Modeling di (2-ethylhexyl) Phthalate (DEHP) and Its Metabolism in a Body’s Organs and Tissues through Different Intake Pathways into Human Body
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Model Parameter
2.3. Dose in PBPK Model
3. Results and Discussion
3.1. Validation of PBPK Model
3.2. DEHP and MEHP Concentration in Different Organs and Tissues through Three Sifferent Intake Pathways
3.2.1. Oral Ingestion
3.2.2. Dermal Penetration
3.2.3. Inhalation
3.3. Further Comparison and Health Care Assessment through Three Different Doses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Tao, W.; Xu, Y.; Feng, J.; Wang, F. Indoor phthalate concentration and exposure in residential and office buildings in Xi’an, China. Atmos. Environ. 2014, 87, 146–152. [Google Scholar] [CrossRef]
- Chang, W.-H.; Herianto, S.; Lee, C.-C.; Hung, H.; Chen, H.-L. The effects of phthalate ester exposure on human health: A review. Sci. Total Environ. 2021, 786, 147371. [Google Scholar] [CrossRef] [PubMed]
- Preece, A.-S.; Shu, H.; Knutz, M.; Krais, A.M.; Wikström, S.; Bornehag, C.-G. Phthalate levels in indoor dust and associations to croup in the SELMA study. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, Y.-J.; Liu, L.-Y.; Wang, F.; Guo, Y. Exposure to phthalates and correlations with phthalates in dust and air in South China homes. Sci. Total Environ. 2021, 782, 146806. [Google Scholar] [CrossRef] [PubMed]
- Dobaradaran, S.; Akhbarizadeh, R.; Mohammadi, M.J.; Izadi, A.; Keshtkar, M.; Tangestani, M.; Moazzen, M.; Shariatifar, N.; Mahmoodi, M. Determination of phthalates in bottled milk by a modified nano adsorbent: Presence, effects of fat and storage time, and implications for human health. Microchem. J. 2020, 159, 105516. [Google Scholar] [CrossRef]
- Mehraie, A.; Shariatifar, N.; Arabameri, M.; Moazzen, M.; Mortazavian, A.M.; Sheikh, F.; Sohrabvandi, S. Determination of phthalate acid esters (PAEs) in bottled water distributed in tehran: A health risk assessment study. Int. J. Environ. Anal. Chem. 2022, 102, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, L.; Cao, Y.; Chen, B.; Zheng, L.; Ge, R.-S. Phthalate Levels and Low Birth Weight: A Nested Case-Control Study of Chinese Newborns. J. Pediatr. 2009, 155, 500–504. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, C.; Lu, R.; Zou, Z.; Liu, W.; Huang, C. Associations between phthalic acid esters in household dust and childhood asthma in Shanghai, China. Environ. Res. 2021, 200, 111760. [Google Scholar] [CrossRef]
- Xie, H.; Han, W.; Xie, Q.; Xu, T.; Zhu, M.; Chen, J. Face mask—A potential source of phthalate exposure for human. J. Hazard. Mater. 2021, 422, 126848. [Google Scholar] [CrossRef]
- Høyer, B.B.; Lenters, V.; Giwercman, A.; Jönsson, B.A.G.; Toft, G.; Hougaard, K.S.; Bonde, J.P.E.; Specht, I.O. Impact of Di-2-Ethylhexyl Phthalate Metabolites on Male Reproductive Function: A Systematic Review of Human Evidence. Curr. Environ. Health Rep. 2018, 5, 20–33. [Google Scholar] [CrossRef]
- Lea, R.G.; Byers, A.S.; Sumner, R.N.; Rhind, S.M.; Zhang, Z.; Freeman, S.L.; Moxon, R.; Richardson, H.M.; Green, M.; Craigon, J.; et al. Environmental chemicals impact dog semen quality in vitro and may be associated with a temporal decline in sperm motility and increased cryptorchidism. Sci. Rep. 2016, 6, 31281. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-H.; Wu, M.-H.; Pan, H.-A.; Guo, P.-L.; Lee, C.-C. Semen quality and insulin-like factor 3, Associations with urinary and seminal levels of phthalate metabolites in adult males. Chemosphere 2017, 173, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.J.; Sánchez, B.N.; Téllez-Rojo, M.M.; Lee, J.M.; Mercado-García, A.; Blank-Goldenberg, C.; Peterson, K.E.; Meeker, J.D. Faculty Opinions recommendation of Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environ. Res. 2017, 159, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, M.; Kelishadi, R.; Amin, M.M.; Ebrahim, K. Is there any association between phthalate exposure and precocious puberty in girls? Environ. Sci. Pollut. Res. 2018, 25, 13589–13596. [Google Scholar] [CrossRef]
- Mughees, M.; Chugh, H.; Wajid, S. Mechanism of phthalate esters in the progression and development of breast cancer. Drug Chem. Toxicol. 2020, 45, 1021–1025. [Google Scholar] [CrossRef]
- Bornehag, C.-G.; Sundell, J.; Weschler, C.J.; Sigsgaard, T.; Lundgren, B.; Hasselgren, M.; Hägerhed-Engman, L. The Association between Asthma and Allergic Symptoms in Children and Phthalates in House Dust: A Nested Case–Control Study. Environ. Health Perspect. 2004, 112, 1393–1397. [Google Scholar] [CrossRef] [Green Version]
- Chuang, S.-C.; Chen, H.-C.; Sun, C.-W.; Chen, Y.-A.; Wang, Y.-H.; Chiang, C.-J.; Chen, C.C.; Wang, S.L.; Chen, C.J.; Hsiung, C.A. Phthalate exposure and prostate cancer in a population-based nested case-control study. Environ. Res. 2020, 181, 108902. [Google Scholar] [CrossRef]
- Warren, J.R.; Lalwani, N.D.; Reddy, J.K. Phthalate esters as peroxisome proliferator carcinogens. Environ. Health Perspect. 1982, 45, 35–40. [Google Scholar] [CrossRef]
- Weschler, C.J.; Bekö, G.; Koch, H.M.; Salthammer, T.; Schripp, T.; Toftum, J.; Clausen, G. Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification. Environ. Health Perspect. 2015, 123, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Cohen Hubal, E.A.; Clausen, P.A.; Little, J.C. Predicting Residential Exposure to Phthalate Plasticizer Emitted from Vinyl Flooring: A Mechanistic Analysis. Environ. Sci. Technol. 2009, 43, 2374–2380. [Google Scholar] [CrossRef]
- Liang, Y.; Bi, C.; Wang, X.; Xu, Y. A general mechanistic model for predicting the fate and transport of phthalates in indoor environments. Indoor Air 2018, 29, 55–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Lian, J.; Cheng, Y.; Wang, X. The gas/particle partitioning behavior of phthalate esters in indoor environment: Effects of temperature and humidity. Environ. Res. 2021, 194, 110681. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.V.; Krishnan, S.; Sethulekshmi, S.; Shriwastav, A. Phthalate Esters in the Environment: An Overview on the Occurrence, Toxicity, Detection, and Treatment Options. In New Trends in Emerging Environmental Contaminants; Singh, S.P., Agarwal, A.K., Gupta, T., Maliyekkal, S.M., Eds.; Springer: Singapore, 2022; pp. 131–160. [Google Scholar]
- Huang, S.; Qi, Z.; Ma, S.; Li, G.; Long, C.; Yu, Y. A critical review on human internal exposure of phthalate metabolites and the associated health risks. Environ. Pollut. 2021, 279, 116941. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, D.; Guo, Y.; Mao, W.; Zhao, N.; Zhao, M.; Jin, H. Phthalate metabolites in paired human serum and whole blood. Sci. Total Environ. 2022, 824, 153792. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Keil, A.P.; Villanger, G.D.; Richardson, D.B.; Daniels, J.L.; Hoffman, K.; Sakhi, A.K.; Thomsen, C.; Herring, A.H.; Drover, S.S.; et al. Pregnancy exposure to common-detect organophosphate esters and phthalates and maternal thyroid function. Sci. Total Environ. 2021, 782, 146709. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.P.; Schuhmacher, M.; Kumar, V. Development of a human physiologically based pharmacokinetic (PBPK) model for phthalate (DEHP) and its metabolites: A bottom up modeling approach. Toxicol. Lett. 2018, 296, 152–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Song, Z.; Little, J.C.; Zhong, M.; Li, H.; Xu, Y. An integrated exposure and pharmacokinetic modeling framework for assessing population-scale risks of phthalates and their substitutes. Environ. Int. 2021, 156, 106748. [Google Scholar] [CrossRef]
- Lorber, M.; Weschler, C.J.; Morrison, G.; Bekö, G.; Gong, M.; Koch, H.M.; Salthammer, T.; Schripp, T.; Toftum, J.; Clausen, G. Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate. J. Expo. Sci. Environ. Epidemiol. 2016, 27, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.A. Evaluation of a Generic Physiologically Based Pharmacokinetic Model for Lineshape Analysis. Clin. Pharmacokinet. 2008, 47, 261–275. [Google Scholar] [CrossRef]
- Bornehag, C.G.; Nanberg, E. Phthalate exposure and asthma in children. Int. J. Androl. 2010, 33, 333–345. [Google Scholar] [CrossRef]
- Ziegler, C.G.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1035.e9. [Google Scholar]
- Anderson, W.A.C.; Castle, L.; Hird, S.; Jeffery, J.; Scotter, M.J. A twenty-volunteer study using deuterium labelling to determine the kinetics and fractional excretion of primary and secondary urinary metabolites of di-2-ethylhexylphthalate and di-iso-nonylphthalate. Food Chem. Toxicol. 2011, 49, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Keys, D.A.; Wallace, D.G.; Kepler, T.B.; Conolly, R.B. Quantitative evaluation of alternative mechanisms of blood disposition of di(n-butyl) phthalate and mono(n-butyl) phthalate in rats. Toxicol. Sci. 2000, 53, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Keys, D.A.; Wallace, D.G.; Kepler, T.B.; Conolly, R.B. Quantitative evaluation of alternative mechanisms of blood and testes disposition of di(2-ethylhexyl) phthalate and mono(2-ethylhexyl) phthalate in rats. Toxicol. Sci. 1999, 49, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Bolt, H.M.; Preuss, R.; Angerer, J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol. 2005, 79, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Suemizu, H.; Murayama, N.; Shimizu, M.; Yamazaki, H. Human biofluid concentrations of mono(2-ethylhexyl)phthalate extrapolated from pharmacokinetics in chimeric mice with humanized liver administered with di(2-ethylhexyl)phthalate and physiologically based pharmacokinetic modeling. Environ. Toxicol. Pharmacol. 2015, 39, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Joo, H.; Campbell, J.L.; Andersen, M.E., Jr.; Clewell, H.J., 3rd. In vitro intestinal and hepatic metabolism of Di(2-ethylhexyl) phthalate (DEHP) in human and rat. Toxicol. In Vitro 2013, 27, 1451–1457. [Google Scholar] [CrossRef]
- Weschler, C.J.; Nazaroff, W.W. Dermal Uptake of Organic Vapors Commonly Found in Indoor Air. Environ. Sci. Technol. 2014, 48, 1230–1237. [Google Scholar] [CrossRef] [Green Version]
- Bu, Z.; Wang, J.; Yu, W.; Li, B. Dermal exposure to phthalates in home environment: Handwipes, influencing factors and implications. Build. Environ. 2018, 133, 1–7. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, Y.; Weschler, C.J. Predicting dermal absorption of gas-phase chemicals: Transient model development, evaluation, and application. Indoor Air 2014, 24, 292–306. [Google Scholar] [CrossRef]
- Sui, H.-X.; Zhang, L.; Wu, P.-G.; Song, Y.; Yong, L.; Yang, D.-J.; Jiang, D.-G.; Liu, Z.-P. Concentration of di(2-ethylhexyl) phthalate (DEHP) in foods and its dietary exposure in China. Int. J. Hyg. Environ. Health 2014, 217, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Eveillard, A.; Lasserre, F.; De Tayrac, M.; Polizzi, A.; Claus, S.; Canlet, C.; Mselli-Lakhal, L.; Gotardi, G.; Paris, A.; Guillou, H. Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach. Toxicol. Appl. Pharmacol. 2009, 236, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yang, M.; Cheng, M.; Fan, L.; Wang, X.; Xu, T.; Wang, B.; Chen, W. Associations between urinary phthalate metabolite concentrations and markers of liver injury in the US adult population. Environ. Int. 2021, 155, 106608. [Google Scholar] [CrossRef] [PubMed]
- Erkekoğlu, P.; Rachidi, W.; De Rosa, V.; Giray, B.; Favier, A.; Hıncal, F. Protective effect of selenium supplementation on the genotoxicity of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate treatment in LNCaP cells. Free Radic. Biol. Med. 2010, 49, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Berger, K.; Eskenazi, B.; Balmes, J.; Holland, N.; Calafat, A.M.; Harley, K.G. Associations between prenatal maternal urinary concentrations of personal care product chemical biomarkers and childhood respiratory and allergic outcomes in the CHAMACOS study. Environ. Int. 2018, 121, 538–549. [Google Scholar] [CrossRef]
- Huang, K.; He, Y.; Zhu, Z.; Guo, J.; Wang, G.; Deng, C.; Zhong, Z. Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins. ACS Appl. Mater. Interfaces 2019, 11, 22171–22180. [Google Scholar] [CrossRef]
Parameters | Symbol | Unit | Values/ Contribution | Reference |
---|---|---|---|---|
Molecular weight (DEHP) | MW | g/mole | 391 | - |
Molecular weight (D4-MEHP) | MW | g/mole | 281 | [28] |
Molecular weight (MEHP-OH) | MW | g/mole | 297 | [28] |
Molecular weight (D4-5-oxo MEHP) | MW | g/mole | 295 | [28] |
Molecular weight (D4-5-cx MEPP) | MW | g/mole | 311 | [28] |
Octanol: water partition coefficient | LogKo:w | N | 7.6 | - |
Partition coefficients | ||||
Gut/plasma | k_gut_plasma | N | LN a (12.86,1.1) | - |
Liver/plasma | k_liver_plasma | N | LN a (10.16,1.1) | - |
Fat/plasma | k_fat_plasma | N | LN a (188, 1.1) | - |
Rest of the body/plasma | k_restbody_plasma | N | LN a (6.24, 1.1) | - |
Liver/plasma | k_liver_plasmaM1 | N | LN a (1.7, 1.1) | [32] |
Fat/plasma | k_fat_plasmaM1 | N | LN a (0.12, 1.1) | [32] |
Rest of the body/plasma | k_restbody_plasmaM1 | N | LN a (0.38, 1.1) | [33] |
Uptake rate of 5-OHMEHP to blood | KtM2 | 1/h | LN a (0.07, 1.5) | [34] |
Uptake rate of 5-oxo MEHP to blood | KtM4 cytosol maximum reaction value | 1/h | LN a (0.08, 1.5) | [34] |
Absorption and elimination parameters | ||||
Unbound fraction in plasma for MEHP | fup | N | 0.007 | [35] |
Oral absorption rate | kgut | 1/h | LN a (7, 1.5) | [35] |
Elimination constant | kurine | 1/h | LN a (0.35, 1.1) | [27] |
Metabolic parameters for DEHP and its metabolites in the intestines and the liver | ||||
DEHP to MEHP in intestinal MSP b maximum reaction value | vmaxgutM1 | μg/min/mg MSP b | LN a (0.11,1.1) c | [36] |
DEHP to MEHP in gut cytosol MSP b maximum reaction value | vmaxgut_cytM1 | μg/min/mg | LN a (0.312,1.1) c | [36] |
MEHP to 5-OH MEHP maximum reaction value | vmaxgutM2 | μg/min/mg MSP b | LN a (0.0012,1.1) c | [36] |
MEHP to 5-carboxy MEPP maximum reaction value | vmaxgutM3 | μg/min/mg MSP b | 0 | [36] |
MEHP-OH to 5-oxo MEHP maximum reaction value | vmaxgutM4 | μg/min/mg MSP b | LN a (0.0012,1.5) c | [36] |
MEHP to phthalic acid esters maximum reaction value | vmaxgutM5 | mg/min/mg MSP b | LN a (0.285, 1.1) c | [36] |
Conc. at half maximum value | kmgutM1 | μg/L | 6956 | [36] |
Conc. at half maximum value | kmgutM2 | μg/L | 22508 | [36] |
Conc. at half maximum value | kmgutM3 | μg/L | 0 | [36] |
Conc. at half maximum value | kmgutM4 | μg/L | 219076 | [36] |
Conc. at half maximum value | kmgutM5 | μg/L | 187652 | [36] |
Conc. at half maximum value | kmgut_cytM1 | μg/L | 7038 | [36] |
DEHP to MEHP in liver MSP maximum reaction value | vmaxliverM1 | μg/min/mg MSP b | LN a (0.112, 1.1) c | [36] |
DEHP to MEHP in liver cytosol maximum reaction value | vmaxliverM1_cyt | μg/min/mg | LN a (0.036, 1.1) c | [36] |
MEHP to 5-OH MEHP maximum reaction value | vmaxliverM2 | μg/min/mg MSP b | LN a (0.172, 1.1) c | [36] |
MEHP to 5-carboxy MEPP maximum reaction value | vmaxlivM3 | μg/min/mg MSP b | LN a (0.0023, 1.5) c | [36] |
MEHP-OH to 5-oxo MEHP maximum reaction value | vmaxlivM4 | μg/min/mg MSP b | LN a (0.003, 1.1) c | [36] |
MEHP to phthalic acid esters maximum reaction value | vmaxlivM5 | μg/min/mg MSP b | LN a (0.088, 1.1) c | [36] |
Conc. at half maximum value | kmliver_cytM1 | μg/L | 2228.7 | [36] |
Conc. at half maximum value | kmliverM2 | μg/L | 7980.4 | [36] |
Conc. at half maximum value | kmliverM3 | μg/L | 1124 | [36] |
Conc. at half maximum value | kmliverM4 | μg/L | 23117.7 | [36] |
Conc. at half maximum value | kmliverM5 | μg/L | 141315 | [36] |
Compartment | Unit | Value |
---|---|---|
Arterial Blood | milliliter | 1698 |
Bone | milliliter | 4579 |
Brain | milliliter | 1450 |
Gut | milliliter | 1650 |
Heart | milliliter | 310 |
Kidney | milliliter | 280 |
Liver | milliliter | 1690 |
Lungs | milliliter | 1172 |
Muscle | milliliter | 35,000 |
Pancreas | milliliter | 77 |
Rest other organs | milliliter | 49,579 |
Skin | milliliter | 7800 |
Spleen | milliliter | 192 |
Thymus | milliliter | 29 |
Urine | milliliter | 1 |
Venous Blood | milliliter | 3396 |
δ (24 h–48h) (%) | δ (48 h–72 h) (%) | δ (72 h–96 h) (%) | δ (96 h–120 h) (%) | |
---|---|---|---|---|
Oral ingestion | 2.0044 | 0.0674 | 0.0023 | 0.0001 |
Inhalation | 2.0869 | 0.0700 | 0.0024 | 0.0001 |
Dermal penetration | 1.7294 | 0.0979 | 0.0032 | 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Kang, L.; Li, R.; Wu, S.; Liu, K.; Wang, X. Modeling di (2-ethylhexyl) Phthalate (DEHP) and Its Metabolism in a Body’s Organs and Tissues through Different Intake Pathways into Human Body. Int. J. Environ. Res. Public Health 2022, 19, 5742. https://doi.org/10.3390/ijerph19095742
Li A, Kang L, Li R, Wu S, Liu K, Wang X. Modeling di (2-ethylhexyl) Phthalate (DEHP) and Its Metabolism in a Body’s Organs and Tissues through Different Intake Pathways into Human Body. International Journal of Environmental Research and Public Health. 2022; 19(9):5742. https://doi.org/10.3390/ijerph19095742
Chicago/Turabian StyleLi, Ao, Lingyi Kang, Runjie Li, Sijing Wu, Ke Liu, and Xinke Wang. 2022. "Modeling di (2-ethylhexyl) Phthalate (DEHP) and Its Metabolism in a Body’s Organs and Tissues through Different Intake Pathways into Human Body" International Journal of Environmental Research and Public Health 19, no. 9: 5742. https://doi.org/10.3390/ijerph19095742
APA StyleLi, A., Kang, L., Li, R., Wu, S., Liu, K., & Wang, X. (2022). Modeling di (2-ethylhexyl) Phthalate (DEHP) and Its Metabolism in a Body’s Organs and Tissues through Different Intake Pathways into Human Body. International Journal of Environmental Research and Public Health, 19(9), 5742. https://doi.org/10.3390/ijerph19095742