Risk Reduction Assessment of Vibrio parahaemolyticus on Shrimp by a Chinese Eating Habit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Preparation
2.2. Preparation of Artificial Contaminated Shrimp Samples
2.3. Treatment of Shrimp Samples with Chinese Traditional Vinegar
2.4. Latin Hypercube Sampling
2.5. Risk Reduction Assessment
2.6. Statistical Analyses
3. Results
3.1. Reduction of V. parahaemolyticus on Shrimp by Three Vinegars
3.2. Final Contamination Level of V. parahaemolyticus on Shrimp after Consuming with Vinegars
3.3. Estimated Infection Risk Reductions from the QMRA
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fridman, C.M.; Keppel, K.; Gerlic, M.; Bosis, E.; Salomon, D. A comparative genomics methodology reveals a widespread family of membrane disrupting T6SS effectors. Nat. Commun. 2020, 11, 1085. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhong, Y.; Gu, X.; Yuan, J.; Saeed, A.F.; Wang, S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front. Microbiol. 2015, 6, 144. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhan, L.; Han, H.; Gao, H.; Guo, Z.; Qin, C.; Yang, R.; Liu, X.; Zhou, D. The low-salt stimulon in Vibrio parahaemolyticus. Int. J. Food Microbiol. 2010, 137, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Jahncke, M.L. Acid adapted Vibrio parahaemolyticus and Vibrio vulnificus enhance survival in acidic environments. J. Aquat. Food Prod. Technol. 2006, 15, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Yanagihara, I.; Nakahira, K.; Yamane, T.; Kaieda, S.; Mayanagi, K.; Hamada, D.; Fukui, T.; Ohnishi, K.; Kajiyama, S.; Shimizu, T.; et al. Structure and Functional Characterization of Vibrio parahaemolyticus Thermostable Direct Hemolysin. J. Biol. Chem. 2010, 285, 16267–16274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, J.M.; Rui, H.; Zhou, X.; Iida, T.; Kodoma, T.; Ito, S.; Davis, B.M.; Bronson, R.T.; Waldor, K.M. Inflammation and Disintegration of Intestinal Villi in an Experimental Model for Vibrio parahaemolyticus Induced Diarrhea. PLOS Pathog. 2012, 8, e1002593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, J.B.; DePaola, A.; Bopp, C.A.; Martinek, K.A.; Napolilli, N.P.; Allison, C.G.; Murray, S.L.; Thompson, E.C.; Bird, M.M.; Middaugh, J.P. Outbreak of Vibrio parahaemolyticus Gastroenteritis Associated with Alaskan Oysters. N. Engl. J. Med. 2005, 353, 1463–1470. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-N.; Hou, P.-B.; Chen, Y.-Z.; Ma, Y.; Li, X.-P.; Lv, H.; Wang, M.; Tan, H.-L.; Bi, Z.-W. Prevalence of foodborne pathogens in cooked meat and seafood from 2010 to 2013 in Shandong Province, China. Iran J. Public Health 2016, 45, 1577–1585. [Google Scholar]
- Aiassa, E.; Higgins, J.; Frampton, G.; Greiner, M.; Afonso, A.; Amzal, B.; Deeks, J.; Dorne, J.-L.; Glanville, J.; Lövei, G.L.; et al. Applicability and feasibility of systematic review for performing evidence-based risk assessment in food and feed safety. Crit. Rev. Food Sci Nutr. 2015, 55, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, J.; Gomes, A.R.; Olaru, I. Principles for the risk assessment of genetically modified microorganisms and their food products in the European Union. Int. J. Food Microbiol. 2013, 167, 2–7. [Google Scholar] [CrossRef]
- More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Bennekou, S.H.; Koutsoumanis, K.; Lambré, C.; Machera, K.; et al. Evaluation of existing guidelines for their adequacy for the food and feed risk assessment of microorganisms obtained through synthetic biology. EFSA J. 2022, 20, e07479. [Google Scholar] [PubMed]
- Brusa, V.; Prieto, M.; Campos, C.; Epszteyn, S.; Cuesta, A.; Renaud, V.; Schembri, G.; Vanzini, M.; Michanie, S.; Leotta, G.; et al. Quantitative risk assessment of listeriosis associated with fermented sausage and dry cured pork shoulder consumption in Argentina. Food Control 2021, 123, 107705. [Google Scholar] [CrossRef]
- Rawson, T. A hierarchical Bayesian quantitative microbiological risk assessment model for Salmonella in the sheep meat food chain. Food Microbiol. 2022, 104, 103975. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Iwahori, J.I.; Vuddhakul, V.; Charernjiratragul, W.; Vose, D.; Osaka, K.; Shigematsu, M.; Toyofuku, H.; Yamamoto, S.; Nishibuchi, M. Quantitative modeling for risk assessment of Vibrio parahaemolyticus in bloody clams in southern Thailand. Int. J. Food Microbiol. 2008, 124, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, J.; Yamamoto, A.; Suzuki, H.; Yamamoto, T.; Tsutsui, T.; Motoyama, K.; Sawada, M.; Matsushita, T.; Hasegawa, A.; Osaka, K.; et al. Quantitative risk assessment of Vibrio parahaemolyticus in finfish: A model of raw horse mackerel consumption in Japan. Risk Anal. 2010, 30, 1817–1832. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Z.; Wang, Y.; Zhao, Y.; Lu, Y.; Xu, X.; Yan, J.; Pan, Y. A highly sensitive and flexible magnetic nanoprobe labeled immunochromatographic assay plaform for pathogen Vibrio parahaemolyticus. Int. J. Food Microbiol. 2015, 211, 109–116. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Risk Assessment of Vibrio parahaemolyticus in Seafood: Interpretative Summary and Technical Report; World Health Organization (WHO): Geneva, Switzerland, 2011. [Google Scholar]
- Sobrinho, P.d.S.C.; Destro, M.T.; Franco, B.D.G.M.; Landgraf, M. A quantitative risk assessment model for Vibrio parahaemolyticus in raw oysters in Sao Paulo State, Brazil. Int. J. Food Microbiol. 2014, 180, 69–77. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Boonyawantang, A.; Mahakarnchanakul, W.; Rachtanapun, C.; Boonsupthip, W. Behavior of pathogenic Vibrio parahaemolyticus in prawn in response to temperature in laboratory and factory. Food Control 2012, 26, 479–485. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, Y.; Sun, X.; Xie, J.; Pan, Y.; Malakar, P.K. Predictive model of Vibrio parahaemolyticus O3:K6 growth on cooked Litopenaeus vannamei. Ann. Microbiol. 2015, 65, 487–493. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Z.; Lou, Y.; Xiao, L.; Pan, X.; Zhao, Y. Risk reduction assessment of combined acidic electrolyzed water and high hydrostatic pressure effects on Vibrio parahaemolyticus in shelled shrimp. Food Sci. Technol. 2016, 32, 146–154. [Google Scholar]
- Kim, H.W.; Hong, Y.J.; Jo, J.I.; Ha, S.D.; Kim, S.H.; Lee, H.J.; Rhee, M.S. Raw ready-to-eat seafood safety: Microbiological quality of the various seafood species available in fishery, hyper and online markets. Lett. Appl. Microbiol. 2017, 64, 27–34. [Google Scholar] [CrossRef]
- Bai, J.; Jeon, B.; Ryu, S. Effective inhibition of Salmonella Typhimurium in fresh produce by a phage cocktail targeting multiple host receptors. Food Microbiol. 2019, 77, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Giaouris, E.; Heir, E.; Hébraud, M.; Chorianopoulos, N.; Langsrud, S.; Møretrø, T.; Habimana, O.; Desvaux, M.; Renier, S.; Nychas, G.-J. Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci. 2014, 97, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Ortega, R.H.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef]
- Zhu, Q.; Gooneratne, S.R.; Hussain, M.A. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Cho, T.J.; Kim, N.H.; Kim, S.A.; Song, J.H.; Rhee, M.S. Survival of foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus) in raw ready-to-eat crab marinated in soy sauce. Int. J. Food Microbiol. 2016, 238, 50–55. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, Y.; Beeftink, R.; Ooijkaas, L.; Rinzema, A.; Chen, J.; Tramper, J. Chinese vinegar and its solid-state fermentation process. Food Rev. Int. 2004, 20, 407–424. [Google Scholar] [CrossRef]
- Liu, L.; Hu, H.; Yu, Y.; Zhao, J.; Yuan, L.; Liu, S.; Zhao, S.; Huang, R.; Xie, J.; Shen, M. Characterization and identification of different Chinese fermented vinegars based on their volatile components. J. Food Biochem. 2021, 45, e13670. [Google Scholar] [CrossRef]
- Mahbubeh, S.; Sedighe, A.; Shaghayegh, H.; Bahar, N. Reduces cholesterol induced atherosclerotic lesions in aorta artery in hypercholesterolemic rabbits. J. Med. Plants Res. 2011, 5, 1518–1525. [Google Scholar]
- Malcolm, T.T.H.; Cheah, Y.K.; Radzi, C.W.J.W.M.; Kantilal, H.K.; Martinez-Urtaza, J.; Nishibuchi, M.; Son, R. Microbial risk assessment of Vibrio parahaemolyticus in bloody clams in Malaysia: A preliminary model from retail to consumption. Microbe Risk Anal. 2016, 4, 43–51. [Google Scholar] [CrossRef]
- Collineau, L.; Chapman, B.; Bao, X.; Sivapathasundaram, B.; Carson, C.A.; Fazil, A.; Reid-Smith, R.J.; Smith, B. A farm-to-fork quantitative risk assessment model for Salmonella Heidelberg resistant to third-generation cephalosporins in broiler chickens in Canada. Int. J. Food Microbiol. 2020, 330, 108559. [Google Scholar] [CrossRef] [PubMed]
- Gurman, P.M.; Ross, T.; Kiermeier, A. Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home. Risk Anal. 2018, 38, 2625–2645. [Google Scholar] [CrossRef] [PubMed]
- Rhee, M.S.; Lee, S.Y.; Dougherty, R.H.; Kang, D.H. Antimicrobial effects of mustard flour and acetic acid against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 2003, 69, 2959–2963. [Google Scholar] [CrossRef]
Condiment | Total Acid Content (g/100 mL) | pH | Active Compounds |
---|---|---|---|
White vinegar | >6.00 | 2.59 ± 0.01 | Polyphenols, organic acid |
Aromatic vinegar | ~5.75 | 3.82 ± 0.17 | Polyphenols, organic acid |
Mature vinegar | >6.00 | 3.48 ± 0.19 | Polyphenols, organic acid |
Variables | Definition | Unit | Assumption/Formula/Distribution | Source |
---|---|---|---|---|
C0 | The contamination level of Vp on shrimp | log CFU/g | Uniform(0, 9) | Assumption |
R1 | Vp reduction on shrimp by consuming with white vinegar | log CFU/g | Logistic(0.99525, 0.25934) | Fitted by @Risk |
R2 | Vp reduction on shrimp by consuming with aromatic vinegar | log CFU/g | Logistic(0.70173, 0.12168) | Fitted by @Risk |
R3 | Vp reduction on shrimp by consuming with mature vinegar | log CFU/g | Logistic(0.65378, 0.10464) | Fitted by @Risk |
C1 | Final contamination level of Vp on shrimp by consuming with white vinegar | log CFU/g | C0–R1 | Calculated |
C2 | Final contamination level of Vp on shrimp by consuming with aromatic vinegar | log CFU/g | C0–R2 | Calculated |
C3 | Final contamination level of Vp on shrimp by consuming with mature vinegar | log CFU/g | C0–R3 | Calculated |
S | Consumption of shrimp per meal | g | Normal (10.85, 43.74) | Shanghai FDA |
P | Infection risk of Vp on shrimp | 1 − [1 + (10C0 × S)/(27 × 1.31 × 106)]−0.6 | Calculated | |
P1 | Infection risk of Vp on shrimp by consuming with white vinegar | 1 − [1 + (10C1 × S)/(27 × 1.31 × 106)]−0.6 | Calculated | |
P2 | Infection risk of Vp on shrimp by consuming with aromatic vinegar | 1 − [1 + (10C2 × S)/(27 × 1.31 × 106)]−0.6 | Calculated | |
P3 | Infection risk of Vp on shrimp by consuming with mature vinegar | 1 − [1 + (10C3 × S)/(27 × 1.31 × 106)]−0.6 | Calculated |
Treatment Time | Chinese Traditional Vinegar (log CFU/g) | ||
---|---|---|---|
White Vinegar | Aromatic Vinegar | Mature Vinegar | |
5 s | 0.27 ± 0.05 a | 0.20 ± 0.22 ab | 0.25 ± 0.15 a |
10 s | 0.74 ± 0.27 b | 0.56 ± 0.40 ab | 0.55 ± 0.23 ab |
15 s | 0.94 ± 0.23 b | 0.69 ± 0.02 a | 0.58 ± 0.18 b |
30 s | 0.97 ± 0.10 b | 0.71 ± 0.16 ab | 0.65 ± 0.11 ab |
60 s | 1.04 ± 0.09 b | 0.77 ± 0.04 ab | 0.75 ± 0.33 b |
90 s | 1.25 ± 0.44 b | 0.81 ± 0.21 ab | 0.81 ± 0.10 ab |
120 s | 1.97 ± 0.03 b | 0.98 ± 0.29 b | 0.84 ± 0.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Liu, J.; Yuan, M.; Tian, C.; Lin, T.; Liu, J.; Osaris Caridad, O.C.; Pan, Y.; Zhao, Y.; Zhang, Z. Risk Reduction Assessment of Vibrio parahaemolyticus on Shrimp by a Chinese Eating Habit. Int. J. Environ. Res. Public Health 2023, 20, 317. https://doi.org/10.3390/ijerph20010317
Xu H, Liu J, Yuan M, Tian C, Lin T, Liu J, Osaris Caridad OC, Pan Y, Zhao Y, Zhang Z. Risk Reduction Assessment of Vibrio parahaemolyticus on Shrimp by a Chinese Eating Habit. International Journal of Environmental Research and Public Health. 2023; 20(1):317. https://doi.org/10.3390/ijerph20010317
Chicago/Turabian StyleXu, Huan, Jing Liu, Mengqi Yuan, Cuifang Tian, Ting Lin, Jiawen Liu, Olivera Castro Osaris Caridad, Yingjie Pan, Yong Zhao, and Zhaohuan Zhang. 2023. "Risk Reduction Assessment of Vibrio parahaemolyticus on Shrimp by a Chinese Eating Habit" International Journal of Environmental Research and Public Health 20, no. 1: 317. https://doi.org/10.3390/ijerph20010317
APA StyleXu, H., Liu, J., Yuan, M., Tian, C., Lin, T., Liu, J., Osaris Caridad, O. C., Pan, Y., Zhao, Y., & Zhang, Z. (2023). Risk Reduction Assessment of Vibrio parahaemolyticus on Shrimp by a Chinese Eating Habit. International Journal of Environmental Research and Public Health, 20(1), 317. https://doi.org/10.3390/ijerph20010317