Altered Visceral Adipose Tissue Predictors and Women’s Health: A Unicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric Parameters
2.2. Biochemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McClean, K.M.; Kee, F.; Young, I.S.; Elborn, J.S. Obesity and the Lung: 1 Epidemiology. Thorax 2008, 63, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-SanSegundo, M.; Zaragoza-Martí, A.; Martin-LLaguno, I.; Berbegal, M.; Ferrer-Cascales, R.; Hurtado-Sánchez, J.A. The Role of BMI, Body Fat Mass and Visceral Fat in Executive Function in Individuals with Overweight and Obesity. Nutrients 2021, 13, 2259. [Google Scholar] [CrossRef] [PubMed]
- Finucane, M.M.; Stevens, G.A.; Cowan, M.J.; Danaei, G.; Lin, J.K.; Paciorek, C.J.; Singh, G.M.; Gutierrez, H.R.; Lu, Y.; Bahalim, A.N.; et al. National, Regional, and Global Trends in Body-Mass Index since 1980: Systematic Analysis of Health Examination Surveys and Epidemiological Studies with 960 Country-Years and 9·1 Million Participants. Lancet Lond. Engl. 2011, 377, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of All-Cause Mortality with Overweight and Obesity Using Standard Body Mass Index Categories: A Systematic Review and Meta-Analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, Q.; Ahsan, M. Measurement of Visceral Fat, Abdominal Circumference and Waist-Hip Ratio to Predict Health Risk in Males and Females. Pak. J. Biol. Sci. 2019, 22, 168–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of Childhood and Adult Obesity in the United States, 2011–2012. JAMA 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuster, A.; Patlas, M.; Pinthus, J.H.; Mourtzakis, M. The Clinical Importance of Visceral Adiposity: A Critical Review of Methods for Visceral Adipose Tissue Analysis. Br. J. Radiol. 2012, 85, 1-e25. [Google Scholar] [CrossRef] [Green Version]
- Benites-Zapata, V.A.; Toro-Huamanchumo, C.J.; Urrunaga-Pastor, D.; Guarnizo-Poma, M.; Lazaro-Alcantara, H.; Paico-Palacios, S.; Pantoja-Torres, B.; Ranilla-Seguin, V.D.C. High Waist-to-Hip Ratio Levels Are Associated with Insulin Resistance Markers in Normal-Weight Women. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 636–642. [Google Scholar] [CrossRef]
- Dieny, F.F.; Setyaningsih, R.F.; Fitranti, D.Y.; Jauharany, F.F.; Putra, Y.D.; Tsani, A.F.A. Abdominal Diameter Profiles Have Relationship with Insulin Resistance in Obese Female Adolescents. Electron. J. Gen. Med. 2020, 17, em219. [Google Scholar] [CrossRef] [Green Version]
- de Mutsert, R.; Gast, K.; Widya, R.; de Koning, E.; Jazet, I.; Lamb, H.; le Cessie, S.; de Roos, A.; Smit, J.; Rosendaal, F.; et al. Associations of Abdominal Subcutaneous and Visceral Fat with Insulin Resistance and Secretion Differ Between Men and Women: The Netherlands Epidemiology of Obesity Study. Metab. Syndr. Relat. Disord. 2018, 16, 54–63. [Google Scholar] [CrossRef]
- Roriz, A.K.C.; Passos, L.C.S.; Oliveira, C.C.D.; Eickemberg, M.; Moreira, P.D.A.; Ramos, L.B. Anthropometric Clinical Indicators in the Assessment of Visceral Obesity: An Update. Nutr. Clín. Diet. Hosp. 2016, 36, 168–179. [Google Scholar] [CrossRef]
- Xia, C.; Li, R.; Zhang, S.; Gong, L.; Ren, W.; Wang, Z.; Li, Q. Lipid Accumulation Product Is a Powerful Index for Recognizing Insulin Resistance in Non-Diabetic Individuals. Eur. J. Clin. Nutr. 2012, 66, 1035–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roriz, A.K.C.; Passos, L.C.S.; Oliveira, C.C.D.; Eickemberg, M.; Moreira, P.D.A.; Sampaio, L.R. Evaluation of the Accuracy of Anthropometric Clinical Indicators of Visceral Fat in Adults and Elderly. PLoS ONE 2014, 9, e103499. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, A.; Garaci, F.; Cafarelli, F.P.; Guglielmi, G. Body Composition in Clinical Practice. Eur. J. Radiol. 2016, 85, 1461–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wander, P.L.; Hayashi, T.; Sato, K.K.; Uehara, S.; Hikita, Y.; Leonetti, D.L.; Kahn, S.E.; Fujimoto, W.Y.; Boyko, E.J. Design and Validation of a Novel Estimator of Visceral Adipose Tissue Area and Comparison to Existing Adiposity Surrogates. J. Diabetes Complicat. 2018, 32, 1062–1067. [Google Scholar] [CrossRef]
- Ray, L.; Ravichandran, K.; Nanda, S.K. Comparison of Lipid Accumulation Product Index with Body Mass Index and Waist Circumference as a Predictor of Metabolic Syndrome in Indian Population. Metab. Syndr. Relat. Disord. 2018, 16, 240–245. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A Reliable Indicator of Visceral Fat Function Associated with Cardiometabolic Risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [Green Version]
- Brahimaj, A.; Rivadeneira, F.; Muka, T.; Sijbrands, E.J.G.; Franco, O.H.; Dehghan, A.; Kavousi, M. Novel Metabolic Indices and Incident Type 2 Diabetes among Women and Men: The Rotterdam Study. Diabetologia 2019, 62, 1581–1590. [Google Scholar] [CrossRef] [Green Version]
- WHO Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 18 March 2022).
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988; ISBN 978-0-87322-121-4. [Google Scholar]
- Samouda, H.; Dutour, A.; Chaumoitre, K.; Panuel, M.; Dutour, O.; Dadoun, F. VAT=TAAT-SAAT: Innovative Anthropometric Model to Predict Visceral Adipose Tissue without Resort to CT-Scan or DXA. Obes. Silver Spring Md 2013, 21, E41–E50. [Google Scholar] [CrossRef]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-Body Skeletal Muscle Mass: Development and Cross-Validation of Anthropometric Prediction Models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef]
- Martin, A.D.; Spenst, L.F.; Drinkwater, D.T.; Clarys, J.P. Anthropometric Estimation of Muscle Mass in Men. Med. Sci. Sports Exerc. 1990, 22, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Doupe, M.B.; Martin, A.D.; Searle, M.S.; Kriellaars, D.J.; Giesbrecht, G.G. A New Formula for Population-Based Estimation of Whole Body Muscle Mass in Males. Can. J. Appl. Physiol. 1997, 22, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.M.G.; da Silva, G.A.; Santos, G.M.; Petroski, E.L.; Geraldes, A.A.R. Development and Validation of Anthropometric Equations to Estimate Appendicular Muscle Mass in Elderly Women. Nutr. J. 2013, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Kahn, H.S. The “Lipid Accumulation Product” Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk: A Population-Based Comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Cameron, N.; Godino, J.; Nichols, J.F.; Wing, D.; Hill, L.; Patrick, K. Associations between Physical Activity and BMI, Body Fatness, and Visceral Adiposity in Overweight or Obese Latino and Non-Latino Adults. Int. J. Obes. 2017, 41, 873–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, S.; Allison, D.B.; Heymsfield, S.B.; Kelley, D.E.; Leibel, R.L.; Nonas, C.; Kahn, R. Waist Circumference and Cardiometabolic Risk: A Consensus Statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, The Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Am. J. Clin. Nutr. 2007, 85, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Ahn, N.; Baumeister, S.E.; Amann, U.; Rathmann, W.; Peters, A.; Huth, C.; Thorand, B.; Meisinger, C. Visceral Adiposity Index (VAI), Lipid Accumulation Product (LAP), and Product of Triglycerides and Glucose (TyG) to Discriminate Prediabetes and Diabetes. Sci. Rep. 2019, 9, 9693. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-Y.; Sung, Y.-A.; Lee, H.J. The Lipid Accumulation Product as a Useful Index for Identifying Abnormal Glucose Regulation in Young Korean Women. Diabet. Med. J. Br. Diabet. Assoc. 2013, 30, 436–442. [Google Scholar] [CrossRef]
- Wehr, E.; Gruber, H.-J.; Giuliani, A.; Möller, R.; Pieber, T.R.; Obermayer-Pietsch, B. The Lipid Accumulation Product Is Associated with Impaired Glucose Tolerance in PCOS Women. J. Clin. Endocrinol. Metab. 2011, 96, E986–E990. [Google Scholar] [CrossRef] [Green Version]
- Wehr, E.; Pilz, S.; Boehm, B.O.; März, W.; Obermayer-Pietsch, B. The Lipid Accumulation Product Is Associated With Increased Mortality in Normal Weight Postmenopausal Women. Obesity 2011, 19, 1873–1880. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, I.; Daimon, T. A Strong Association between Lipid Accumulation Product and Diabetes Mellitus in Japanese Women and Men. J. Atheroscler. Thromb. 2014, 21, 282–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozorgmanesh, M.; Hadaegh, F.; Azizi, F. Diabetes Prediction, Lipid Accumulation Product, and Adiposity Measures; 6-Year Follow-up: Tehran Lipid and Glucose Study. Lipids Health Dis. 2010, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiltgen, D.; Benedetto, I.G.; Mastella, L.S.; Spritzer, P.M. Lipid Accumulation Product Index: A Reliable Marker of Cardiovascular Risk in Polycystic Ovary Syndrome. Hum. Reprod. Oxf. Engl. 2009, 24, 1726–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartolano, F.D.C.; Pappiani, C.; Freitas, M.C.P.D.; Figueiredo Neto, A.M.; Carioca, A.A.F.; Damasceno, N.R.T. Is Lipid Accumulation Product Associated with an Atherogenic Lipoprotein Profile in Brazilian Subjects? Arq. Bras. Cardiol. 2018, 110, 339–347. [Google Scholar] [CrossRef]
- Singh, D. Female Mate Value at a Glance: Relationship of Waist-to-Hip Ratio to Health, Fecundity and Attractiveness. Neuro Endocrinol. Lett. 2002, 23 (Suppl. 4), 81–91. [Google Scholar]
- Butovskaya, M.; Sorokowska, A.; Karwowski, M.; Sabiniewicz, A.; Fedenok, J.; Dronova, D.; Negasheva, M.; Selivanova, E.; Sorokowski, P. Waist-to-Hip Ratio, Body-Mass Index, Age and Number of Children in Seven Traditional Societies. Sci. Rep. 2017, 7, 1622. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.-M.; Liu, Q.-J.; Wen, J.; Wang, M.; Wu, L.-Y.; Qu, M.-L.; Li, M.; Shen, M.-X.; Wu, J. Waist-to-Hip Ratio Is the Most Relevant Obesity Index at Each Phase of Insulin Secretion among Obese Patients. J. Diabetes Complicat. 2018, 32, 670–676. [Google Scholar] [CrossRef]
- Borel, A.-L.; Coumes, S.; Reche, F.; Ruckly, S.; Pépin, J.-L.; Tamisier, R.; Wion, N.; Arvieux, C. Waist, Neck Circumferences, Waist-to-Hip Ratio: Which Is the Best Cardiometabolic Risk Marker in Women with Severe Obesity? The SOON Cohort. PLoS ONE 2018, 13, e0206617. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro-Filho, F.F.; Faria, A.N.; Azjen, S.; Zanella, M.-T.; Ferreira, S.R.G. Methods of Estimation of Visceral Fat: Advantages of Ultrasonography. Obes. Res. 2003, 11, 1488–1494. [Google Scholar] [CrossRef]
- Gadekar, T.; Dudeja, P.; Basu, I.; Vashisht, S.; Mukherji, S. Correlation of Visceral Body Fat with Waist–Hip Ratio, Waist Circumference and Body Mass Index in Healthy Adults: A Cross Sectional Study. Med. J. Armed Forces India 2020, 76, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Berker, D.; Koparal, S.; Işik, S.; Paşaoğlu, L.; Aydin, Y.; Erol, K.; Delibaşi, T.; Güler, S. Compatibility of Different Methods for the Measurement of Visceral Fat in Different Body Mass Index Strata. Diagn. Interv. Radiol. Ank. Turk. 2010, 16, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roriz, A.K.C.; de Oliveira, C.C.; Moreira, P.A.; Eickemberg, M.; Medeiros, J.M.B.; Sampaio, L.R. Methods of Predicting Visceral Fat in Brazilian Adults and Older Adults: A Comparison between Anthropometry and Computerized Tomography. Arch. Latinoam. Nutr. 2011, 61, 5–12. [Google Scholar] [PubMed]
- Barreira, T.V.; Staiano, A.E.; Harrington, D.M.; Heymsfield, S.B.; Smith, S.R.; Bouchard, C.; Katzmarzyk, P.T. Anthropometric Correlates of Total Body Fat, Abdominal Adiposity, and Cardiovascular Disease Risk Factors in a Biracial Sample of Men and Women. Mayo Clin. Proc. 2012, 87, 452–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perissinotto, E.; Pisent, C.; Sergi, G.; Grigoletto, F.; Enzi, G.; Group, I.W. Anthropometric Measurements in the Elderly: Age and Gender Differences. Br. J. Nutr. 2002, 87, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpinar, E.; Bashan, I.; Bozdemir, N.; Saatci, E. Which Is the Best Anthropometric Technique to Identify Obesity: Body Mass Index, Waist Circumference or Waist-Hip Ratio? Coll. Antropol. 2007, 31, 387–393. [Google Scholar]
- de Koning, L.; Merchant, A.T.; Pogue, J.; Anand, S.S. Waist Circumference and Waist-to-Hip Ratio as Predictors of Cardiovascular Events: Meta-Regression Analysis of Prospective Studies. Eur. Heart J. 2007, 28, 850–856. [Google Scholar] [CrossRef]
- Amirabdollahian, F.; Haghighatdoost, F. Anthropometric Indicators of Adiposity Related to Body Weight and Body Shape as Cardiometabolic Risk Predictors in British Young Adults: Superiority of Waist-to-Height Ratio. J. Obes. 2018, 2018, 8370304. [Google Scholar] [CrossRef] [Green Version]
- Welborn, T.A.; Dhaliwal, S.S.; Bennett, S.A. Waist-Hip Ratio Is the Dominant Risk Factor Predicting Cardiovascular Death in Australia. Med. J. Aust. 2003, 179, 580–585. [Google Scholar] [CrossRef]
- Esmaillzadeh, A.; Mirmiran, P.; Azizi, F. Waist-to-Hip Ratio Is a Better Screening Measure for Cardiovascular Risk Factors than Other Anthropometric Indicators in Tehranian Adult Men. Int. J. Obes. 2004, 28, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Rexrode, K.M.; van Dam, R.M.; Li, T.Y.; Hu, F.B. Abdominal Obesity and the Risk of All-Cause, Cardiovascular, and Cancer Mortality: Sixteen Years of Follow-up in US Women. Circulation 2008, 117, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Medina-Inojosa, J.R.; Batsis, J.A.; Supervia, M.; Somers, V.K.; Thomas, R.J.; Jenkins, S.; Grimes, C.; Lopez-Jimenez, F. Relation of Waist-Hip Ratio to Long-Term Cardiovascular Events in Patients With Coronary Artery Disease. Am. J. Cardiol. 2018, 121, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Scicali, R.; Rosenbaum, D.; Pino, A.D.; Giral, P.; Cluzel, P.; Redheuil, A.; Piro, S.; Rabuazzo, A.M.; Purrello, F.; Bruckert, E.; et al. An Increased Waist-to-Hip Ratio Is a Key Determinant of Atherosclerotic Burden in Overweight Subjects. Atherosclerosis 2018, 275, e208. [Google Scholar] [CrossRef]
- Czernichow, S.; Kengne, A.-P.; Stamatakis, E.; Hamer, M.; Batty, G.D. Body Mass Index, Waist Circumference and Waist-Hip Ratio: Which Is the Better Discriminator of Cardiovascular Disease Mortality Risk?: Evidence from an Individual-Participant Meta-Analysis of 82 864 Participants from Nine Cohort Studies. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2011, 12, 680–687. [Google Scholar] [CrossRef]
- Mirzaei, M.; Khajeh, M. Comparison of Anthropometric Indices (Body Mass Index, Waist Circumference, Waist to Hip Ratio and Waist to Height Ratio) in Predicting Risk of Type II Diabetes in the Population of Yazd, Iran. Diabetes Metab. Syndr. 2018, 12, 677–682. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Shao, M.-J.; Zhou, Q.; Xia, Y.; Zou, H.-Q. Association of waist-to-hip ratio with insulin resistance in non-diabetic normal-weight individuals: A cross-sectional study. Nan Fang Yi Ke Da Xue Xue Bao 2017, 37, 1540–1544. [Google Scholar]
- Pan, S.Y.; de Groh, M.; Aziz, A.; Morrison, H. Relation of Insulin Resistance with Social-Demographics, Adiposity and Behavioral Factors in Non-Diabetic Adult Canadians. J. Diabetes Metab. Disord. 2016, 15, 31. [Google Scholar] [CrossRef] [Green Version]
- Schult, A.; Mehlig, K.; Björkelund, C.; Wallerstedt, S.; Kaczynski, J. Waist-to-Hip Ratio but Not Body Mass Index Predicts Liver Cirrhosis in Women. Scand. J. Gastroenterol. 2018, 53, 212–217. [Google Scholar] [CrossRef]
- Wei, J.; Liu, X.; Xue, H.; Wang, Y.; Shi, Z. Comparisons of Visceral Adiposity Index, Body Shape Index, Body Mass Index and Waist Circumference and Their Associations with Diabetes Mellitus in Adults. Nutrients 2019, 11, 1580. [Google Scholar] [CrossRef] [Green Version]
- Camhi, S.M.; Bray, G.A.; Bouchard, C.; Greenway, F.L.; Johnson, W.D.; Newton, R.L.; Ravussin, E.; Ryan, D.H.; Smith, S.R.; Katzmarzyk, P.T. The Relationship of Waist Circumference and BMI to Visceral, Subcutaneous, and Total Body Fat: Sex and Race Differences. Obes. Silver Spring Md 2011, 19, 402–408. [Google Scholar] [CrossRef]
- Alkhalaqi, A.; Al-Naimi, F.; Qassmi, R.; Shi, Z.; Ganji, V.; Salih, R.; Bawadi, H. Visceral Adiposity Index Is a Better Predictor of Type 2 Diabetes than Body Mass Index in Qatari Population. Medicine 2020, 99, e21327. [Google Scholar] [CrossRef] [PubMed]
- Barreira, T.V.; Harrington, D.M.; Staiano, A.E.; Heymsfield, S.B.; Katzmarzyk, P.T. Body Adiposity Index, Body Mass Index, and Body Fat in White and Black Adults. JAMA 2011, 306, 828–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Corral, A.; Montori, V.M.; Somers, V.K.; Korinek, J.; Thomas, R.J.; Allison, T.G.; Mookadam, F.; Lopez-Jimenez, F. Association of Bodyweight with Total Mortality and with Cardiovascular Events in Coronary Artery Disease: A Systematic Review of Cohort Studies. The Lancet 2006, 368, 666–678. [Google Scholar] [CrossRef]
- Millar, S.R.; Perry, I.J.; Phillips, C.M. Assessing Cardiometabolic Risk in Middle-Aged Adults Using Body Mass Index and Waist-Height Ratio: Are Two Indices Better than One? A Cross-Sectional Study. Diabetol. Metab. Syndr. 2015, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.S.; Stanforth, P.R.; Gagnon, J.; Rankinen, T.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C.; Wilmore, J.H. The Effect of Sex, Age and Race on Estimating Percentage Body Fat from Body Mass Index: The Heritage Family Study. Int. J. Obes. 2002, 26, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Nascimento-Ferreira, M.V.; Rendo-Urteaga, T.; Vilanova-Campelo, R.C.; Carvalho, H.B.; da Paz Oliveira, G.; Paes Landim, M.B.; Torres-Leal, F.L. The Lipid Accumulation Product Is a Powerful Tool to Predict Metabolic Syndrome in Undiagnosed Brazilian Adults. Clin. Nutr. Edinb. Scotl. 2017, 36, 1693–1700. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obes. Silver Spring Md 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-Height Ratio Is a Better Screening Tool than Waist Circumference and BMI for Adult Cardiometabolic Risk Factors: Systematic Review and Meta-Analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, G.; Tong, W.; Lu, L.; Qin, X. Can Body Mass Index, Waist Circumference, Waist-Hip Ratio and Waist-Height Ratio Predict the Presence of Multiple Metabolic Risk Factors in Chinese Subjects? BMC Public Health 2011, 11, 35. [Google Scholar] [CrossRef] [Green Version]
Author | Equations | R2 | SEE |
---|---|---|---|
Samouda et al. [21] | VAT(female) = 2.15 × WC − 3.63 × PC + 1.46 × age + 6.22 × BMI − 92,713 | 0.836 | 36.88 |
VAT(male) = 6 × WC − 4.41 × PC + 1.19 × age − 213.65 | 0.803 | 47.73 | |
Lee et al. [22] | MM = Ht × (0.00744 × CAC2 + 0.00088 × CTC2 + 0.00441 × CCC2) + 2.4 × sex − 0.048 × age + race* + 7.8. | 0.91 | 2.2 kg |
Variable | Statistics Summary | |
---|---|---|
Frequency Yes:No | ||
Diabetes | 3:160 | |
Personal history | Hypertension | 16:147 |
Dyslipidemia | 10:153 | |
Diabetes | 58:105 | |
Obesity | 31:132 | |
Family history | Hypertension | 78:85 |
Dyslipidemia | 30:133 | |
Cardiovascular disease | 31:132 | |
Mean ± SD | ||
Height, m | 1.61 ± 0.07 | |
Weight, kg | 69.39 ± 15.28 | |
Subscapular fold, mm | 24.72 ± 11.79 | |
Triceps fold, mm | 23.95 ± 11.04 | |
Mid-axillary fold, mm | 20.11 ± 10.57 | |
Anthropometric | Supra iliac fold, mm | 22.91 ± 10.12 |
measures | Chest fold, mm | 18.04 ± 10.86 |
Abdominal fold, mm | 28.03 ± 12.07 | |
Mid-thigh fold, mm | 32.61 ± 12.5 | |
Calf fold, mm | 21.07 ± 11.48 | |
Arm circumference, cm | 30.32 ± 5.13 | |
Waist circumference, cm | 81.85 ± 13.65 | |
Abdominal circumference, cm | 88.77 ± 14.6 | |
Hip circumference, cm | 100.19 ± 14.4 | |
Calf circumference, cm | 37.39 ± 5.68 | |
Thigh circumference, cm | 55.33 ± 8.29 | |
Waist-to-hip ratio | 0.83 ± 0.18 | |
Jackson and Pollock’s fat percentage (seven-folds), % | 30.12 ± 8.33 | |
Muscular mass, kg | 22.51 ± 4.34 | |
Visceral adipose tissue, cm2 | 99.44 ± 67.72 | |
VAT/MM ratio cm2/kg | 4.40 ± 2.81 | |
Glucose, mg/dL | 90.74 ± 14.43 | |
Total cholesterol, mg/dL | 181.66 ± 37.16 | |
Triglycerides, mg/dL | 113.01 ± 78.59 | |
Laboratorial | HDL, mg/dL | 56.21 ± 14.7 |
measures | LDL, mg/dL | 103.57 ± 33.89 |
VLDL, mg/dL | 22.40 ± 15.34 | |
non-HDL, mg/dL | 124.27 ± 39.21 | |
LAP, cm.mmol/L | 35.26 ± 40.56 | |
TG/HDL | 2.32 ± 2.33 | |
TyG | 3.63 ± 0.28 | |
TyG-BMI | 97.49 ± 25.78 |
Visceral Adipose Tissue | p-Value | OR (CI OR) | ||||
---|---|---|---|---|---|---|
Altered (n = 70) | Normal (n = 93) | |||||
Count | % | Count | % | |||
Personal history (diabetes) | 3 | 100.0% | 0 | 0.0% | 0.077 | NA |
Personal history (hypertension) | 12 | 75.0% | 4 | 25.0% | 0.006 * | 4.60 (1.42–14.97) |
Personal history (dyslipidemia) | 5 | 50.0% | 5 | 50.0% | 0.746 | 1.35 (0.38–4.87) |
Family history (diabetes) | 34 | 58.6% | 24 | 41.4% | 0.003 * | 2.72 (1.40–5.25) |
Family history (obesity) | 20 | 64.5% | 11 | 35.5% | 0.007 * | 2.98 (1.32–6.74) |
Family history (hypertension) | 44 | 56.4% | 34 | 43.6% | 0.001 * | 2.94 (1.54–5.86) |
Family history (dyslipidemia) | 18 | 60.0% | 12 | 40.0% | 0.037 * | 2.34 (1.04–5.25) |
Family history (heart disease) | 13 | 41.9% | 18 | 58.1% | 0.900 | 0.95 (0.43–2.10) |
Height (m) | 24 | 39.3% | 37 | 60.7% | 0.473 | 0.79 (0.41–1.51) |
Weight (kg) | 35 | 53.0% | 31 | 47.0% | 0.032 * | 2 (1.06–3.78) |
BMI (kg/m2) | 64 | 71.1% | 26 | 28.9% | <0.001 * | 27.49 (10.62–71.18) |
Subscapular fold (mm) | 41 | 54.7% | 34 | 45.3% | 0.005 * | 2.45 (1.30–4.63) |
Triceps fold (mm) | 27 | 52.9% | 24 | 47.1% | 0.082 | 1.81 (0.93–3.52) |
Mid-axillary fold (mm) | 34 | 54.0% | 29 | 46.0% | 0.024 * | 2.08 (1.10–3.96) |
Supra iliac fold (mm) | 29 | 47.5% | 32 | 52.5% | 0.359 | 1.35 (0.71–2.56) |
Chest fold (mm) | 25 | 39.7% | 38 | 60.3% | 0.500 | 0.80 (0.42–1.53) |
Abdominal fold (mm) | 26 | 40.6% | 38 | 59.4% | 0.630 | 0.86 (0.45–1.62) |
Mid-thigh fold (mm) | 25 | 46.3% | 29 | 53.7% | 0.543 | 1.23 (0.64–2.37) |
Calf fold (mm) | 32 | 49.2% | 33 | 50.8% | 0.187 | 1.53 (0.81–2.89) |
Arm circumference (cm) | 38 | 55.9% | 30 | 44.1% | 0.005 * | 2.49 (1.31–4.73) |
Waist circumference (cm) | 66 | 78.6% | 18 | 21.4% | <0.001 * | 68.75 (22.15–213.42) |
Abdominal circumference (cm) | 69 | 58.0% | 50 | 42.0% | <0.001 * | 59.34 (7.91–445.43) |
Hip circumference (cm) | 35 | 53.8% | 30 | 46.2% | 0.022 * | 2.10 (1.11–3.98) |
Calf circumference (cm) | 27 | 52.9% | 24 | 47.1% | 0.082 | 1.81 (0.93–3.52) |
Thigh circumference (cm) | 34 | 56.7% | 26 | 43.3% | 0.007 * | 2.43 (1.27–4.67) |
Glucose (mg/dL) | 22 | 71.0% | 9 | 29.0% | <0.001 * | 4.28 (1.82–10.04) |
Total cholesterol (mg/dL) | 34 | 54.8% | 28 | 45.2% | 0.016 * | 2.19 (1.15–4.18) |
Triglycerides (mg/dL) | 24 | 72.7% | 9 | 27.3% | <0.001 * | 4.87 (2.09–11.35) |
HDL (mg/dL) | 16 | 76.2% | 5 | 23.8% | 0.001 * | 5.22 (1.81–15.05) |
LDL (mg/dL) | 19 | 52.8% | 17 | 47.2% | 0.177 | 1.67 (0.79–3.51) |
VLDL (mg/dL) | 24 | 75.0% | 8 | 25.0% | <0.001 * | 5.54 (2.31–13.32) |
non-HDL (mg/dL) | 20 | 64.5% | 11 | 35.5% | 0.007 * | 2.98 (1.32–6.74) |
LAP (cm·mmol/L) | 57 | 80.3% | 14 | 19.7% | <0.001 * | 24.74 (10.81–56.64) |
TG/HDL | 43 | 63.2% | 25 | 36.8% | <0.001 * | 4.33 (2.23–8.42) |
TyG | 43 | 60.6% | 28 | 39.4% | <0.001* | 3.70 (1.92–7.11) |
TyG-BMI | 61 | 77.2% | 18 | 22.8% | <0.001 * | 28.24 (11.85–67.31) |
Waist-to-hip ratio | 57 | 66.3% | 29 | 33.7% | <0.001 * | 9.68 (4.59–20.39) |
Jackson and Pollock’s fat percentage (seven-folds) (%) | 48 | 71.6% | 19 | 28.4% | <0.001 * | 8.50 (4.16–17.34) |
Muscular mass (kg) | 32 | 51.6% | 30 | 48.4% | 0.08 | 1.77 (0.93–3.36) |
VAT/MM ratio (cm2/kg) | 69 | 90.8% | 7 | 9.2% | <0.001 * | 847.71 (101.84–7056.06) |
B | E.P. | Wald | gl | Sig. | Exp(B) | 95% C.I. to EXP(B) | |||
---|---|---|---|---|---|---|---|---|---|
Inferior | Superior | ||||||||
Step 1 a | BMI (kg/m2) | −1.563 | 0.779 | 4.023 | 1 | 0.045 | 0.210 | 0.046 | 0.965 |
Glucose (mg/dL) | −0.365 | 0.721 | 0.256 | 1 | 0.613 | 0.694 | 0.169 | 2.854 | |
Triglycerides (mg/dL) | 15.559 | 40192.977 | 0.000 | 1 | 1.000 | 5716910.805 | 0.000 | . | |
VLDL (mg/dL) | −15.905 | 40192.977 | 0.000 | 1 | 1.000 | 0.000 | 0.000 | . | |
LAP(cm·mmol/L) | −2.941 | 1.229 | 5.724 | 1 | 0.017 | 0.053 | 0.005 | 0.588 | |
TG/HDL | 0.337 | 0.996 | 0.114 | 1 | 0.735 | 1.400 | 0.199 | 9.870 | |
TyG | 2.297 | 1.218 | 3.558 | 1 | 0.059 | 9.943 | 0.914 | 108.140 | |
TyG-BMI | −0.923 | 0.941 | 0.960 | 1 | 0.327 | 0.398 | 0.063 | 2.516 | |
Waist-to-Hip ratio | −1.824 | 0.584 | 9.772 | 1 | 0.002 | 0.161 | 0.051 | 0.506 | |
Jackson Pollock’s Fat Percentage (seven-folds) (%) | −0.460 | 0.572 | 0.647 | 1 | 0.421 | 0.631 | 0.206 | 1.937 | |
Constant | 3.375 | 0.580 | 33.844 | 1 | 0.000 | 29.225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, V.C.; de Souza Silva, C.M.; da Silva, I.C.R. Altered Visceral Adipose Tissue Predictors and Women’s Health: A Unicenter Study. Int. J. Environ. Res. Public Health 2022, 19, 5505. https://doi.org/10.3390/ijerph19095505
Moreira VC, de Souza Silva CM, da Silva ICR. Altered Visceral Adipose Tissue Predictors and Women’s Health: A Unicenter Study. International Journal of Environmental Research and Public Health. 2022; 19(9):5505. https://doi.org/10.3390/ijerph19095505
Chicago/Turabian StyleMoreira, Vanessa Carvalho, Calliandra Maria de Souza Silva, and Izabel Cristina Rodrigues da Silva. 2022. "Altered Visceral Adipose Tissue Predictors and Women’s Health: A Unicenter Study" International Journal of Environmental Research and Public Health 19, no. 9: 5505. https://doi.org/10.3390/ijerph19095505
APA StyleMoreira, V. C., de Souza Silva, C. M., & da Silva, I. C. R. (2022). Altered Visceral Adipose Tissue Predictors and Women’s Health: A Unicenter Study. International Journal of Environmental Research and Public Health, 19(9), 5505. https://doi.org/10.3390/ijerph19095505