Cone-Beam Computed Tomography: A New Tool on the Horizon for Forensic Dentistry
Abstract
:1. Introduction
2. Cone-Beam Computed Tomography
Radiographs in Forensic Dentistry
3. Age Estimation
4. Sex Determination
5. Implant Backtracking
6. Bite Mark Analysis
7. Determination of Facial Soft Tissue Thickness (FSTT) and Reconstructive Identification
8. Evaluation and Demonstration of Cranial Trauma and Projectile Injuries
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Available online: https://cafod.org.uk/content/download/51307/725712/version/1/COVID19%20Romero%20quotations%20activity.pdf (accessed on 16 October 2021).
- Gopal, S.K. Role of 3D cone beam computed tomography imaging in forensic dentistry: A review of literature. Indian Forensic Odontol. 2018, 11, 75–82. [Google Scholar] [CrossRef]
- Eckert, W.G.; Garland, N. The history of the forensic applications in radiology. Am. J. Forensic Med. Pathol. 1984, 5, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Chiam, S.L. A note on digital dental radiography in forensic odontology. J. Forensic Dent. Sci. 2014, 6 (Suppl. 2), 197–201. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.D. Computed tomography: Revolutionizing the practice of medicine for 40 years. Radiology 2014, 273, S45–S74. [Google Scholar] [CrossRef]
- Lauterbur, P.C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Clin. Orthop. Relat. Res. 1973, 242, 190–191. [Google Scholar] [CrossRef]
- Rocha Sdos, S.; Ramos, D.L.; Cavalcanti Mde, G. Applicability of 3D-CT facial reconstruction for forensic individual identification. Pesqui. Odontol. Bras. 2003, 17, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Govila, S.; Gundappa, M. Cone beam computed tomography—An overview. J. Conserv. Dent. 2007, 10, 53–58. [Google Scholar] [CrossRef]
- Venkatesh, E.; Elluru, S.V. Cone beam computed tomography: Basics and applications in dentistry. J. Istanb. Univ. Fac. Dent. 2017, 51, 102–121. [Google Scholar] [CrossRef]
- Asif, M.K.; Nambiar, P.; Ibrahim, N.; Al-Amery, S.M.; Khan, I.M. Three-dimensional image analysis of developing mandibular third molars apices for age estimation: A study using CBCT data enhanced with Mimics and 3-Matics software. Leg. Med. 2019, 39, 9–14. [Google Scholar] [CrossRef]
- Kumar, R.; Athota, A.; Rastogi, T.; Karumuri, S.K. Forensic radiology: An emerging tool in identification. J. Indian Acad. Oral. Med. Radiol. 2015, 27, 416–422. [Google Scholar] [CrossRef]
- Wood, R.E. Forensic aspects of maxillofacial radiology. Forensic Sci. Int. 2006, 159, 47–55. [Google Scholar] [CrossRef]
- Kvaal, S.I.; Kolltveit, K.M.; Thomsen, I.O.; Solheim, T. Age estimation of adults from dental radiographs. Forensic Sci. Int. 1995, 74, 175–185. [Google Scholar] [CrossRef]
- Jeddy, N.; Ravi, S.; Radhika, T. Current trends in forensic odontology. J. Forensic Dent. Sci. 2017, 9, 115–119. [Google Scholar] [CrossRef]
- Carvalho, S.P.M.; Silva, R.H.A.; Lopes, C., Jr.; Sales-Peres, A. Use of images for human identification in forensic dentistry. Radiol. Bras. 2009, 42, 125–130. [Google Scholar] [CrossRef]
- Tarani, S.; Kamakshi, S.S.; Naik, V.; Sodhi, A. Forensic radiology: An emerging science. J. Adv. Clin. Res. Insights 2017, 4, 59–63. [Google Scholar] [CrossRef]
- Eliasova, H.; Dostalova, T. 3D multislice and cone-beam computed tomography systems for dental identification. Prague Med. Rep. 2017, 118, 14–25. [Google Scholar] [CrossRef]
- Maspero, C.; Abate, A.; Bellincioni, F.; Cavagnetto, D.; Lanteri, V.; Costa, A.; Farronato, M. Comparison of a tridimensional cephalometric analysis performed on 3T-MRI compared with CBCT: A pilot study in adults. Prog. Orthod. 2019, 20, 40. [Google Scholar] [CrossRef]
- Brullmann, D.; Schulze, R.K. Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dentomaxillofac. Radiol. 2015, 44, 20140204. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Alessio, A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J. Cardiovasc. Comput. Tomogr. 2009, 3, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Gascho, D.; Tappero, C.; Zoelch, N.; Deininger-Czermak, E.; Richter, H.; Thali, M.J.; Schaerli, S. Synergy of CT and MRI in detecting trajectories of lodged bullets in decedents and potential hazards concerning the heating and movement of bullets during MRI. Forensic Sci. Med. Pathol. 2020, 16, 20–31. [Google Scholar] [CrossRef]
- Kauser, S.; Chatra, L.; Shenai, P. Dental and craniofacial imaging in forensics. J. Forensic Radiol. Imaging 2013, 1, 56–62. [Google Scholar] [CrossRef]
- Bodecker, C.F. A consideration of some of the changes in the teeth from young to old age. Dent. Cosm. 1925, 67, 543–549. [Google Scholar]
- Gustafson, G. Age determinations on teeth. J. Am. Dent. Assoc. 1950, 41, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, S.; Azmi, S.R.; Yashodha Devi, B.K.; Shwetha, V.; Pavan Kumar, T. CBCT–The newfangled in rorensic radiology. J. Dent. Orofac. Res. 2017, 13, 47–55. [Google Scholar]
- Yang, F.; Jacobs, R.; Willems, G. Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci. Int. 2006, 159 (Suppl. 1), S78–S83. [Google Scholar] [CrossRef]
- Jagannathan, N.; Neelakasntan, P.; Thiruvengadam, C.; Ramani, P.; Premkumar, P.; Natesan, A.; Herald, J.S.; Luder, H.U. Age estimation in an Indian population using pulp/tooth volume ratio of mandibular canines obtained from cone beam computed tomography. J. Forensic Odontostomatol. 2011, 29, 1–6. [Google Scholar]
- Biuki, N.; Razi, T.; Faramarzi, M. Relationship between pulp-tooth volume ratios and chronological age in different anterior teeth on CBCT. J. Clin. Exp. Dent. 2017, 9, e688–e693. [Google Scholar] [CrossRef] [Green Version]
- Kazmi, S.; Manica, S.; Revie, G.; Shepherd, S.; Hector, M. Age estimation using canine pulp volumes in adults: A CBCT image analysis. Int. J. Leg. Med. 2019, 133, 1967–1976. [Google Scholar] [CrossRef] [Green Version]
- Odzhakov, F.; Apostolov, A. Dental age estimation–Literature review. J. Transl. Sci. 2019, 6, 1–5. [Google Scholar] [CrossRef]
- Harris, M.J.; Nortje, C.J. The mesial root of the third mandibular molar. A possible indicator of age. J. Forensic Odontostomatol. 1984, 2, 39–43. [Google Scholar]
- Van Heerden, P.J. The Mesial Root of the Third Mandibular Molar as a Possible Indicator of Age, Diploma Dissertation. Forensic Odontology, London Hospital Medical College, London, UK, 1985.
- Iyyer, B.S.; Bhalaji, S.I. Orthodontics, the Art and Science, 3rd ed.; Arya (Medi) Publishing House: New Delhi, India, 2006; pp. 21–35. [Google Scholar]
- Sinanoglu, A.; Demirturk, H.; Noujeim, M. Age estimation by an analysis of spheno-occipital synchondrosis using cone-beam computed tomography. Leg. Med. 2016, 18, 13–19. [Google Scholar] [CrossRef]
- Hamilton, V.E. Adulthood in Law and Culture; Faculty Publications; William & Mary Law School: Williamsburg, VA, USA, 1824; Available online: https://scholarship.law.wm.edu/facpubs/1824 (accessed on 11 November 2021).
- Sobh, Z.K.; Mohamed, A.S. A computed tomographic analysis of spheno-occipital synchondrosis ossification for age estimation in a sample of Egyptians. Am. J. Forensic Med. Pathol. 2020, 42, 235–242. [Google Scholar] [CrossRef]
- Sharma, A.; Kumbhare, S.P.; Kalaskar, A.R.; Motghare, P.; Gondivkar, S.; Upmanyu, A. Age estimation in an Indian subpopulation by cone-beam computed tomographic analysis of spheno-occipital synchondrosis fusion. Forensic Sci. Int. Rep. 2020, 2, 100085. [Google Scholar] [CrossRef]
- Kharoshah, M.A.A.; Almadani, O.; Ghaleb, S.S.; Zaki, M.K.; Fattah, Y.A.A. Sexual dimorphism of the mandible in a modern Egyptian population. J. Forensic Leg. Med. 2010, 17, 213–215. [Google Scholar] [CrossRef]
- Sahithi, D.; Reddy, S.; Divya Teja, D.V.; Koneru, J.; Sai Praveen, K.N.; Sruthi, R. Reveal the concealed—Morphological variations of the coronoid process, condyle and sigmoid notch in personal identification. Egypt. J. Forensic Sci. 2016, 6, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Gopal, S.K.; Kshatri, J.K.S.; Kumar, M.P. Sex determination with mandibular ramus—A retrospective CBCT study. Int. J. Inf. Res. Rev. 2016, 3, 2328–2329. [Google Scholar]
- Okkesim, A.; Sezen Erhamza, T. Assessment of mandibular ramus for sex determination: Retrospective study. J. Oral Biol. Craniofac. Res. 2020, 10, 569–572. [Google Scholar] [CrossRef]
- Scheuer, L.; Black, S.M. The Juvenile Skeleton; Elsevier Academic Press: London, UK, 2004. [Google Scholar]
- Teixeria, W.R. Sex identification utilizing the size of foramen magnum. Am. J. Forensic Med. Pathol 1982, 3, 203–206. [Google Scholar] [CrossRef]
- Gunay, Y.; Altinkok, M. The value of the size of foramen magnum in sex determination. J. Clin. Forensic Med. 2000, 7, 147–149. [Google Scholar] [CrossRef]
- Tambawala, S.S.; Karjodkar, F.R.; Sansare, K.; Prakash, N.; Dora, A.C. Sexual dimorphism of foramen magnum using Cone Beam Computed Tomography. J. Forensic Leg. Med. 2016, 44, 29–34. [Google Scholar] [CrossRef]
- Urooge, A.; Patil, B.A. Sexual dimorphism of maxillary sinus: A morphometric analysis using cone beam computed tomography. J. Clin. Diagn. Res. 2017, 11, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Culbert, W.L.; Law, F.M. Identification by comparison of roentgenograms of nasal accessory sinuses and mastoid processes. J. Am. Med. Assoc. 1927, 88, 1634–1635. [Google Scholar] [CrossRef]
- Wanzeler, A.M.V.; Alves-Junior, S.M.; Ayres, L.; da Costa Prestes, M.C.; Gomes, J.T.; Tuji, F.M. Sex estimation using paranasal sinus discriminant analysis: A new approach via cone beam computerized tomography volume analysis. Int. J. Legal Med. 2019, 133, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.; Karjodkar, F.R.; Sontakke, S.; Sansare, K.; Salvi, R. Uniqueness of radiographic patterns of the frontal sinus for personal identification. Imaging Sci. Dent. 2012, 42, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owsley, D.W. Identification of the fragmentary, burned remains of two U.S. journalists seven years after their disappearance in Guatemala. J. Forensic Sci. 1993, 38, 1372–1782. [Google Scholar] [CrossRef]
- Saraswathi, G.K.; Prakash Vijayan, B. Frontal sinus and nasal septum patterns in personal identification in forensics. Int. J. Oral Health Med. Res. 2016, 2, 2395–7387. [Google Scholar]
- Benghiac, A.G.; Thiel, B.A.; Haba, D. Reliability of the frontal sinus index for sex determination using CBCT. Rom. J. Leg. Med. 2015, 23, 275–278. [Google Scholar] [CrossRef]
- Choi, I.G.G.; Duailibi-Neto, E.F.; Beaini, T.L.; da Silva, R.L.B.; Chilvarquer, I. The frontal sinus cavity exhibits sexual dimorphism in 3D cone-beam CT images and can be used for sex determination. J. Forensic Sci. 2018, 63, 692–698. [Google Scholar] [CrossRef]
- Tambawala, S.S.; Karjodkar, F.R.; Sansare, K.; Prakash, N. Sexual dimorphism of the maxillary sinus using cone beam computed tomography. Egypt. J. Forensic Sci. 2016, 6, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Paknahad, M.; Shahidi, S.; Zarei, Z. Sexual dimorphism of maxillary sinus dimensions using cone-beam computed tomography. J. Forensic Sci. 2017, 62, 395–398. [Google Scholar] [CrossRef]
- Farhadian, M.; Salemi, F.; Shokri, A.; Safi, Y.; Rahimpanah, S. Comparison of data mining algorithms for sex determination based on mastoid process measurements using cone-beam computed tomography. Imaging Sci. Dent. 2020, 50, 323–330. [Google Scholar] [CrossRef]
- Amin, W.; Saleh, M.W.; Othman, D.; Salhab, D.; Thunaibat, H. Osteometric assessment of the mastoids for gender determination in Jordanians by discriminant function analysis. Am. J. Med. Biol. Res. 2015, 3, 117–123. [Google Scholar]
- Manhaes-Caldas, D.; Oliveira, M.L.; Groppo, F.C.; Haiter-Neto, F. Volumetric assessment of the dental crown for sex estimation by means of cone-beam computed tomography. Forensic Sci. Int. 2019, 303, 109920. [Google Scholar] [CrossRef]
- Da Costa, E.D.; Peyneau, P.D.; Roque-Torres, G.D.; Freitas, D.Q.; Ramírez-Sotelo, L.R.; Ambrosano, G.M.B.; Verner, F.S. The relationship of articular eminence and mandibular fossa morphology to facial profile and gender determined by cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 660–666. [Google Scholar] [CrossRef]
- Mowafey, B.; Van de Casteele, E.; Youssef, J.M.; Zaher, A.R.; Omar, H.; Politis, C.; Jacobs, R. Can mandibular lingual canals be used as a forensic fingerprint? J. Forensic Odontostomatol. 2015, 33, 26–35. [Google Scholar]
- Rhee, C.-H.; Shin, S.M.; Choi, Y.-S.; Yamaguchi, T.; Maki, K.; Kim, Y.-I.; Kim, S.-S.; Park, S.-B.; Son, W.-S. Application of statistical shape analysis for the estimation of bone and forensic age using the shapes of the 2nd, 3rd, and 4th cervical vertebrae in a young Japanese population. Forensic Sci. Int. 2015, 257, 513.e1–513.e9. [Google Scholar] [CrossRef]
- Gopal, S.K.; Vardhan, H.B.G.; Kumar, N. Implant backtracking—A valuable tool in forensic identification—An advanced radiological CBCT study. Asian J. Sci. Technol. 2017, 8, 4787–4789. [Google Scholar]
- Wu, Y.; Chen, X.; Shen, Y.; Yu, J.; Tang, Y.; Zhang, Y.; Zhu, L.; Xu, Y. Effectiveness assessment of 3D cone beam CT used in human bite marks identification. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2013, 30, 157–161, 190. (In Chinese) [Google Scholar]
- Marques, J.; Musse, J.; Caetano, C.; Corte-Real, F.; Corte-Real, A.T. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)-3D reconstruction. J. Forensic Odontostomatol. 2013, 31, 1–7. [Google Scholar]
- Meundi, M.A.; David, C.M. Application of cone beam computed tomography in facial soft tissue thickness measurements for craniofacial reconstruction. J. Oral Maxillofac. Pathol. 2019, 23, 114–121. [Google Scholar]
- Verze, L. History of facial reconstruction. Acta Biomed. 2009, 80, 5–12. [Google Scholar] [PubMed]
- Farman, A.G.; Scarfe, W.C. Development of imaging selection criteria and procedures should precede cephalometric assessment with cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Fourie, Z.; Damstra, J.; Gerrits, P.O.; Ren, Y. Accuracy and reliability of facial soft tissue depth measurements using cone beam computer tomography. Forensic Sci. Int. 2010, 199, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Vidhya, A.; Doggalli, N.; Patil, K.; Narayan, K.; Thiruselvakumar, D.; Abirami, A. Virtual autopsy: An imaging technological integration in forensic odontology. Int. J. Forensic Odontol. 2019, 4, 2–6. [Google Scholar] [CrossRef]
- Stuehmer, C.; Blum, K.S.; Kokemueller, H.; Tavassol, F.; Bormann, K.H.; Gellrich, N.-C.; Rücker, M. Influence of different types of guns, projectiles, and propellants on patterns of injury to the viscerocranium. J. Oral Maxillofac. Surg. 2009, 67, 775–781. [Google Scholar] [CrossRef]
- Von See, C.; Bormann, K.H.; Schumann, P.; Goetz, F.; Gellrich, N.C.; Rucker, M. Forensic imaging of projectiles using cone-beam computed tomography. Forensic Sci. Int. 2009, 190, 38–41. [Google Scholar] [CrossRef]
- Sarment, D.P.; Christensen, A.M. The use of cone beam computed tomography in forensic radiology. J. Forensic Radiol. Imaging 2014, 2, 173–181. [Google Scholar] [CrossRef]
- Jain, S.; Choudhary, K.; Nagi, R.; Shukla, S.; Kaur, N.; Grover, D. New evolution of cone-beam computed tomography in dentistry: Combining digital technologies. Imaging Sci. Dent. 2019, 49, 179–190. [Google Scholar] [CrossRef]
Radiological Method | Forensic Odontology and Anthropology | Advantages | Disadvantages | Radiation Dose | Spatial Resolution |
---|---|---|---|---|---|
Cone-beam computed tomography | Generated panoramic image | Precise, single tooth evaluation detailed panoramic image skull volumes | Metal alloy artifacts | 19–368 µSv 20 s scan 68 µS | Spatial resolution in a “best possible” experimental scenario of <3 lp mm−1 with a median value of approximately 2 lp mm−1 |
Multislice computed tomography–medical CT | Skeletal findings examination | Digital autopsy | 3D virtual models | lower jaw 1320 µSv upper jaw 1400 µSv bimaxillary 2100 µSv | 0.5–0.625 mm in the z-axis, and approximately 0.5 mm in the x- to y-axes |
Magnetic Resonance Imaging | Valuable supplement to postmortem CT for the detection of wound channel and soft tissue injuries | Evaluation of soft tissue injuries | Metal alloy artifacts | -- | 1–2 mm for most sequences |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issrani, R.; Prabhu, N.; Sghaireen, M.G.; Ganji, K.K.; Alqahtani, A.M.A.; ALJamaan, T.S.; Alanazi, A.M.; Alanazi, S.H.; Alam, M.K.; Munisekhar, M.S. Cone-Beam Computed Tomography: A New Tool on the Horizon for Forensic Dentistry. Int. J. Environ. Res. Public Health 2022, 19, 5352. https://doi.org/10.3390/ijerph19095352
Issrani R, Prabhu N, Sghaireen MG, Ganji KK, Alqahtani AMA, ALJamaan TS, Alanazi AM, Alanazi SH, Alam MK, Munisekhar MS. Cone-Beam Computed Tomography: A New Tool on the Horizon for Forensic Dentistry. International Journal of Environmental Research and Public Health. 2022; 19(9):5352. https://doi.org/10.3390/ijerph19095352
Chicago/Turabian StyleIssrani, Rakhi, Namdeo Prabhu, Mohammed Ghazi Sghaireen, Kiran Kumar Ganji, Ali Mosfer A. Alqahtani, Tamer Saleh ALJamaan, Amal Mohammed Alanazi, Sarah Hatab Alanazi, Mohammad Khursheed Alam, and Manay Srinivas Munisekhar. 2022. "Cone-Beam Computed Tomography: A New Tool on the Horizon for Forensic Dentistry" International Journal of Environmental Research and Public Health 19, no. 9: 5352. https://doi.org/10.3390/ijerph19095352
APA StyleIssrani, R., Prabhu, N., Sghaireen, M. G., Ganji, K. K., Alqahtani, A. M. A., ALJamaan, T. S., Alanazi, A. M., Alanazi, S. H., Alam, M. K., & Munisekhar, M. S. (2022). Cone-Beam Computed Tomography: A New Tool on the Horizon for Forensic Dentistry. International Journal of Environmental Research and Public Health, 19(9), 5352. https://doi.org/10.3390/ijerph19095352