Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Srivastava, S. The Mitochondrial Basis of Aging and Age-Related Disorders. Genes 2017, 8, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, N.; Youle, R.J.; Finkel, T. The Mitochondrial Basis of Aging. Mol. Cell 2016, 61, 654–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Chen, X.; Gill, T.M.; Ma, C.; Crimmins, E.M.; Levine, M.E. Associations of genetics, behaviors, and life course circumstances with a novel aging and healthspan measure: Evidence from the Health and Retirement Study. PLoS Med. 2019, 16, e1002827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, H.; Choi, D.K. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway? Mediat. Inflamm. 2015, 2015, 584758. [Google Scholar] [CrossRef] [Green Version]
- Yeo, E.J. Hypoxia and aging. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef]
- Chen, P.S.; Chiu, W.T.; Hsu, P.L.; Lin, S.C.; Peng, I.C.; Wang, C.Y.; Tsai, S.J. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 2020, 27, 63. [Google Scholar] [CrossRef]
- Abe, H.; Semba, H.; Takeda, N. The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases. J. Atheroscler. Thromb. 2017, 24, 884–894. [Google Scholar] [CrossRef] [Green Version]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Verges, S.; Chacaroun, S.; Godin-Ribuot, D.; Baillieul, S. Hypoxic Conditioning as a New Therapeutic Modality. Front. Pediatr. 2015, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Millet, G.P.; Debevec, T.; Brocherie, F.; Malatesta, D.; Girard, O. Therapeutic Use of Exercising in Hypoxia: Promises and Limitations. Front. Physiol. 2016, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Gangwar, A.; Paul, S.; Ahmad, Y.; Bhargava, K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci. Rep. 2020, 10, 7899. [Google Scholar] [CrossRef] [PubMed]
- Kayser, B.; Verges, S. Hypoxia, energy balance and obesity: From pathophysiological mechanisms to new treatment strategies. Obes. Rev. 2013, 14, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Guner, I.; Uzun, D.; Yaman, M.; Genc, H.; Gelisgen, R.; Korkmaz, G.; Hallac, M.; Yelmen, N.; Sahin, G.; Karter, Y.; et al. The Effect of Chronic Long-Term Intermittent Hypobaric Hypoxia on Bone Mineral Density in Rats: Role of Nitric Oxide. Biol. Trace Elem. Res. 2013, 154, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Cardenosa, M.; Camacho-Cardenosa, A.; Timón, R.; Olcina, G.; Tomas-Carus, P.; Brazo-Sayavera, J. Can Hypoxic Conditioning Improve Bone Metabolism? A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1799. [Google Scholar] [CrossRef] [Green Version]
- Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. HIF transcription factors, inflammation, and immunity. Immunity 2014, 41, 518–528. [Google Scholar] [CrossRef] [Green Version]
- Musutova, M.; Weiszenstein, M.; Koc, M.; Polak, J. Intermittent Hypoxia Stimulates Lipolysis, but Inhibits Differentiation and De Novo Lipogenesis in 3T3-L1 Cells. Metab. Syndr. Relat. Disord. 2020, 18, 146–153. [Google Scholar] [CrossRef]
- Burtscher, J.; Mallet, R.T.; Burtscher, M.; Millet, G.P. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res. Rev. 2021, 68, 101343. [Google Scholar] [CrossRef]
- Shatilo, V.B.; Korkushko, O.V.; Ischuk, V.A.; Downey, H.F.; Serebrovskaya, T.V. Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt. Med. Biol. 2008, 9, 43–52. [Google Scholar] [CrossRef]
- Serebrovskaya, T.V.; Manukhina, E.B.; Smith, M.L.; Downey, H.F.; Mallet, R.T. Intermittent hypoxia: Cause of or therapy for systemic hypertension? Exp. Biol. Med. 2008, 233, 627–650. [Google Scholar] [CrossRef]
- Hobbins, L.; Hunter, S.; Gaoua, N.; Girard, O. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: A systematic review. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R251–R264. [Google Scholar] [CrossRef] [Green Version]
- Manukhina, E.B.; Downey, H.F.; Shi, X.; Mallet, R.T. Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Exp. Biol. Med. 2016, 241, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Schega, L.; Peter, B.; Törpel, A.; Mutschler, H.; Isermann, B.; Hamacher, D. Effects of intermittent hypoxia on cognitive performance and quality of life in elderly adults: A pilot study. Gerontology 2013, 59, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Coppel, J.; Hennis, P.; Gilbert-Kawai, E.; Grocott, M.P. The physiological effects of hypobaric hypoxia versus normobaric hypoxia: A systematic review of crossover trials. Extrem. Physiol. Med. 2015, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 2005, 45, 142–161. [Google Scholar]
- Quintero, P.; Milagro, F.I.; Campión, J.; Martínez, J.A. Impact of oxygen availability on body weight management. Med. Hypotheses 2010, 74, 901–907. [Google Scholar] [CrossRef]
- Dünnwald, T.; Gatterer, H.; Faulhaber, M.; Arvandi, M.; Schobersberger, W. Body Composition and Body Weight Changes at Different Altitude Levels: A Systematic Review and Meta-Analysis. Front. Physiol. 2019, 10, 430. [Google Scholar] [CrossRef]
- Kayser, B.; Verges, S. Hypoxia, energy balance, and obesity: An update. Obes. Rev. 2021, 22 (Suppl. 2), e13192. [Google Scholar] [CrossRef]
- Shukla, V.; Singh, S.N.; Vats, P.; Singh, V.K.; Singh, S.B.; Banerjee, P.K. Ghrelin and leptin levels of sojourners and acclimatized lowlanders at high altitude. Nutr. Neurosci. 2005, 8, 161–165. [Google Scholar] [CrossRef]
- Urdampilleta, A.; González-Muniesa, P.; Portillo, M.P.; Martínez, J.A. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J. Physiol. Biochem. 2012, 68, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Allsopp, G.L.; Hoffmann, S.M.; Feros, S.A.; Pasco, J.A.; Russell, A.P.; Wright, C.R. The Effect of Normobaric Hypoxia on Resistance Training Adaptations in Older Adults. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Jung, W.S.; Kim, S.W.; Kim, J.W.; Park, H.Y. Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia—A Narrative Review. Life 2021, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; You, X.; Zhang, L.; Zhang, C.; Zou, W. Mechanical regulation of bone remodeling. Bone Res. 2022, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Botero, J.P.; Shiguemoto, G.E.; Prestes, J.; Marin, C.T.; Do Prado, W.L.; Pontes, C.S.; Guerra, R.L.; Ferreia, F.C.; Baldissera, V.; Perez, S.E. Effects of long-term periodized resistance training on body composition, leptin, resistin and muscle strength in elderly post-menopausal women. J. Sports Med. Phys. Fit. 2013, 53, 289–294. [Google Scholar]
- Gómez-Cabello, A.; Ara, I.; González-Agüero, A.; Casajús, J.A.; Vicente-Rodríguez, G. Effects of training on bone mass in older adults: A systematic review. Sports Med. 2012, 42, 301–325. [Google Scholar] [CrossRef] [PubMed]
- Hamad, N.; Travis, S.P. Weight loss at high altitude: Pathophysiology and practical implications. Eur. J. Gastroenterol. Hepatol. 2006, 18, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Albert, C.; Nassar, B.; Adachi, J.; Cole, D.; Davison, K.; Dooley, K.C.; Don-Wauchope, A.; Douville, P.; Hanley, D.A.; et al. Bone turnover markers in the management of postmenopausal osteoporosis. Clin. Biochem. 2009, 42, 929–942. [Google Scholar] [CrossRef]
- Arnett, T.R.; Gibbons, D.C.; Utting, J.C.; Orriss, I.R.; Hoebertz, A.; Rosendaal, M.; Meghji, S. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J. Cell Physiol. 2003, 196, 2–8. [Google Scholar] [CrossRef]
- Camacho-Cardenosa, M.; Quesada-Gómez, J.M.; Camacho-Cardenosa, A.; Leal, A.; Dorado, G.; Torrecillas-Baena, B.; Casado-Díaz, A. Effects of normobaric cyclic hypoxia exposure on mesenchymal stem-cell differentiation-pilot study on bone parameters in elderly. World J. Stem Cells 2020, 12, 1667–1690. [Google Scholar] [CrossRef]
- Wu, C.; Rankin, E.; Castellini, L.; Fernandez-Alcudia, J.; LaGory, E.; Andersen, R.; Rhodes, S.D.; Wilson, T.L.; Mohammad, K.S.; Castillo, A.B.; et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. 2015, 29, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Muangritdech, N.; Hamlin, M.J.; Sawanyawisuth, K.; Prajumwongs, P.; Saengjan, W.; Wonnabussapawich, P.; Manimmanakorn, N.; Manimmanakorn, A. Hypoxic training improves blood pressure, nitric oxide and hypoxia-inducible factor-1 alpha in hypertensive patients. Eur. J. Appl. Physiol. 2020, 120, 1815–1826. [Google Scholar] [CrossRef]
- Vedam, H.; Phillips, C.L.; Wang, D.; Barnes, D.J.; Hedner, J.A.; Unger, G.; Grunstein, R.R. Short-term hypoxia reduces arterial stiffness in healthy men. Eur. J. Appl. Physiol. 2009, 105, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Afina, A.B.; Oleg, S.G.; Alexander, A.B.; Ines, D.; Yu, S.A.; Nikita, V.V.; Denis, S.T.; Daria, G.G.; Zhang, Y.; Chavdar, S.P.; et al. The Effects of Intermittent Hypoxic-Hyperoxic Exposures on Lipid Profile and Inflammation in Patients with Metabolic Syndrome. Front. Cardiovasc. Med. 2021, 8, 700826. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Bosco, N.; Bourdet-Sicard, R.; Capuron, L.; Delzenne, N.; Doré, J.; Franceschi, C.; Lehtinen, M.J.; Recker, T.; Salvioli, S.; et al. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res. Rev. 2017, 40, 95–119. [Google Scholar] [CrossRef] [PubMed]
- Imhof, A.; Fröhlich, M.; Loewel, H.; Helbecque, N.; Woodward, M.; Amouyel, P.; Lowe, G.D.; Koenig, W. Distributions of C-reactive protein measured by high-sensitivity assays in apparently healthy men and women from different populations in Europe. Clin. Chem. 2003, 49, 669–672. [Google Scholar] [CrossRef] [Green Version]
- Kiers, D.; Wielockx, B.; Peters, E.; van Eijk, L.T.; Gerretsen, J.; John, A.; Janssen, E.; Groeneveld, R.; Peters, M.; Damen, L.; et al. Short-Term Hypoxia Dampens Inflammation in vivo via Enhanced Adenosine Release and Adenosine 2B Receptor Stimulation. EBioMedicine 2018, 33, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Serebrovskaya, T.V.; Nikolsky, I.S.; Nikolska, V.V.; Mallet, R.T.; Ishchuk, V.A. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt. Med. Biol. 2011, 12, 243–252. [Google Scholar] [CrossRef]
- Navarrete-Opazo, A.; Mitchell, G.S. Therapeutic potential of intermittent hypoxia: A matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1181–R1197. [Google Scholar] [CrossRef] [Green Version]
Group | Sex | Years | Weight (kg) | Height (m) | Kcal/Day | Vit D (IU/Day) | Calcium (mg/Day) |
---|---|---|---|---|---|---|---|
Control (n = 19) | 8 (M) 11 (F) | 70.5 ± 4.0 | 66.1 ± 10.2 | 1.56 ± 0.09 | 1941.5 ± 306.1 | 354.3 ± 90.3 | 892.5 ± 36.0 |
Hypoxia (n = 19) | 7 (M) 12 (F) | 70.2 ± 3.1 | 77.4 ± 11.2 | 1.66 ± 0.08 | 2015.0 ± 101.8 | 349.5 ± 16.2 | 846.1 ± 162.6 |
Baseline (Mean ± SD) | 24 Weeks (Mean ± SD) | ∆ (%) | p | ES (η2) | ANOVA F (p Value) | |
---|---|---|---|---|---|---|
Weight (kg) | 1.93 (0.174) | |||||
Control | 66.1 ± 10.2 | 66.3 ± 10.2 | +0.3 | 0.582 | 0.014 | |
Hypoxia | 77.4 ± 11.2 | 76.8 ± 10.5 | +0.7 | 0.188 | 0.054 | |
BMI | 2.15 (0.152) | |||||
Control | 26.8 ± 2.6 | 26.9 ± 2.7 | +0.3 | 0.476 | 0.016 | |
Hypoxia | 27.9 ± 3.4 | 27.7 ± 3.07 | −0.7 | 0.199 | 0.051 | |
Lean mass (Kg) | 0.11 (0.741) | |||||
Control | 42.8 ± 10.1 | 43.1 ± 10.3 | +0.7 | 0.448 | 0.018 | |
Hypoxia | 47.1 ± 11.1 | 47.5 ± 11.1 | +0.8 | 0.289 | 0.035 | |
Fat mass (Kg) | 69.81 (0.001) + | |||||
Control | 25.3 ± 5.6 | 27.0 ± 5.9 | +6.7 | 0.001 * | 0.418 | |
Hypoxia | 30.5 ± 7.5 | 27.5 ± 7.1 | −9.8 | 0.001 * | 0.597 | |
BMC (Kg) | 1.98 (0.168) | |||||
Control | 2.36 ± 0.43 | 2.37 ± 0.45 | +0.4 | 0.300 | 0.033 | |
Hypoxia | 2.63 ± 0.45 | 2.62 ± 0.44 | −0.3 | 0.345 | 0.028 | |
BMD (g·cm−2) | 1.87 (0.181) | |||||
Control | 0.96 ± 0.14 | 0.97 ± 0.12 | +1.0 | 0.658 | 0.006 | |
Hypoxia | 1.00 ± 0.13 | 0.99 ± 0.12 | −1.0 | 0.168 | 0.058 | |
Resting HR (bpm) | 0.70 (0.409) | |||||
Control | 63.9 ± 9.7 | 64.4 ± 8.9 | +0.7 | 0.615 | 0.008 | |
Hypoxia | 64.5 ± 9.5 | 63.7 ± 10.2 | +1.2 | 0.509 | 0.014 | |
SBP (mmHg) | 1.37 (0.250) | |||||
Control | 128.0 ± 14.9 | 126.7 ± 17.5 | −1 | 0.671 | 0.006 | |
Hypoxia | 138.7 ± 14.9 | 132.1 ± 13.9 | −4.7 | 0.068 | 0.100 | |
DBP (mmHg) | 2.05 (0.162) | |||||
Control | 75.2 ± 9.2 | 75.0 ± 12.1 | −0.2 | 0.898 | 0.001 | |
Hypoxia | 74.5 ± 8.0 | 70.0 ± 9.4 | −6 | 0.057 | 0.109 |
Baseline (Mean ± SD) | 24 Weeks (Mean ± SD) | ∆ (%) | p | ES (η2) | ANOVA F (p Value) | |
---|---|---|---|---|---|---|
Glucose (mg/dL) | 0.86 (0.360) | |||||
Control | 99.6 ± 11.3 | 98.8 ± 10.2 | −0.8 | 0.607 | 0.008 | |
Hypoxia | 87.5 ± 12.0 | 84.3 ± 9.7 | −3.6 | 0.110 | 0.078 | |
Triglycerides (mg/dL) | 0.02 (0.875) | |||||
Control | 90.5 ± 42.7 | 92.7 ± 44.4 | +2.4 | 0.602 | 0.009 | |
Hypoxia | 94.5 ± 31.8 | 95.8 ± 35.2 | +1.3 | 0.816 | 0.002 | |
CHO (mg/dL) | 0.01 (0.907) | |||||
Control | 186 ± 21.2 | 183.0 ± 20.4 | −1.6 | 0.398 | 0.022 | |
Hypoxia | 176 ± 41.7 | 172.3 ± 37.4 | −2.1 | 0.391 | 0.023 | |
HDL-C (mg/dL) | 1.61 (0.213) | |||||
Control | 70.3 ± 13.4 | 67.0 ± 13.1 | −4.6 | 0.086 | 0.158 | |
Hypoxia | 66.8 ± 12.5 | 64.3 ± 11.6 | −3.7 | 0.109 | 0.098 | |
PINP (ng/mL) | 5.72 (0.023) + | |||||
Control | 67.5 ± 18.1 | 64.8 ± 19.9 | −3.9 | 0.612 | 0.008 | |
Hypoxia | 76.9 ± 22.2 | 93.5 ± 19.6 | +21.6 | 0.011 * | 0.185 | |
b-CTX (pg/mL) | 4.91 (0.034) + | |||||
Control | 106.6 ± 38.8 | 112.5 ± 33.7 | +5.5 | 0.313 | 0.032 | |
Hypoxia | 101.8 ± 26.0 | 87.7 ± 27.0 | −13.8 | 0.049 * | 0.114 | |
CRP (mg/L) | 4.48 (0.042) + | |||||
Control | 6.8 ± 1.4 | 6.7 ± 1.7 | −1.4 | 0.763 | 0.003 | |
Hypoxia | 6.1 ± 0.8 | 4.9 ± 1.4 | −19.6 | 0.005 * | 0.221 | |
VCAM-1 (ng/mL) | 1.53 (0.225) | |||||
Control | 485.9 ± 202.9 | 529.6 ± 214.4 | +8.9 | 0.115 | 0.076 | |
Hypoxia | 425.2 ± 124.2 | 416.9 ± 126.2 | −1.9 | 0.797 | 0.002 | |
IL-10 (pg/mL) | 0.70 (0.407) | |||||
Control | 1.7 ± 0.3 | 1.6 ± 0.4 | −5.8 | 0.115 | 0.078 | |
Hypoxia | 1.7 ± 0.4 | 1.7 ± 0.4 | 0 | 0.698 | 0.003 | |
IL-8 (pg/mL) | 0.41 (0.527) | |||||
Control | 2.2 ± 1.1 | 2.2 ± 1.0 | 0 | 0.947 | 0.001 | |
Hypoxia | 2.1 ± 0.7 | 2.2 ± 0.7 | +4.5 | 0.442 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timon, R.; González-Custodio, A.; Vasquez-Bonilla, A.; Olcina, G.; Leal, A. Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 5339. https://doi.org/10.3390/ijerph19095339
Timon R, González-Custodio A, Vasquez-Bonilla A, Olcina G, Leal A. Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(9):5339. https://doi.org/10.3390/ijerph19095339
Chicago/Turabian StyleTimon, Rafael, Adrián González-Custodio, Aldo Vasquez-Bonilla, Guillermo Olcina, and Alejo Leal. 2022. "Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults" International Journal of Environmental Research and Public Health 19, no. 9: 5339. https://doi.org/10.3390/ijerph19095339
APA StyleTimon, R., González-Custodio, A., Vasquez-Bonilla, A., Olcina, G., & Leal, A. (2022). Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults. International Journal of Environmental Research and Public Health, 19(9), 5339. https://doi.org/10.3390/ijerph19095339