Short-Term Consumption of Hydrogen-Rich Water Enhances Power Performance and Heart Rate Recovery in Dragon Boat Athletes: Evidence from a Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Hydrogen-Rich Water
2.3. Protocol
2.4. Rowing Dynamometer 30 s Rowing Test
2.5. Heart Rate Monitoring
2.6. Statistical Analysis
3. Results
3.1. Rowing Dynamometer 30 s Rowing Test Results
3.2. Heart Rate Monitoring Results
3.2.1. Maximum Heart Rate Monitoring Results during Rowing Test
3.2.2. Heart Rate Recovery Monitoring Results after Rowing Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress: Relationship with exercise and training. Sports Med. 2006, 36, 327. [Google Scholar] [CrossRef] [PubMed]
- Takuji, K.; Isao, M. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants 2018, 7, 119. [Google Scholar]
- Robergs, R.A.; Ghiasvand, F.; Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2004, 287, R502–R516. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.B. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med. Sci. Sports Exerc. 2001, 33, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, J.I.; Qayyum, M.S. Oxygen free radicals and excitation-contraction coupling. Antioxid. Redox Signal. 1999, 2, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Kentt, G.; Hassmén, P. Overtraining and recovery. A conceptual model. Sports Med. 1998, 26, 1–16. [Google Scholar] [CrossRef]
- Wright, C.J.; Arnold, B.L. Fatigue’s Effect on Eversion Force Sense in Individuals with and without Functional Ankle Instability. J. Sport Rehabil. 2012, 21, 127–136. [Google Scholar] [CrossRef]
- Scanlan, A.T.; Fox, J.L.; Borges, N.R.; Delextrat, A.; Spiteri, T.; Dalbo, V.J.; Stanton, R.; Kean, C.O. Decrements in knee extensor and flexor strength are associated with performance fatigue during simulated basketball game-play in adolescent, male players. J. Sports Sci. 2018, 36, 852–860. [Google Scholar] [CrossRef]
- Fisher-Wellman, K.; Bloomer, R.J. Acute exercise and oxidative stress: A 30 year history. Dyn. Med. 2009, 8, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Peake, J.; Nosaka, K.; Suzuki, K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc. Immunol. Rev. 2005, 11, 64–85. [Google Scholar]
- Carr, D.; Hopkins, W.G.; Gore, C.J. Effects of Acute Alkalosis and Acidosis on Performance. Sports Med. 2011, 41, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Palazzetti, S.; Rousseau, A.S.; Richard, M.J.; Favier, A.; Margaritis, I. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br. J. Nutr. 2004, 91, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margaritis, I.; Palazzetti, S.; Rousseau, A.S.; Richard, M.J.; Favier, A. Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J. Am. Coll. Nutr. 2003, 22, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.M.; Gehrig, S.M.; Frese, S.; Wagner, C.A.; Boutellier, U.; Toigo, M. Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men. J. Int. Soc. Sports Nutr. 2013, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Niess, A.M.; Simon, P. Response and adaptation of skeletal muscle to exercise—The role of reactive oxygen species. Front Biosci. 2007, 12, 4826–4838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merry, T.L.; Ristow, M. Mitohormesis in exercise training. Free. Radic. Biol. Med. 2016, 98, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcnaughton, L.; Backx, K.; Palmer, G.; Strange, N. Effects of chronic bicarbonate ingestion on the performance of high-intensity work. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 333–336. [Google Scholar] [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.I.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688. [Google Scholar] [CrossRef]
- Rehnitz, C. Molecular Hydrogen in Sports Medicine: New Therapeutic Perspectives. Int. J. Sports Med. 2014, 36, 273–279. [Google Scholar]
- Ohta, S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014, 144, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dixon, B.J.; Tang, J.; Zhang, J.H. The evolution of molecular hydrogen: A noteworthy potential therapy with clinical significance. Med. Gas Res. 2013, 3, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, K.; Nakao, A.; Adachi, T.; Matsui, Y.; Miyakawa, S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med. Gas Res. 2012, 2, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botek, M.; Krejčí, J.; McKune, A.J.; Sládečková, B.; Naumovski, N. Hydrogen rich water improved ventilatory, perceptual and lactate responses to exercise. Int. J. Sports Med. 2019, 40, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Drid, P.; Trivic, T.; Casals, C.; Trivic, S.; Stojanovic, M.; Ostojic, S.M. Is molecular hydrogen beneficial to enhance post-exercise recovery in female athletes? Sci. Sports 2016, 11, 207–213. [Google Scholar] [CrossRef]
- Shin, D.S.; Jung, S.H.; Hong, E.Y.; Shin, Y.H.; Ro, J.Y. Removal Effect of Hydrogen Water Drinking on Exercise-induced Production of Reactive Oxygen Species in Adult Men and Women. Exerc. Sci. 2018, 27, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Ooi, C.H.; Ng, S.K.; Omar, E.A. Acute ingestion of hydrogen-rich water does not improve incremental treadmill running performance in endurance-trained athletes. Appl. Physiol. Nutr. Metab. 2019, 45, 111. [Google Scholar] [CrossRef]
- Laursen, P.B. Free radicals and antioxidant vitamins: Optimizing the health of the athlete. Strength Cond. J. 2001, 23, 17–25. [Google Scholar] [CrossRef]
- Smith, H.J. Effect of Vitamin C and E Supplementation on Biochemical and Ultrastructural Indices of Muscle Damage after a 21 km Run. Int. J. Sports Med. 2001, 23, 10–15. [Google Scholar]
- Lamb, G.D.; Stephenson, D.G. Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J. Physiol. 1994, 478, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.K.; Lennon, S.L. Analysis of cellular responses to free radicals: Focus on exercise and skeletal muscle. Proc. Nutr. Soc. 1999, 58, 1025. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.B.; Haack, K.E.; Franchek, K.M.; Valberg, P.A.; Kobzik, L.; West, M.S. Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J. Appl. Physiol. 1992, 73, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Coombes, J.S.; Rowell, B.; Dodd, S.L.; Demirel, H.A.; Naito, H.; Shanely, A.R.; Powers, S.K. Effects of vitamin E deficiency on fatigue and muscle contractile properties. Eur. J. Appl. Physiol. 2002, 87, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, A.H. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can. J. Appl. Physiol. 1999, 24, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K.; Kolosova, I.; Hnninen, O.; Orlov, S.N. Inward potassium transport systems in skeletal muscle derived cells are highly sensitive to oxidant exposure. Free Radic. Biol. Med. 1995, 18, 795–800. [Google Scholar] [CrossRef]
Characteristics | Grouped by Gender | Total | |||||
---|---|---|---|---|---|---|---|
Gender | HRW | PW | p-Value | HRW (n = 9) | PW (n = 9) | p-Value | |
Age (years) | M (n = 6) | 22.67 ± 0.82 | 22.67 ± 0.52 | 1.000 | 23.22 ± 1.09 | 22.67 ± 0.87 | 0.249 |
F (n = 3) | 24.33 ± 0.58 | 22.67 ± 1.53 | 0.152 | ||||
Height (cm) | M (n = 6) | 174.17 ± 4.22 | 173.00 ± 6.07 | 0.707 | 170.11 ± 7.27 | 168.67 ± 8.84 | 0.710 |
F (n = 3) | 162.00 ± 4.36 | 160.00 ± 7.21 | 0.702 | ||||
Body weight (kg) | M (n = 6) | 66.50 ± 6.09 | 67.17 ± 7.94 | 0.874 | 64.89 ± 6.09 | 61.94 ± 11.56 | 0.509 |
F (n = 3) | 61.67 ± 5.69 | 51.50 ± 11.46 | 0.241 | ||||
MP (w) | M (n = 6) | 462.00 ± 42.21 | 487.50 ± 144.85 | 0.688 | 401.00 ± 111.38 | 390.22 ± 189.97 | 0.885 |
F (n = 3) | 279.00 ± 108.06 | 195.67 ± 82.00 | 0.347 | ||||
AP (w) | M (n = 6) | 351.83 ± 31.00 | 365.00 ± 127.53 | 0.811 | 300.89 ± 91.08 | 290.78 ± 153.25 | 0.867 |
F (n = 3) | 199.00 ± 86.13 | 142.33 ± 60.93 | 0.405 | ||||
30 s rowing distance (m) | M (n = 6) | 179.17 ± 5.34 | 178.83 ± 19.25 | 0.968 | 172.22 ± 18.36 | 163.44 ± 29.33 | 0.458 |
F (n = 3) | 158.33 ± 29.02 | 132.67 ± 19.55 | 0.273 | ||||
Predicted time of rowing 500 m (s) | M (n = 6) | 99.68 ± 3.12 | 100.97 ± 8.26 | 0.729 | 107.68 ± 14.92 | 113.42 ± 22.18 | 0.528 |
F (n = 3) | 123.67 ± 17.04 | 138.33 ± 20.03 | 0.389 | ||||
MHR (b/min) | M (n = 6) | 178.17 ± 12.64 | 169.83 ± 13.67 | 0.299 | 176.89 ± 11.36 | 162.78 ± 17.22 | 0.057 |
F (n = 3) | 174.33 ± 10.12 | 148.67 ± 16.44 | 0.083 | ||||
RHR (b/min) | M (n = 6) | 70.50 ± 6.22 | 72.50 ± 9.38 | 0.673 | 71.33 ± 11.20 | 74.33 ± 8.85 | 0.537 |
F (n = 3) | 73.00 ± 19.97 | 78.00 ± 7.94 | 0.708 | ||||
HRPC immediately after the test (%) | M (n = 6) | 147.57 ± 40.24 | 123.68 ± 42.52 | 0.341 | 142.73 ± 39.90 | 114.47 ± 36.51 | 0.137 |
F (n = 3) | 133.03 ± 45.91 | 96.07 ± 7.01 | 0.240 | ||||
HRPC after 1 min of recovery (%) | M (n = 6) | 88.33 ± 34.13 | 72.08 ± 32.69 | 0.419 | 85.59 ± 32.48 | 56.88 ± 34.65 | 0.089 |
F (n = 3) | 80.10 ± 35.22 | 26.48 ± 7.34 | 0.061 | ||||
HRPC after 2 min of recovery (%) | M (n = 6) | 73.65 ± 32.21 | 63.60 ± 30.64 | 0.592 | 66.26 ± 30.15 | 50.21 ± 32.52 | 0.293 |
F (n = 3) | 51.50 ± 23.47 | 23.42 ± 16.41 | 0.165 | ||||
HRPC after 3 min of recovery (%) | M (n = 6) | 67.06 ± 31.17 | 56.77 ± 24.63 | 0.540 | 64.01 ± 26.92 | 46.66 ± 25.05 | 0.176 |
F (n = 3) | 57.92 ± 19.65 | 26.45 ± 8.63 | 0.064 |
Index | Group | Pre | Post | Interaction p-Value |
---|---|---|---|---|
MP (w) | HRW | 401.00 ± 111.38 | 442.67 ± 112.47 * | 0.090 |
PW | 390.22 ± 189.97 | 390.11 ± 155.14 | ||
AP (w) | HRW | 300.89 ± 91.08 | 321.33 ± 77.47 * | 0.461 |
PW | 290.78 ± 153.25 | 296.22 ± 123.52 | ||
30 s rowing distance (m) | HRW | 172.22 ± 18.36 | 177.00 ± 14.54 | 0.573 |
PW | 163.44 ± 29.33 | 172.00 ± 28.28 | ||
Predicted time of rowing 500 m (s) | HRW | 107.68 ± 14.92 | 104.39 ± 10.21 | 0.609 |
PW | 113.42 ± 22.18 | 111.31 ± 19.56 |
Group | Pre (b/min) | Post (b/min) | Interaction p-Value |
---|---|---|---|
HRW | 176.89 ± 11.36 | 162.44 ± 21.39 * | 0.029 |
PW | 162.78 ± 17.22 | 164.33 ± 11.31 |
Group | Resting Heart Rate (b/min) | HRPC Immediately after the Test (%) | HRPC after 1 min of Recovery (%) | HRPC after 2 min of Recovery (%) | HRPC after 3 min of Recovery (%) | |
---|---|---|---|---|---|---|
HRW | Pre | 71.33 ± 11.20 | 142.73 ± 39.90 | 85.59 ± 32.48 | 66.26 ± 30.15 | 64.01 ± 26.92 |
Post | 74.33 ± 4.69 | 111.62 ± 30.94 | 60.70 ± 25.31 | 28.68 ± 12.70 * | 20.47 ± 14.77 * | |
PW | Pre | 74.33 ± 8.85 | 114.47 ± 36.51 | 56.88 ± 34.65 | 50.21 ± 32.52 | 46.66 ± 25.05 |
Post | 71.67 ± 5.70 | 125.42 ± 29.34 | 66.79 ± 17.20 | 41.58 ± 12.20 # | 32.10 ± 7.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, G.; Fu, J.; Bao, D.; Zhou, J. Short-Term Consumption of Hydrogen-Rich Water Enhances Power Performance and Heart Rate Recovery in Dragon Boat Athletes: Evidence from a Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 5413. https://doi.org/10.3390/ijerph19095413
Dong G, Fu J, Bao D, Zhou J. Short-Term Consumption of Hydrogen-Rich Water Enhances Power Performance and Heart Rate Recovery in Dragon Boat Athletes: Evidence from a Pilot Study. International Journal of Environmental Research and Public Health. 2022; 19(9):5413. https://doi.org/10.3390/ijerph19095413
Chicago/Turabian StyleDong, Gengxin, Jiahui Fu, Dapeng Bao, and Junhong Zhou. 2022. "Short-Term Consumption of Hydrogen-Rich Water Enhances Power Performance and Heart Rate Recovery in Dragon Boat Athletes: Evidence from a Pilot Study" International Journal of Environmental Research and Public Health 19, no. 9: 5413. https://doi.org/10.3390/ijerph19095413
APA StyleDong, G., Fu, J., Bao, D., & Zhou, J. (2022). Short-Term Consumption of Hydrogen-Rich Water Enhances Power Performance and Heart Rate Recovery in Dragon Boat Athletes: Evidence from a Pilot Study. International Journal of Environmental Research and Public Health, 19(9), 5413. https://doi.org/10.3390/ijerph19095413