Swallow Detection with Acoustics and Accelerometric-Based Wearable Technology: A Scoping Review
Abstract
:1. Introduction
- -
- What acoustic or/and accelerometric-based sensors were used for swallowing detection, and how where were they configurated?
- -
- What were the protocols and procedures to apply those sensors for swallowing detection?
- -
- How was the collected signal processed and extracted that manifested the swallowing event?
- -
- How accurate were these techniques and protocols in identifying swallowing events or classes?
2. Materials and Methods
3. Results
3.1. Search Results
3.2. Instrument Configuration
3.3. Assessment Protocol for Swallowing
3.4. Segmentation and Feature Extraction Strategy
3.5. Classification and Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bulmer, J.M.; Ewers, C.; Drinnan, M.J.; Ewan, V.C. Evaluation of Spontaneous Swallow Frequency in Healthy People and Those With, or at Risk of Developing, Dysphagia: A Review. Gerontol. Geriatr. Med. 2021, 7, 23337214211041801. [Google Scholar] [CrossRef] [PubMed]
- Lear, C.S.; Flanagan, J., Jr.; Moorrees, C. The frequency of deglutition in man. Arch. Oral Biol. 1965, 10, 83-IN15. [Google Scholar] [CrossRef] [PubMed]
- Rudney, J.; Ji, Z.; Larson, C. The prediction of saliva swallowing frequency in humans from estimates of salivary flow rate and the volume of saliva swallowed. Arch. Oral Biol. 1995, 40, 507–512. [Google Scholar] [CrossRef]
- Hammond, C.A.S.; Goldstein, L.B. Cough and aspiration of food and liquids due to oral-pharyngeal dysphagia: ACCP evidence-based clinical practice guidelines. Chest 2006, 129, 154S–168S. [Google Scholar] [CrossRef] [PubMed]
- Namasivayam-MacDonald, A.M.; Alomari, N.; Attner, L.; Benjamin, R.D.; Chill, A.; Doka, S.; Guastella, R.; Marchese, J.; Oppedisano, S.; Ressa, K. A retrospective analysis of swallowing function and physiology in patients living with dementia. Dysphagia 2022, 37, 900–908. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, A.; Di Giovanni, P.; Kulamarva, G.; Gennachi, S.; Di Fonzo, F.; Sallustio, V.; Patrocinio, D.; Candido, S.; Lamarca, G.; Dispenza, F. Oropharyngeal dysphagia in elderly population suffering from mild cognitive impairment and mild dementia: Understanding the link. Am. J. Otolaryngol. 2020, 41, 102501. [Google Scholar] [CrossRef]
- Furuya, H.; Kikutani, T.; Igarashi, K.; Sagawa, K.; Yajima, Y.; Machida, R.; Tohara, T.; Takahashi, N.; Tamura, F. Effect of dysphagia rehabilitation in patients receiving enteral nutrition at home nursing care: A retrospective cohort study. J. Oral Rehabil. 2020, 47, 977–982. [Google Scholar] [CrossRef]
- Okuni, I.; Ebihara, S. Are Oropharyngeal Dysphagia Screening Tests Effective in Preventing Pneumonia? J. Clin. Med. 2022, 11, 370. [Google Scholar] [CrossRef]
- Baijens, L.W.; Clavé, P.; Cras, P.; Ekberg, O.; Forster, A.; Kolb, G.F.; Leners, J.-C.; Masiero, S.; Mateos-Nozal, J.; Ortega, O. European Society for Swallowing Disorders–European Union Geriatric Medicine Society white paper: Oropharyngeal dysphagia as a geriatric syndrome. Clin. Interv. Aging 2016, 11, 1403. [Google Scholar] [CrossRef] [Green Version]
- Roy, N.; Stemple, J.; Merrill, R.M.; Thomas, L. Dysphagia in the elderly: Preliminary evidence of prevalence, risk factors, and socioemotional effects. Ann. Otol. Rhinol. Laryngol. 2007, 116, 858–865. [Google Scholar] [CrossRef]
- Wirth, R.; Dziewas, R.; Beck, A.M.; Clavé, P.; Hamdy, S.; Heppner, H.J.; Langmore, S.; Leischker, A.H.; Martino, R.; Pluschinski, P. Oropharyngeal dysphagia in older persons–from pathophysiology to adequate intervention: A review and summary of an international expert meeting. Clin. Interv. Aging 2016, 11, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howden, C.W. Management of acid-related disorders in patients with dysphagia. Am. J. Med. Suppl. 2004, 117, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Ney, D.M.; Weiss, J.M.; Kind, A.J.; Robbins, J. Senescent swallowing: Impact, strategies, and interventions. Nutr. Clin. Pract. 2009, 24, 395–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adkins, C.; Takakura, W.; Spiegel, B.M.; Lu, M.; Vera-Llonch, M.; Williams, J.; Almario, C.V. Prevalence and characteristics of dysphagia based on a population-based survey. Clin. Gastroenterol. Hepatol. 2020, 18, 1970–1979. e1972. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.M. The blind scientists and the elephant of swallowing: A review of instrumental perspectives on swallowing physiology. J. Texture Stud. 2015, 46, 122–137. [Google Scholar] [CrossRef]
- Boaden, E.; Nightingale, J.; Bradbury, C.; Hives, L.; Georgiou, R. Clinical practice guidelines for videofluoroscopic swallowing studies: A systematic review. Radiography 2020, 26, 154–162. [Google Scholar] [CrossRef]
- Prikladnicki, A.; Santana, M.G.; Cardoso, M.C. Protocols and assessment procedures in fiberoptic endoscopic evaluation of swallowing: An updated systematic review. Braz. J. Otorhinolaryngol. 2021, 88, 445–470. [Google Scholar] [CrossRef]
- Maccarini, A.R.; Filippini, A.; Padovani, D.; Limarzi, M.; Loffredo, M.; Casolino, D. Clinical non-instrumental evaluation of dysphagia. Acta Otorhinolaryngol. Ital. 2007, 27, 299–305. [Google Scholar]
- Suiter, D.M.; Leder, S.B. Clinical utility of the 3-ounce water swallow test. Dysphagia 2008, 23, 244–250. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, D.-K.; Seo, K.M.; Kang, S.H. Usefulness of the simplified cough test in evaluating cough reflex sensitivity as a screening test for silent aspiration. Ann. Rehabil. Med. 2014, 38, 476. [Google Scholar] [CrossRef] [Green Version]
- Lagarde, M.L.; Kamalski, D.M.; Van Den Engel-Hoek, L. The reliability and validity of cervical auscultation in the diagnosis of dysphagia: A systematic review. Clin. Rehabil. 2016, 30, 199–207. [Google Scholar] [CrossRef] [PubMed]
- O’Horo, J.C.; Rogus-Pulia, N.; Garcia-Arguello, L.; Robbins, J.; Safdar, N. Bedside diagnosis of dysphagia: A systematic review. J. Hosp. Med. 2015, 10, 256–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shem, K.L.; Castillo, K.; Wong, S.L.; Chang, J.; Kao, M.C.; Kolakowsky-Hayner, S.A. Diagnostic accuracy of bedside swallow evaluation versus videofluoroscopy to assess dysphagia in individuals with tetraplegia. PMR 2012, 4, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Dudik, J.M.; Coyle, J.L.; Sejdić, E. Dysphagia screening: Contributions of cervical auscultation signals and modern signal-processing techniques. IEEE Trans. Hum.-Mach. Syst. 2015, 45, 465–477. [Google Scholar] [CrossRef] [Green Version]
- Zahnd, E.; Movahedi, F.; Coyle, J.L.; Sejdić, E.; Menon, P.G. Correlating tri-accelerometer swallowing vibrations and hyoid bone movement in patients with dysphagia. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, 11–17 November 2016; p. V003T004A083. [Google Scholar]
- Reynolds, E.W.; Vice, F.L.; Gewolb, I.H. Variability of swallow-associated sounds in adults and infants. Dysphagia 2009, 24, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Groher, M.E.; Michi, K.-i. Methodology for detecting swallowing sounds. Dysphagia 1994, 9, 54–62. [Google Scholar] [CrossRef]
- Taveira, K.V.M.; Santos, R.S.; Leão, B.L.C.d.; Stechman Neto, J.; Pernambuco, L.; Silva, L.K.d.; Canto, G.D.L.; Porporatti, A.L. Diagnostic validity of methods for assessment of swallowing sounds: A systematic review. Braz. J. Otorhinolaryngol. 2018, 84, 638–652. [Google Scholar] [CrossRef]
- Peters, M.D.; Godfrey, C.; McInerney, P.; Khalil, H.; Larsen, P.; Marnie, C.; Pollock, D.; Tricco, A.C.; Munn, Z. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid. Synth. 2022, 20, 953–968. [Google Scholar] [CrossRef]
- Afkari, S. Measuring frequency of spontaneous swallowing. Australas. Phys. Eng. Sci. Med. 2007, 30, 313–317. [Google Scholar]
- Amft, O.; Troster, G. Recognition of dietary activity events using on-body sensors. Artif. Intell. Med. 2008, 42, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Lv, M.S.; Song, C.; Xu, W.Y.; Guan, N.; Yi, W. AutoDietary: A Wearable Acoustic Sensor System for Food Intake Recognition in Daily Life. IEEE Sens. J. 2016, 16, 806–816. [Google Scholar] [CrossRef]
- Fontana, J.M.; Melo, P.L.; Sazonov, E.S. Swallowing detection by sonic and subsonic frequencies: A comparison. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6890–6893. [Google Scholar]
- Fukuike, C.; Kodama, N.; Manda, Y.; Hashimoto, Y.; Sugimoto, K.; Hirata, A.; Pan, Q.; Maeda, N.; Minagi, S. A novel automated detection system for swallowing sounds during eating and speech under everyday conditions. J. Oral Rehabil. 2015, 42, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, Y.; Kaburagi, T.; Kumagai, S.; Matsumoto, T. Development of Swallowing-Movement-Sensing Device and Swallowing-State-Estimation System. IEEE Sens. J. 2019, 19, 3532–3542. [Google Scholar] [CrossRef]
- Lee, J.; Steele, C.M.; Chau, T. Swallow segmentation with artificial neural networks and multi-sensor fusion. Med. Eng. Phys. 2009, 31, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Makeyev, O.; Lopez-Meyer, P.; Schuckers, S.; Besio, W.; Sazonov, E. Automatic food intake detection based on swallowing sounds. Biomed. Signal Process. Control 2012, 7, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Sazonov, E.S.; Makeyev, O.; Schuckers, S.; Lopez-Meyer, P.; Melanson, E.L.; Neuman, M.R. Automatic Detection of Swallowing Events by Acoustical Means for Applications of Monitoring of Ingestive Behavior. IEEE Trans. Biomed. Eng. 2010, 57, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Sejdic, E.; Steele, C.M.; Chau, T. Segmentation of Dual-Axis Swallowing Accelerometry Signals in Healthy Subjects with Analysis of Anthropometric Effects on Duration of Swallowing Activities. IEEE Trans. Biomed. Eng. 2009, 56, 1090–1097. [Google Scholar] [CrossRef]
- Skowronski, M.D.; Crary, M.A.; Shrivastav, R. Acoustic discrimination of healthy swallows from upper airway movements. J. Acoust. Soc. Am. 2013, 134, EL127–EL132. [Google Scholar]
- Skowronski, M.D.; Harris, J.G. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition. J. Acoust. Soc. Am. 2004, 116, 1774–1780. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.; Chau, T. Coupled microphone-accelerometer sensor pair for dynamic noise reduction in MMG signal recording. Electron. Lett. 2003, 39, 1–2. [Google Scholar] [CrossRef]
- Khalifa, Y.; Coyle, J.L.; Sejdić, E. Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings. Sci. Rep. 2020, 10, 8704. [Google Scholar] [CrossRef] [PubMed]
- Haixiang, G.; Yijing, L.; Shang, J.; Mingyun, G.; Yuanyue, H.; Bing, G. Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 2017, 73, 220–239. [Google Scholar] [CrossRef]
- Cichero, J.A.; Lam, P.; Steele, C.M.; Hanson, B.; Chen, J.; Dantas, R.O.; Duivestein, J.; Kayashita, J.; Lecko, C.; Murray, J. Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: The IDDSI framework. Dysphagia 2017, 32, 293–314. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.M.; Mukherjee, R.; Kortelainen, J.M.; Polonen, H.; Jedwab, M.; Brady, S.L.; Theimer, K.B.; Langmore, S.; Riquelme, L.F.; Swigert, N.B.; et al. Development of a Non-invasive Device for Swallow Screening in Patients at Risk of Oropharyngeal Dysphagia: Results from a Prospective Exploratory Study. Dysphagia 2019, 34, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Shieh, W.-Y.; Wang, C.-M.; Cheng, H.-Y.K.; Wang, C.-H. Using wearable and non-invasive sensors to measure swallowing function: Detection, verification, and clinical application. Sensors 2019, 19, 2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, H.; Hirata, M.; Takahashi, K.; Kameda, S.; Katsuta, Y.; Yoshida, F.; Hattori, N.; Yanagisawa, T.; Palmer, J.; Oshino, S. Non-invasive quantification of human swallowing using a simple motion tracking system. Sci. Rep. 2018, 8, 5095. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Matsuyama, M. Detection of poststroke oropharyngeal dysphagia with swallowing screening by ultrasonography. PLoS ONE 2021, 16, e0248770. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Zhu, G.X.; Wang, F.; Xu, Y.Q.; Wang, C.B.; Zhu, Y.T.; Jiang, W. Design of flexible strain sensor with both ultralow detection limit and wide sensing range via the multiple sensing mechanisms. Compos. Sci. Technol. 2021, 213, 108932. [Google Scholar] [CrossRef]
- Chen, K.; Hu, Y.P.; Liu, M.X.; Wang, F.; Liu, P.; Yu, Y.S.; Feng, Q.; Xiao, X.F. Highly Stretchable, Tough, and Conductive Ag@Cu Nanocomposite Hydrogels for Flexible Wearable Sensors and Bionic Electronic Skins. Macromol. Mater. Eng. 2021, 306, 2100341. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, F.; Li, M.Y.; Wang, X.Q.; Chen, S.J.; Yu, J.Y. Flexible Stannum-Doped SrTiO3 Nanofiber Membranes for Highly Sensitive and Reliable Piezoresistive Pressure Sensors. Acs Appl. Mater. Interfaces 2021, 13, 52811–52821. [Google Scholar] [CrossRef]
- Cheung, J.C.-W.; So, B.P.-H.; Ho, K.H.M.; Wong, D.W.-C.; Lam, A.H.-F.; Cheung, D.S.-K. Wrist accelerometry for monitoring dementia agitation behaviour in clinical settings: A scoping review. Front. Psychiatry 2022, 13, 913213. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-C.; Jeng, Y.; Wu, W.-T.; Wang, T.-G.; Han, D.-S.; Özçakar, L.; Chang, K.-V. Sarcopenic dysphagia: A narrative review from diagnosis to intervention. Nutrients 2021, 13, 4043. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.-W.J.; Chan, W.-H.R.; Chiu, M.-W.; Law, S.-Y.; Lee, T.-H.; Zheng, Y.-P. A three-month study of fall and physical activity levels of intellectual disability using a transfer belt-based motion recording sensor. In Proceedings of the 6th World Congress of Biomechanics (WCB 2010), Singapore, 1–6 August 2010; pp. 1393–1396. [Google Scholar]
- So, B.P.-H.; Lai, D.K.-H.; Cheung, D.S.-K.; Lam, W.-K.; Cheung, J.C.-W.; Wong, D.W.-C. Virtual Reality-Based Immersive Rehabilitation for Cognitive-and Behavioral-Impairment-Related Eating Disorders: A VREHAB Framework Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 5821. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, G.; Rieger, J.; Mummery, K.; Hodgetts, W. Flow and grit by design: Exploring gamification in facilitating adherence to swallowing therapy. Am. J. Speech-Lang. Pathol. 2017, 26, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Sensors | Location |
---|---|---|
Afkari [30] | Miniature ACC (NM) | Level of thyroid cartilage |
sEMG (NM) | Level of cricopharyngeus muscle | |
Omnidirectional electret MIC (NM) | Level of cricoid cartilage | |
Amft and Troster [31] | sEMG (Nexus-10, MindMedia) | Collar at infra-hyoid throat region |
Stethoscope MIC (ECM-C115, Sony) | Collar below hyoid | |
Bi et al. [32] | Throat MIC [NM] | Over neck close to the jaw |
Fontana et al. [33] | Condenser MIC (CZN-15E) | thyroid cartilage level, one side of the neck |
Piezoelectric MIC (IASUS NT, IASUS Concept Ltd.) | Over laryngopharynx | |
Fukuike et al. [34] | Condenser MIC (WM-61A, Panasonic, Osaka, Japan) | Fixed on a silicone tube and placed inside the left nostril |
Laryngeal MIC (SH-12iK, Nanzu, Shizuoka, Japan) | Over anterior larynx | |
Kurihara et al. [35] | Bi-directional electret condenser MIC (EM114, Primo Co., Ltd.) | MIC attached to air tube hung over neck with anterior opening |
Lee et al. [36] | Dual axis ACC (ADXL322) | Below thyroid cartilage aligned in anterior-posterior and superior-inferior axes |
Submental mechanomyography (developed by Silva and Chau [42]) | On the geniohyoid | |
Pressure Transducer (PTAFLITE, Glass Technologies) | At nasal cannula | |
Makeyev et al. [37] | Throat microphone (IASUS NT, IASUS Concept Ltd.) * | Over laryngopharynx |
Sazonov et al. [38] | Throat microphone (IASUS NT, IASUS Concept Ltd.) * | Over laryngopharynx |
Sejdic et al. [39] | Dual-axis accelerometer (ADXL322) | Anterior to cricoid cartilage, along anterior-posterior and superior-inferior axes |
Skowronski et al. [40] | Miniature surface-mounted MIC (VT506, Voice Technologies, Zurich, Switzerland) | Laterally below the cricoid cartilage |
Author (Year) | Subject | Class | Procedure | Protocol |
---|---|---|---|---|
Afkari [30] | 1 | sw vs. nsw | sw: drink 100 mL of water as fast as possible nsw: dry (saliva) swallowing | Four 30-min sessions performing 3 dry & one swallow |
Amft and Troster [31] | 4M/2F | sw vs. nsw | Participants were allowed to move, chew, & speak normally during the recording. The participants were asked to drink 5 mL & 15 mL of water, eat a spoonful of yogurt, & 2 cm3 of bread in one piece | 2 intake sessions on different days |
Bi et al. [32] | 5F/7M | Solid vs. liquid; food type | Apple, carrot, chip, cookie, peanut, walnut, water | Food was excluded if participants disliked it. Total 560 events |
Fontana et al. [33] | 7 | food type | Start with 5 min quiet sitting 5 min reading aloud a meal of 4 food items (apple, 40 g crackers, low-fact yogurt, 250 mL water) was consumed at unlimited time | 10 repetitions for each food in a single swallow with 20 s of talking time between food intake |
Fukuike et al. [34] | 4F/3M | sw vs. nsw | sw: taking a meal and stepping on a foot pedal when swallowed nsw: yawn, cough, sigh, throat clearing, gargling, and sipping tea | - |
Kurihara et al. [35] | 7M | sw (food type) vs. nsw | sw: tea (10 mL), tea with a thickener (10 mL), rice cake (10 g) nsw: swallowing nothing | 10 repetitions |
Lee et al. [36] | 8M/9F | sw vs. nsw | Water, barium suspension (Ba), nectar-thick apple juice (Ne), honey-thick apple juice (Ho), spoon-thick apple juice (Sp) | Except for Sp, other drinks involved discrete and continuous tasks. Each task was repeated twice. Water was repeated 3 times |
Makeyev et al. [37] | 12 | sw vs. nsw | Start with 10 min silent 10 min reading aloud Meal of fixed size consumed at an unlimited time (including cheese pizza, yogurt, apple, peanut butter sandwich) 10 min silent 10 min reading aloud | 4 visits |
Sazonov et al. [38] | 20 | sw vs. nsw | 20 min rest A meal 20 min rest | 4 visits |
Sejdic et al. [39] | 408 | sw vs. nsw (head position) | nsw: dry (saliva) swallow sw: drink water in natural & chin-tucked position | 5 swallows for each condition |
Skowronski et al. [40] | 9 | sw vs. nsw (type) | sw: 5 mL liquid nsw: dry swallow, head move, yawn, sniff, tongue move, speech, hum, throat clear, cough | 10 repetitions |
Author (Year) | Event Stamp | Segmentation Methods | Feature Extraction Strategy/Source |
---|---|---|---|
Afkari [30] | Ev | Manual segmentation | Time domain raw signal |
Amft and Troster [31] | Ep | Frame at 250 ms | Feature Similarity Instance |
Bi et al. [32] | Ev | HMM-based on Mel frequency cepstral coefficients | Predetermined time-domain, frequency-domain, and non-linear features |
Fontana et al. [33] | Ep | Frame at 1.0 s & 1.5 s | Time domain raw signal |
Fukuike et al. [34] | Ev | Identifying the semblable wave period by moving average. A period longer than 0.35 s was regarded as a swallowing event | Time domain raw signal |
Kurihara et al. [35] | Ev | Manual prepared template for pattern matching | |
Lee et al. [36] | Ep | Frame at 200 ms with 50% overlap | Signal variance |
Makeyev et al. [37] | Ev & Ep | 1.5 s epoch | Mel-scale Fourier spectrum with PCA |
Sazonov et al. [38] | Ev & Ep | Grid search on epoch duration and step size | Frequency domain raw signal |
Sejdic et al. [39] | Ev | Minimum Description Length-based Sequential Segmentation | Time domain raw signal |
Skowronski et al. [40] | Ep | Manually segmentation at 6 s | Human factor cepstral coefficients and spectral flatness measure |
Author (Year) | Classifier | Precision/PPV | Recall/Sensitivity | Specificity | Accuracy |
---|---|---|---|---|---|
Afkari [30] | TB | - | - | - | dry swallow 94.3% swallow: 92.75% |
Amft and Troster [31] | LR | 10% | 65% | - | - |
AGREE | 20% | 68% | - | - | |
Bi et al. [32] | HMM (Event) | - | - | - | 86.6% |
DT | 86.2% | 87.5% | - | 87.1% | |
Fontana et al. [33] | TB | 50.1% | 86.1% | - | 68.2% |
Fukuike et al. [34] | TB | - | 97.2% | 95.2 | - |
Kurihara et al. [35] | Template matching | - | - | - | 88.8% * |
Lee et al. [36] | ANN | - | 91% | 88.2% | 88.5% |
Makeyev et al. [37] | SVM (Epoch) | - | 44% | 99% | 95.7% |
SVM (Event) | - | 71.3% | 87% | 80.4% | |
Sazonov et al. [38] | SVM (Epoch) | - | - | - | 96.4% |
SVM (Event) | - | - | - | 96.8% | |
Sejdic et al. [39] | 2-class fuzzy c-means | - | - | - | 94.6% |
Skowronski et al. [40] | GMM | - | 89.5% | 98% | 96.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
So, B.P.-H.; Chan, T.T.-C.; Liu, L.; Yip, C.C.-K.; Lim, H.-J.; Lam, W.-K.; Wong, D.W.-C.; Cheung, D.S.K.; Cheung, J.C.-W. Swallow Detection with Acoustics and Accelerometric-Based Wearable Technology: A Scoping Review. Int. J. Environ. Res. Public Health 2023, 20, 170. https://doi.org/10.3390/ijerph20010170
So BP-H, Chan TT-C, Liu L, Yip CC-K, Lim H-J, Lam W-K, Wong DW-C, Cheung DSK, Cheung JC-W. Swallow Detection with Acoustics and Accelerometric-Based Wearable Technology: A Scoping Review. International Journal of Environmental Research and Public Health. 2023; 20(1):170. https://doi.org/10.3390/ijerph20010170
Chicago/Turabian StyleSo, Bryan Pak-Hei, Tim Tin-Chun Chan, Liangchao Liu, Calvin Chi-Kong Yip, Hyo-Jung Lim, Wing-Kai Lam, Duo Wai-Chi Wong, Daphne Sze Ki Cheung, and James Chung-Wai Cheung. 2023. "Swallow Detection with Acoustics and Accelerometric-Based Wearable Technology: A Scoping Review" International Journal of Environmental Research and Public Health 20, no. 1: 170. https://doi.org/10.3390/ijerph20010170
APA StyleSo, B. P. -H., Chan, T. T. -C., Liu, L., Yip, C. C. -K., Lim, H. -J., Lam, W. -K., Wong, D. W. -C., Cheung, D. S. K., & Cheung, J. C. -W. (2023). Swallow Detection with Acoustics and Accelerometric-Based Wearable Technology: A Scoping Review. International Journal of Environmental Research and Public Health, 20(1), 170. https://doi.org/10.3390/ijerph20010170