Oxidative Stress of Cadmium and Lead at Environmentally Relevant Concentrations on Hepatopancreas of Macrobrachium nipponensis and Their Mixture Interactivity: Implications for Water Quality Criteria Amendment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Solution Preparation
2.2. Testing Organisms
2.3. Experimental Design
2.4. Sampling and Biomarker Analysis
2.5. Statistical Analysis
3. Results
3.1. Mortality
3.2. The Responses of Antioxidant Biomarkers to the Tested Conditions
3.3. The Responses of Specific Biomarkers to the Tested Conditions
3.4. Chronic Biotoxicity Assessment of Metals Tested and Their Interaction Patterns Analysis
4. Discussion
4.1. Effects of Cd and Pb at Environmentally Relevant Concentrations on Biomarkers Associated with Oxidative Stress in the Hepatopancreas of M. nipponense
4.2. Combined Toxicity of Cd-Pb and Its Interaction Mechanisms
4.3. Implications for Water Quality Criteria Amendment and Environmental Remediation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhai, X.; Xia, J.; Zhang, Y. Integrated approach of hydrological and water quality dynamic simulation for anthropogenic disturbance assessment in the Huai River Basin. China. Sci. Total Environ. 2017, 598, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Ma, Z.; Jan, V.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Kakada, A.; Salama, E.S.; Pengya, F.; Liu, P.; Li, X.K. Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio. Environ. Pollut. 2020, 266, 115293. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Liao, W.; Yan, Z.F.; Bai, Y.C. Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. J. Chem. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Zhao, C.S.; Liu, C.M.; Xia, J.; Zhang, Y.Y.; Yu, Q.; Eamus, D. Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China. J. Hydrol. 2012, 420, 292–300. [Google Scholar] [CrossRef]
- Tao, J.; Sun, X.H.; Cao, Y.; Ling, M.H. Evaluation of water quality and its driving forces in the Shaying River Basin with the grey relational analysis based on combination weighting. Environ. Sci. Pollut. Res. 2022, 29, 18103–18115. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Shi, W.Q.; Wang, M.; Chen, K.; Wang, L. Priority pollutants in water and sediments of a river for control basing on benthic macroinvertebrate community structure. Water 2019, 11, 1267. [Google Scholar] [CrossRef] [Green Version]
- Miszczak, E.; Stefaniak, S.; Michczynski, A.; Steinnes, E.; Twardowska, I. A novel approach to peatlands as archives of total cumulative spatial pollution loads from atmospheric deposition of airborne elements complementary to EMEP data: Priority pollutants (Pb, Cd, Hg). Sci. Total Environ. 2020, 705, 135776. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yang, X.; Sun, L.; Han, X.; Xu, L.; Gu, W.; Zhang, M. Effects of cadmium on oxidative stress and cell apoptosis in Drosophila melanogaster larvae. Sci. Rep. 2022, 12, 4762. [Google Scholar] [CrossRef]
- Tolonen, K.T.; Karjalainen, J.; Hamalainen, H.; Nyholm, K.; Rahkola-Sorsa, M.; Cai, Y.J.; Heino, J. Do the ecological drivers of lake littoral communities match and lead to congruence between organism groups? Aquat. Ecol. 2020, 54, 839–854. [Google Scholar] [CrossRef]
- Kolahi, M.; Kazemi, E.M.; Yazdi, M.; Goldson-Barnaby, A. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiol. Biochem. 2020, 146, 71–89. [Google Scholar] [CrossRef] [PubMed]
- Pontoni, L.; La Vecchia, C.; Boguta, P.; Sirakov, M.; D’Aniello, E.; Fabbricino, M.; Locascio, A. Natural organic matter controls metal speciation and toxicity for marine organisms: A review. Environ. Chem. Lett. 2021, 20, 797–812. [Google Scholar] [CrossRef]
- Carlson, P.E.; Johnson, R.K.; Mckie, B.G. Optimizing stream bioassessment: Habitat, season, and the impacts of land use on benthic macroinvertebrates. Hydrobiologia 2013, 704, 363–373. [Google Scholar] [CrossRef]
- Ji, L.; Jiang, X.M.; Liu, C.X.; Xu, Z.Y.; Wang, J.H.; Qian, S.; Zhou, H. Response of traditional and taxonomic distinctness diversity indices of benthic macroinvertebrates to environmental degradation gradient in a large Chinese shallow lake. Environ. Sci. Pollut. Res. 2020, 27, 21804–21815. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, S.Q.; Lei, W.; Zhu, X.M.; Yang, Y.X. Effect of replacement of fish meal by meat and bone meal and poultry by-product meal in diets on the growth and immune response of Macrobrachium nipponense. Fish Shellfish Immunol. 2004, 17, 105–114. [Google Scholar] [CrossRef]
- Dedeke, G.A.; Iwuchukwu, P.O.; Aladesida, A.A.; Afolabi, T.A.; Ayanda, I.O. Impact of heavy metal bioaccumulation on antioxidant activities and DNA profile in two earthworm species and freshwater prawn from Ogun River. Sci. Total Environ. 2018, 624, 576–585. [Google Scholar] [CrossRef]
- Tavabe, K.R.; Abkenar, B.P.; Rafiee, G.; Frinsko, M. Effects of chronic lead and cadmium exposure on the oriental river prawn (Macrobrachium nipponense) in laboratory conditions. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 221, 21–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.Y.; Kholodkevich, S.; Sharov, A.; Feng, Y.J.; Ren, N.Q.; Sun, K. Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii). Sci. Total Environ. 2019, 666, 944–955. [Google Scholar] [CrossRef]
- Sobus, J.R.; Tan, Y.M.; Pleil, J.D.; Sheldon, L.S. A biomonitoring framework to support exposure and risk assessments. Sci. Total Environ. 2011, 409, 4875–4884. [Google Scholar] [CrossRef]
- Bertrand, L.; Monferrán, M.V.; Mouneyrac, C.; Bonansea, R.I.; Asis, R.; Ame, M.V. Sensitive biomarker responses of the shrimp Palaemonetes argentinus exposed to chlorpyrifos at environmental concentrations: Roles of alpha-tocopherol and metallothioneins. Aquat. Toxicol. 2016, 179, 72–81. [Google Scholar] [CrossRef]
- Beliaeff, B.; Burgeot, T. Integrated biomarker response: A useful tool for ecological risk assessment. Environ. Toxicol. Chem. 2002, 21, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, W.; Burgeot, T.; Porcher, J.M. A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ. Sci. Pollut. Res. 2013, 20, 2721–2725. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; You, G.X.; Xu, Y.; Wang, C.; Wang, P.F.; Miao, L.Z.; Dai, S.S.; Lv, B.W.; Yang, Y.Y. Antioxidant enzyme activities as biomarkers of fluvial biofilm to ZnO NPs ecotoxicity and the Integrated Biomarker Responses (IBR) assessment. Ecotoxicol. Environ. Saf. 2016, 133, 10–17. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, P.J.; Zhang, J.; Zhang, J.; Zhou, Y.F.; Peng, Y.W.; Zhang, S.F.; Cai, C.T.; Gao, G.Q. Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: A case study along the Le’an river. Chemosphere 2018, 199, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.P.; Chen, H.C.; Huang, D.J. Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium and zinc in the white shrimp, Litopenaeus vannamei. Chemosphere 2008, 73, 1019–1026. [Google Scholar] [CrossRef]
- Jena, K.B.; Verlecar, X.N.; Chainy, G.B.N. Application of oxidative stress indices in natural populations of Perna viridis as biomarker of environmental pollution. Mar. Pollut. Bull. 2009, 58, 107–113. [Google Scholar] [CrossRef]
- Patra, R.C.; Rautray, A.K.; Swarup, D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet. Med. Int. 2011, 2011, 457327. [Google Scholar] [CrossRef] [Green Version]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef]
- Damásio, J.; Fernández-Sanjuan, M.; Sánchez-Avila, J.; Lacorte, S.; Prat, N.; Rieradevall, M.; Soares, A.M.V.M.; Barata, C. Multi-biochemical responses of benthic macroinvertebrate species as a complementary tool to diagnose the cause of community impairment in polluted rivers. Water Res. 2011, 45, 3599–3613. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, H.; Liu, B.; Zhang, L. Transcriptional response of lysozyme, metallothionein, and superoxide dismutase to combined exposure to heavy metals and bacteria in Mactra veneriformis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2013, 157, 54–62. [Google Scholar] [CrossRef]
- Basha, P.S.; Rani, A.U. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol. Environ. Saf. 2003, 56, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.J.; Feng, M.B.; Wang, X.H.; Qin, L.; Wang, C.; Wang, Z.Y.; Wang, L.S. Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus following in vivo exposure to waterborne zinc under different pH values. Aquat. Toxicol. 2014, 150, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Tseng, L.C.; Chou, C.; Wang, L.; Souissi, S.; Hwang, J.S. Effects of cadmium exposure on antioxidant enzymes and histological changes in the mud shrimp Austinogebia edulis (Crustacea: Decapoda). Environ. Sci. Pollut. Res. 2019, 26, 7752–7762. [Google Scholar] [CrossRef]
- Yologlu, E.; Ozmen, M. Low concentrations of metal mixture exposures have adverse effects on selected biomarkers of Xenopus laevis tadpoles. Aquat. Toxicol. 2015, 168, 19–27. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Mieiro, C.L.; Bervoets, L.; Joosen, S.; Blust, R.; Duarte, A.C.; Pereira, M.E.; Pacheco, M. Metallothioneins failed to reflect mercury external levels of exposure and bioaccumulation in marine fish—Considerations on tissue and species specific responses. Chemosphere 2011, 85, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.D.; Livingstone, D.R.; Costa, M.H.; David, R. Effects of water-bone copper on metallothionein and lipid peroxidation in the marine amphipod (Gammarus locusta). Mar. Environ. Res. 2002, 54, 357–360. [Google Scholar] [CrossRef]
- Silvestre, F.; Duchêne, C.; Trausch, G.; Devos, P. Tissue-specific cadmium accumulation and metallothionein-like protein levels during acclimation process in the Chinese crab Eriocheir sinensis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2005, 140, 39–45. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Sun, G.; Yang, M.L.; Wu, H.H.; Zhang, J.Z.; Song, S.J.; Ma, N.B.; Guo, Y.P. Chronic accumulation of cadmium and its effects on antioxidant enzymes and malondialdehyde in Oxya chinensis (Orthoptera: Acridoidea). Ecotoxicol. Environ. Saf. 2011, 74, 1355–1362. [Google Scholar] [CrossRef]
- Xie, Z.X.; Lu, G.H.; Hou, K.K.; Qin, D.H.; Yan, Z.H.; Chen, W. Bioconcentration, metabolism and effects of diphenhydramine on behavioral and biochemical markers in crucian carp (Carassius auratus). Sci. Total Environ. 2016, 544, 400–409. [Google Scholar] [CrossRef]
- Taylor, A.M.; Maher, W.A. Exposure-dose-response of Anadara trapezia to metal contaminated estuarine sediments. 2. Lead spiked sediments. Aquat. Toxicol. 2012, 116–117, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Jo, P.G.; Choi, C.Y. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2008, 147, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Liñán, L.; Bellas, J.; Salgueiro-González, N.; Muniategui, S.; Beiras, R. Bioaccumulation of 4-nonylphenol and effects on biomarkers, acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase, in Mytilus galloprovincialis, mussel gilla. Environ. Pollut. 2015, 200, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Helman, R.J.; Ferreyroa, G.V.; Afonso, M.D.S.; Salibian, A. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus. Ecotoxicol. Environ. Saf. 2015, 111, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Q.; Qu, R.J.; Yan, L.Q.; Wang, L.S.; Wang, Z.Y. Evaluation of single and joint toxicity of perfluorooctane sulfonate and zinc to Limnodrilus hoffmeisteri: Acute toxicity, bioaccumulation and oxidative stress. J. Hazard. Mater. 2016, 301, 342–349. [Google Scholar] [CrossRef]
- Vlahogianni, T.; Dassenakis, M.; Scoullos, M.J.; Valavanidis, A. Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar. Pollut. Bull. 2007, 54, 1361–1371. [Google Scholar] [CrossRef]
- Xin, J.L.; Huang, B.F.; Yang, Z.Y.; Yuan, J.G.; Dai, H.W.; Qiu, Q. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. J. Hazard. Mater. 2010, 175, 468–476. [Google Scholar] [CrossRef]
Treatment Groups | 7 d | 14 d | 21 d | 28 d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F-Value | p-Value | Partial Eta2 | F-Value | p-Value | Partial Eta2 | F-Value | p-Value | Partial Eta2 | F-Value | p-Value | Partial Eta2 | |
Cd (L) | 6177.960 | <0.001 * | 0.999 | 5895.841 | <0.001 * | 0.999 | 5680.666 | <0.001 * | 0.999 | 30,891.527 | <0.001 * | 1.000 |
Pb (L) | 52,084.368 | <0.001 * | 1.000 | 89.707 | <0.001 * | 0.918 | 14710.502 | <0.001 * | 0.999 | 20.047 | 0.002 * | 0.715 |
Cd + Pb (L) | 24,192.692 | <0.001 * | 1.000 | 6397.262 | <0.001 * | 0.999 | 598.547 | <0.001 * | 0.987 | 13,968.046 | <0.001 * | 0.999 |
Cd (H) | 11,635.937 | <0.001 * | 0.999 | 47,427.871 | <0.001 * | 0.782 | 24,546.321 | <0.001 * | 1.000 | 27,286.311 | <0.001 * | 1.000 |
Pb (H) | 93,201.984 | <0.001 * | 1.000 | 20,159.702 | <0.001 * | 0.953 | 36,270.306 | <0.001 * | 1.000 | 98.499 | <0.001 * | 0.925 |
Cd + Pb (H) | 12,866.365 | <0.001 * | 0.999 | 25.317 | 0.001 * | 0.871 | 881.853 | <0.001 * | 0.991 | 41256.759 | <0.001 * | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Deng, Q.; Yang, H.; Wang, J.; Wang, M. Oxidative Stress of Cadmium and Lead at Environmentally Relevant Concentrations on Hepatopancreas of Macrobrachium nipponensis and Their Mixture Interactivity: Implications for Water Quality Criteria Amendment. Int. J. Environ. Res. Public Health 2023, 20, 360. https://doi.org/10.3390/ijerph20010360
Liu X, Deng Q, Yang H, Wang J, Wang M. Oxidative Stress of Cadmium and Lead at Environmentally Relevant Concentrations on Hepatopancreas of Macrobrachium nipponensis and Their Mixture Interactivity: Implications for Water Quality Criteria Amendment. International Journal of Environmental Research and Public Health. 2023; 20(1):360. https://doi.org/10.3390/ijerph20010360
Chicago/Turabian StyleLiu, Xiang, Qianzhen Deng, Hao Yang, Jingyao Wang, and Min Wang. 2023. "Oxidative Stress of Cadmium and Lead at Environmentally Relevant Concentrations on Hepatopancreas of Macrobrachium nipponensis and Their Mixture Interactivity: Implications for Water Quality Criteria Amendment" International Journal of Environmental Research and Public Health 20, no. 1: 360. https://doi.org/10.3390/ijerph20010360
APA StyleLiu, X., Deng, Q., Yang, H., Wang, J., & Wang, M. (2023). Oxidative Stress of Cadmium and Lead at Environmentally Relevant Concentrations on Hepatopancreas of Macrobrachium nipponensis and Their Mixture Interactivity: Implications for Water Quality Criteria Amendment. International Journal of Environmental Research and Public Health, 20(1), 360. https://doi.org/10.3390/ijerph20010360