 2011, 102, 1988–1997. [Google Scholar] [CrossRef]
- Li, J.; Henriksson, G.; Gellerstedt, G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 2007, 98, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.H.; Hsu, H.C.; Lu, K.M.; Lee, W.J.; Lin, T.C. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 2011, 36, 3012–3021. [Google Scholar] [CrossRef]
- Scherzinger, M.; Kulbeik, T.; Kaltschmitt, M. Autoclave pre-treatment of green wastes—Effects of temperature, residence time and rotation speed on fuel properties. Fuel 2020, 273, 117796. [Google Scholar] [CrossRef]
- Carlile, W.R.; Cattivello, C.; Zaccheo, P. Organic growing media: Constituents and properties. Vadose Zone J. 2015, 14, vzj2014.09.0125. [Google Scholar] [CrossRef] [Green Version]
- Caron, J.; Michel, J.-C. Understanding and optimizing the physical properties of growing media for soilless cultivation. In Advances in Horticultural Soilless Culture; Gruda, N.S., Ed.; Burleigh Dodds Science Publishing Limited: Sawston, UK, 2021; pp. 107–137. [Google Scholar]
- Cannavo, P.; Michel, J.C. Peat particle size effects on spatial root distribution, and changes on hydraulic and aeration properties. Sci. Hortic. 2013, 151, 11–21. [Google Scholar] [CrossRef]
- Glasser, W.G.; Wright, R.S. Steam-assisted biomass fractionation. II. Fractionation behavior of various biomass resources. Biomass Bioenergy 1998, 14, 219–235. [Google Scholar] [CrossRef]
- Monschein, M.; Nidetzky, B. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses. Bioresour. Technol. 2016, 200, 287–296. [Google Scholar] [CrossRef]
- Sui, W.; Xiao, Y.; Liu, R.; Wu, T.; Zhang, M. Steam explosion modification on tea waste to enhance bioactive compounds’ extractability and antioxidant capacity of extracts. J. Food Eng. 2019, 261, 51–59. [Google Scholar] [CrossRef]
- Fields, J.S.; Gruda, N.S. Developments in inorganic materials, synthetic organic materials and peat in soilless culture systems. In Advances in Horticultural Soilless Culture; Gruda, N.S., Ed.; Burleigh Dodds Science Publishing Limited: Sawston, UK, 2021; pp. 45–72. [Google Scholar]
- Bauer, A.; Lizasoain, J.; Theuretzbacher, F.; Agger, J.W.; Rincón, M.; Menardo, S.; Saylor, M.K.; Enguídanos, R.; Nielsen, P.J.; Potthast, A.; et al. Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresour. Technol. 2014, 166, 403–410. [Google Scholar] [CrossRef]
- Semwal, S.; Raj, T.; Kumar, R.; Christopher, J.; Gupta, R.P.; Puri, S.K.; Kumar, R.; Ramakumar, S.S.V. Process optimization and mass balance studies of pilot scale steam explosion pretreatment of rice straw for higher sugar release. Biomass Bioenergy 2019, 130, 105390. [Google Scholar] [CrossRef]
- Buranov, A.U.; Mazza, G. Lignin in straw of herbaceous crops. Ind. Crops Prod. 2008, 28, 237–259. [Google Scholar] [CrossRef]
- Rencoret, J.; Ralph, J.; Marques, G.; Gutiérrez, A.; Martínez, Á.T.; Del Río, J.C. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. J. Agric. Food Chem. 2013, 61, 2434–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taha, M.; Foda, M.; Shahsavari, E.; Aburto-Medina, A.; Adetutu, E.; Ball, A. Commercial feasibility of lignocellulose biodegradation: Possibilities and challenges. Curr. Opin. Biotechnol. 2016, 38, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Gruda, N.; Schnitzler, W.H. Influence of wood fiber substrates and N application rates on the growth of tomato transplants. Adv. Hortic. Sci. 1999, 13, 20–24. [Google Scholar]
- Li, Z.H.; Wang, Q.; Ruan, X.; De Pan, C.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Chen, J.; Sun, S.-N.; Sun, R.-C. Steam explosion. In Pretreatment of Biomass Processes and Technologies; Pandey, A., Negi, S., Binod, P., Larroche, C., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2015; pp. 83–96. [Google Scholar]
- Chen, W.-H. Torrefaction. In Pretreatment of Biomass Processes and Technologies; Pandey, A., Negi, S., Binod, P., Larroche, C., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2015; pp. 172–192. [Google Scholar]
Treatment 1 | BD 2 | TP | WHC | AFP |
---|---|---|---|---|
Temperature | ||||
°C | g cm−3 | ––––––––––% v/v–––––––––– | ||
160 | 0.26 b | 74.6 ab | 65.8 b | 8.8 ns |
175 | 0.27 b | 77.9 a | 71.8 a | 6.1 |
190 | 0.28 ab | 75.9 ab | 68.3 ab | 7.6 |
205 | 0.29 ab | 73.2 b | 67.8 ab | 5.4 |
220 | 0.31 a | 71.9 b | 66.6 ab | 5.4 |
Retention time | ||||
min | g cm−3 | ––––––––––% v/v–––––––––– | ||
1 | 0.27 B | 74.1 AB | 67.2 AB | 6.9 ns |
3 | 0.28 AB | 73.0 B | 66.5 B | 6.6 |
5 | 0.30 A | 76.9 A | 70.5 A | 6.5 |
Temperature 1 | Time | pH 2 | EC | CEC | Chemical Composition | Elemental Analysis | Acid Soluble Nutrient | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hemicellulose | Cellulose | Lignin | C | N | C/N | Na | Ca | P | |||||
°C | Min | mS cm−1 | cmolc kg−1 | –––––––––mg g−1––––––––– | ––––%–––– | –––––mg kg−1––––– | |||||||
160 | 1 | 5.99 a | 0.82 i | 9.9 ab | 222 a | 381 b | 313 a | 45.1 d | 0.33 ns | 137 a | 74 bc | 408 b | 575 ns |
3 | 5.79 b | 0.93 h | 11.4 a | 220 a | 360 b | 273 b | 45.2 d | 0.42 | 109 ab | 62 bc | 459 ab | 575 | |
5 | 5.58 c | 1.12 fg | 9.4 ab | 200 b | 397 ab | 305 ab | 45.4 d | 0.47 | 98 b | 111 a | 576 ab | 713 | |
175 | 1 | 5.83 b | 1.04 g | 7.8 b | 201 b | 346 b | 294 ab | 45.4 d | 0.45 | 102 b | 102 ab | 601 a | 627 |
3 | 5.69 bc | 1.11 fg | 6.0 b | 204 b | 416 a | 282 ab | 45.3 d | 0.33 | 137 ab | 80 b | 497 ab | 600 | |
5 | 5.35 d | 1.05 g | 8.8 ab | 177 c | 416 a | 288 ab | 46.4 c | 0.34 | 139 a | 48 c | 392 b | 548 | |
190 | 1 | 5.63 c | 1.16 f | 11.3 ab | 180 c | 365 b | 274 b | 46.1 cd | 0.42 | 110 ab | 98 ab | 571 ab | 679 |
3 | 5.36 d | 1.43 d | 10.4 ab | 156 d | 350 b | 234 c | 46.5 c | 0.43 | 108 ab | 83 ab | 547 ab | 714 | |
5 | 5.05 e | 1.41 d | 8.4 b | 142 e | 413 a | 280 b | 46.8 bc | 0.40 | 118 ab | 81 b | 414 b | 699 | |
205 | 1 | 5.27 de | 1.27 e | 6.7 b | 159 d | 398 ab | 263 bc | 45.7 cd | 0.38 | 120 ab | 80 b | 544 ab | 688 |
3 | 5.16 e | 1.79 ab | 6.9 b | 95 g | 388 ab | 279 b | 46.4 c | 0.45 | 104 ab | 103 ab | 551 ab | 713 | |
5 | 5.02 ef | 1.73 b | 11.1 ab | 83 h | 373 b | 266 b | 47.5 b | 0.45 | 107 ab | 95 ab | 528 ab | 750 | |
220 | 1 | 5.05 e | 1.35 de | 11.1 ab | 129 f | 366 b | 288 ab | 46.6 c | 0.39 | 120 ab | 59 bc | 422 b | 624 |
3 | 4.90 f | 1.54 c | 8.3 b | 70 i | 334 b | 273 b | 48.3 ab | 0.36 | 134 ab | 65 bc | 465 ab | 736 | |
5 | 4.77 f | 1.83 a | 7.3 b | 74 hi | 336 b | 256 bc | 48.8 a | 0.48 | 102 b | 88 ab | 471 ab | 784 |
Temperature | Time | Alkaloid 1 | Phenol |
---|---|---|---|
°C | Min | –––––––mg g−1––––––– | |
160 | 1 | 2.0 i | 11.1 e |
3 | 2.4 h | 11.1 e | |
5 | 4.4 e | 12.4 de | |
175 | 1 | 2.6 gh | 10.7 e |
3 | 5.7 b | 14.6 de | |
5 | 5.2 c | 14.6 de | |
190 | 1 | 4.7 d | 16.1 de |
3 | 2.3 h | 20.9 cd | |
5 | 3.9 f | 24.3 cd | |
205 | 1 | 5.5 bc | 18.4 d |
3 | 9.1 a | 25.9 c | |
5 | 4.7 d | 38.0 b | |
220 | 1 | 4.9 d | 23.6 cd |
3 | 4.6 de | 42.3 b | |
5 | 2.9 g | 51.5 a |
Steam Explosion | Torrefaction | GI 1 | Alkaloid | Phenol | Flavonoid | pH | EC | C | N | C/N |
---|---|---|---|---|---|---|---|---|---|---|
% | –––––––––––mg g−1––––––––––– | mS cm−1 | –––––––%––––––– | |||||||
Untreated | No | 4.3 c | 1.0 e | 10.2 d | 18.0 c | 6.58 a | 0.85 cd | 44.6 f | 0.28 c | 159 a |
Yes | 23.0 b | 0.8 f | 14.9 cd | 7.4 e | 6.42 b | 0.79 d | 48.8 c | 0.40 bc | 122 b | |
160 °C + 3 min | No | 16.2 b | 2.4 b | 11.1 d | 22.7 b | 5.79 c | 0.93 cd | 45.2 e | 0.42 b | 109 b |
Yes | 46.2 a | 1.9 c | 15.1 cd | 7.8 de | 6.50 ab | 0.83 cd | 49.9 b | 0.46 ab | 108 b | |
190 °C + 3 min | No | 6.5 c | 2.3 b | 20.9 c | 26.5 ab | 5.36 d | 1.43 b | 46.5 d | 0.43 b | 108 b |
Yes | 54.7 a | 2.9 a | 18.3 c | 9.1 de | 6.47 ab | 0.95 cd | 50.2 b | 0.43 b | 118 b | |
220 °C + 5 min | No | 0.7 c | 2.9 a | 51.5 a | 29.2 a | 4.77 e | 1.83 a | 48.8 c | 0.48 ab | 102 b |
Yes | 52.1 a | 1.6 d | 28.3 b | 11.8 d | 6.42 b | 0.98 c | 53.1 a | 0.57 a | 95 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Chen, X.; Zhang, D.; Wang, H.; Zhou, W.; Lin, W.; Qi, Z. Steam-Exploded Pruning Waste as Peat Substitute: Physiochemical Properties, Phytotoxicity and Their Implications for Plant Cultivation. Int. J. Environ. Res. Public Health 2022, 19, 5328. https://doi.org/10.3390/ijerph19095328
Yang R, Chen X, Zhang D, Wang H, Zhou W, Lin W, Qi Z. Steam-Exploded Pruning Waste as Peat Substitute: Physiochemical Properties, Phytotoxicity and Their Implications for Plant Cultivation. International Journal of Environmental Research and Public Health. 2022; 19(9):5328. https://doi.org/10.3390/ijerph19095328
Chicago/Turabian StyleYang, Rui, Xuejiao Chen, Dongdong Zhang, Hong Wang, Wanlai Zhou, Wei Lin, and Zhiyong Qi. 2022. "Steam-Exploded Pruning Waste as Peat Substitute: Physiochemical Properties, Phytotoxicity and Their Implications for Plant Cultivation" International Journal of Environmental Research and Public Health 19, no. 9: 5328. https://doi.org/10.3390/ijerph19095328
APA StyleYang, R., Chen, X., Zhang, D., Wang, H., Zhou, W., Lin, W., & Qi, Z. (2022). Steam-Exploded Pruning Waste as Peat Substitute: Physiochemical Properties, Phytotoxicity and Their Implications for Plant Cultivation. International Journal of Environmental Research and Public Health, 19(9), 5328. https://doi.org/10.3390/ijerph19095328