An Analysis of the Colony Structure of Prokaryotes in the Jialing River Waters in Chongqing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Sample Collection
2.3. Determination of Physical and Chemical Indicators of Water Bodies
2.4. Bacterial Genomic DNA Extraction
2.5. PCR Amplification
2.6. Data Statistical Analysis
3. Results and Discussion
3.1. Water Quality Measurement Results
3.2. Alpha/Beat Diversity Analysis
3.3. Community Composition Analysis
3.3.1. Venn Diagram Analysis
3.3.2. Community Bar Chart Analysis
3.3.3. Heatmap Analysis of Community Composition
3.3.4. Pie Chart
3.4. Analysis of Species Differences
3.4.1. Kruskal–Wallis H Test Analysis
3.4.2. LefSe Analysis
3.5. RDA/CCA Analysis
3.6. Evolutionary Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Findlay, S. Stream Microbial Ecology in a Changing Environment. In Stream Ecosystems in a Changing Environment; Academic Press: Cambridge, MA, USA, 2016; pp. 135–150. [Google Scholar]
- Jiang, J.G.; Shen, Y.F. Development of the microbial communities in lake donghu in relation to water quality. Environ. Monit. Assess. 2007, 127, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Laque, T.; Farjalla, V.F.; Rosado, A.S.; Esteves, F.A. Spatiotemporal Variation of Bacterial Community Composition and Possible Controlling Factors in Tropical Shallow Lagoons. Microb. Ecol. 2010, 59, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Grossart, H.; Schweitzer, B.; Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 2002, 28, 175–211. [Google Scholar] [CrossRef] [Green Version]
- Ping, X.; Leff, L.G. Longitudinal changes in the benthic bacterial community of the Mahoning River (Ohio, U.S.A.). Hydrobiologia 2004, 522, 329–335. [Google Scholar]
- Herrera, E.C.; Nadaoka, K. Temporal dynamics and drivers of lake ecosystem metabolism using high resolution observations in a shallow, tropical, eutrophic lake (Laguna Lake, Philippines). J. Great Lakes Res. 2021, 47, 997–1020. [Google Scholar] [CrossRef]
- Kosolapova, N.A.; Matveeva, L.G.; Nikitaeva, A.Y.; Molapisi, L. Modeling Resource Basis for Social and Economic Development Strategies: Water Resource Case. J. Hydrol. 2017, 553, 438–446. [Google Scholar] [CrossRef]
- Yu, W.; Fei, Y.; Sheng, J.W.; Jia, P.W.; Jia, Y.; Kai, Q.X.; Yi, G.H. Biogeographic pattern of bacterioplanktonic community and potential function in the Yangtze River: Roles of abundant and rare taxa. Sci. Total Environ. 2020, 747, 141335. [Google Scholar]
- Lemke, M.J.; Brown, B.J.; Leff, L.G. The Response of Three Bacterial Populations to Pollution in a Stream. Microb. Ecol. 1997, 34, 224–231. [Google Scholar] [CrossRef]
- Ren Lijuan, H.D.; Xing, P.; Wang, M.Q.; Wu, Q.L. Research progress on bacterial diversity and ecological functions in lake waters. Biodiversity 2013, 21, 421–432. [Google Scholar]
- Qian, L.; Hao, W.W.; Cong, H.; Hui, L.; Wei, L.; Xiu, F.Z.; Zhi, L.L.; Si, H.L. Microbial compositions, ecological networks, and metabolomics in sediments of black-odour water in Dongguan, China. Environ. Res. 2022, 210, 112918. [Google Scholar]
- Jiang, T.; Sun, S.; Chen, Y.; Qian, Y.; An, D. Microbial diversity characteristics and the influence of environmental factors in a large drinking-water source. Sci. Total Environ. 2021, 769, 144698. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilo, C.; Dong, Q. Evaluation of the RDP Classifier Accuracy Using 16S rRNA Gene Variable Regions. Metagenomics. 2012, 1, a1–a5. [Google Scholar] [CrossRef] [Green Version]
- Shade, A.; Jones, S.E.; Mcmahonk, D. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Nature 2007, 10, 145–163. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, A.N.; Wang, J.W.; Liu, S.F.; Jiang, X.T.; Dang, C.Y.; Ma, T.; Liu, S.T.; Chen, Q.; Xie, S.G.; et al. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Kolmakova, O.V.; Gladyshev, M.I.; Rozanov, A.S.; Peltek, S.E.; Trusova, M.Y. Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing. FEMS Microbiol. Ecol. 2014, 89, 442–450. [Google Scholar] [CrossRef]
- Jiang, H.C.; Dong, H.L.; Zhang, G.X.; Yu, B.S.; Leah, R.C.; Matthew, W.F. Line Lake in Northwestern China. Appl. Microbiol. Biot. 2006, 72, 3832–3845. [Google Scholar]
- Clara, R.G.; Juan, P.N.G.; Paul, A.D.G. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 2015, 18, 1198–1206. [Google Scholar]
- Sujay, S.K.; Katie, D.N.; Stuarte, G.F.; Tamara, A.N.; Duan, S.W.; Michael, J.P.; Gwendolyn, M.S.; Ashley, M.S.R.; Mark, R.W.; Kenneth, T.B. Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 2014, 121, 23–44. [Google Scholar]
- Zhang, S.; Song, H.L.; Yang, X.L.; Huang, S.; Dai, Z.Q.; Li, H.; Zhang, Y.Y. Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted water. Chemosphere 2017, 178, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Nogales, B.; Lanfranconi, M.P.; Pina, V.J.M.; Bosch, R. Anthropogenic perturbations in marine microbial communities. FEMSMicrobiol. Rev. 2011, 35, 275–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagervold, S.K.; Bourgeois, S.; Pruski, A.M.; Charles, F.; Kerherve, P.; Vetion, G.; Galand, P.E. River organic matter shapes microbial communities in the sediment of the Rhone prodelta. ISME J. 2014, 8, 2327–2338. [Google Scholar] [CrossRef] [Green Version]
- Na, G.S.; Lu, Z.H.; Gao, H.; Zhang, L.X.; Li, Q.W.; Li, R.J.; Yang, F.; Huo, C.L.; Yao, Z.W. The effect of environmental factors dynamics on the prevalence of antibiotic-resistant Escherichia and migration coli in estuary environments. Sci. Rep. 2018, 8, 1663. [Google Scholar] [CrossRef] [Green Version]
- Staley, C.; Unno, T.; Gould, T.J.; Jarvis, B.; Phillips, J.; Cotner, J.B.; Sadowsky, M.J. Application of lllumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J. Appl. Microbiol. 2013, 115, 1147–1158. [Google Scholar] [CrossRef]
- Daniel, S.R.; Hyun, S.G.; Michael, J.B.; Lindasay, K.N.; Dawn, F.; Mark, J.B.; Robert, I.G. Catchment-scale biogeography of riverine bacterioplankton. ISME J. 2014, 9, 516–526. [Google Scholar]
- Ghai, R.; Rodriguez-valera, F.; Mcmahon, K.D.; Toyama, D.; Rinke, R.; Oliveira, T.C.S.D.; Garcia, J.W.; Miranda, F.P.D.; Henrique-silva, F. Metagenomics of the Water Column in the Pristine Upper Course of the Metagenomics of the Water Column in the Pristine Upper Course of the Amazon River. PLoS ONE 2011, 6, e23785. [Google Scholar] [CrossRef] [PubMed]
- Heino, J.; Schmera, D.; Eros, T. A macroecological perspective of trait patterns in stream communities. Freshw. Biol. 2013, 58, 1539–1555. [Google Scholar] [CrossRef] [Green Version]
- Brandon, A.M.; Gao, S.H.; Tian, R.; Ning, D.; Yang, S.S.; Zhou, J.; Wu, W.M.; Criddle, C.S. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio motitor) and Effects on the Gut Microbiome. Environ. Sci. Technol. 2018, 52, 6526–6533. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, C.; Cao, X.; Lin, H.; Wang, J. Antibiotic resistance genes in surface water ofeutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology 2017, 26, 831–840. [Google Scholar] [CrossRef]
- Devarajan, N.; Kohler, T.; Sivalingam, P.; Delden, C.V.; Mulaji, C.K.; Mpiana, P.T.; Ibelings, B.W.; Jonh, P. Antibiotic resistant Pseudomonas spp. in the aquatic environment: A prevalence study under tropical and temperate climate conditions. Water Res. 2017, 115, 256–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuertz, S.; Okabe, S.; Hausner, M. Microbial communities and their interactions in biofilm systems: An overview. Water Sci. Technol. 2004, 49, 327. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Wang, R.; Zhang, Y.; Wu, Q.; Xie, B.; Yang, J.; Chen, J.; Sun, Z. Recent Progress in Studies of Rhodococcus and Its Application of in Biodegradation. Food Sci. 2016, 37, 254–258. [Google Scholar]
- Wang, J.T.; Fan, H.B.; He, X.J.; Zhang, F.B.; Xiao, J.B.; Yan, Z.L.; Feng, J.J.; Li, R. Response of bacterial communities to variation in water quality and physicochemical conditions in a river-reservoir system. Glob. Ecol. Conserv. 2021, 27, e01541. [Google Scholar] [CrossRef]
- Kasalický, V.; Jezbera, J.; Hahn, M.W.; Šimek, K. The Diversity of the Limnohabitans Genus, an Important Group of Freshwater Bacterioplankton, by Characterization of 35 Isolated Strains. PLoS ONE. 2013, 8, e58209. [Google Scholar] [CrossRef]
- Abdelelhaleem, D. Mini Review—Acinetobacter: Environmental and biotechnological applications. Afr. J. Biotechnol. 2003, 2, 71–74. [Google Scholar]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Sharp, J.O.; Drewes, J.E. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments. Microb. Ecol. 2016, 71, 78–86. [Google Scholar] [CrossRef]
- Correll, D.L. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J. Environ. Qual. 1998, 27, 261. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, L.M.; Shen, J.P.; Du, H.; Han, L.L.; He, J.Z. Nitrogen fertiliser-induced changes in N20 emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils. Bio. Fert. Soils 2016, 52, 1163–1171. [Google Scholar] [CrossRef]
- Tram, N.H.; Gin, K.Y.H.; Ngo, H.H. Fecal pollution source tracking toolbox for identifcation, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater. Sci. Total Environ. 2015, 538, 38–57. [Google Scholar] [CrossRef] [PubMed]
Product Composition | KG203-02 (50 Preps) | KG203-03 (200 Preps) |
---|---|---|
Buffer B1 | 6 mL | 24 mL |
Buffer B2 | 6 mL | 24 mL |
2 × Det PCR MasterMix | 500 μL | 2 × 1 mL |
Grinding Pesties | 10 ↑ | 20 ↑ |
Product Composition | Volume |
---|---|
5 × TransStart FastPfu Buffer | 4 μL |
2.5 mL dNTPs | 2 μL |
upstream primer (5 uL) | 0.8 μL |
downstream primer (5 uL) | 0.8 μL |
TransStart FastPfu DNA polymerase | 0.4 μL |
Template DNA | 10 μL |
Sample Collection Place | Ammonia Nitrogen mg/L | Chemical Oxygen Demand mg/L | Total Phosphorus mg/L | Total Nitrogen mg/L | Chlorophylla μg/L |
---|---|---|---|---|---|
Shapingba | 0.033 | 24 | 0.15 | 0.52 | 4.1 |
Hechuan | 0.094 | 7 | 0.30 | 1.06 | 4.2 |
Jiangbei | 0.035 | 18 | 0.27 | 0.51 | 5.4 |
Beibei | 0.035 | 12 | 0.21 | 0.55 | 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zeng, G.; Liang, D.; Xu, Y.; Li, Y.; Huang, X.; Ma, Y.; Wang, F.; Liao, C.; Tang, C.; et al. An Analysis of the Colony Structure of Prokaryotes in the Jialing River Waters in Chongqing. Int. J. Environ. Res. Public Health 2022, 19, 5525. https://doi.org/10.3390/ijerph19095525
Zhang M, Zeng G, Liang D, Xu Y, Li Y, Huang X, Ma Y, Wang F, Liao C, Tang C, et al. An Analysis of the Colony Structure of Prokaryotes in the Jialing River Waters in Chongqing. International Journal of Environmental Research and Public Health. 2022; 19(9):5525. https://doi.org/10.3390/ijerph19095525
Chicago/Turabian StyleZhang, Maolan, Guoming Zeng, Dong Liang, Yiran Xu, Yan Li, Xin Huang, Yonggang Ma, Fei Wang, Chenhui Liao, Cheng Tang, and et al. 2022. "An Analysis of the Colony Structure of Prokaryotes in the Jialing River Waters in Chongqing" International Journal of Environmental Research and Public Health 19, no. 9: 5525. https://doi.org/10.3390/ijerph19095525
APA StyleZhang, M., Zeng, G., Liang, D., Xu, Y., Li, Y., Huang, X., Ma, Y., Wang, F., Liao, C., Tang, C., Li, H., Pan, Y., & Sun, D. (2022). An Analysis of the Colony Structure of Prokaryotes in the Jialing River Waters in Chongqing. International Journal of Environmental Research and Public Health, 19(9), 5525. https://doi.org/10.3390/ijerph19095525