Investigation of Spatial Coupling Coordination Development: Identifying Land System States from the Adaptation–Conflict Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources and Processing
2.3. Assessment Methods
2.3.1. Quantitative Assessments of ES Supply, Demand, and Balance
2.3.2. Assessment of Land Use Conflict
- (1)
- Complexity index (CI)
- (2)
- Fragility index (FI)
- (3)
- Instability index (ISI)
2.4. Evaluation of the Coupling Coordination Degree of ES Balance and Land Use Conflict
3. Results and Analysis
3.1. Spatio-Temporal Evolutions of the Supply, Demand, and Balance of ES from 1990 to 2020
3.2. Spatio-Temporal Patterns of Land Use Conflicts from 1990 to 2020
3.3. Coupling Coordination Characteristics between ES Balance and Land Use Conflict
4. Discussion
4.1. How Do ES Balance and Land Use Conflict Track Land System States?
4.2. The Reality and Potential of Coupling Coordination Development for Reconciling Urban Development Issues
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 24 May 2022).
- Hu, M.; Wang, Y.; Xia, B.; Jiao, M.; Huang, G. How to balance ecosystem services and economic benefits?—A case study in the Pearl River Delta, China. J. Environ. Manag. 2020, 271, 110917. [Google Scholar] [CrossRef] [PubMed]
- Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Ma, L.; Wang, L. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecol. Indic. 2019, 107, 105550. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial aspect of ecosystem services balance and its determinants. Land Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, J.; Mao, D.; Wang, Z.; Qiu, Z.; Yan, H. Identifying spatial similarities and mismatches between supply and demand of ecosystem services for sustainable Northeast China. Ecol. Indic. 2022, 134, 108501. [Google Scholar] [CrossRef]
- Jiang, M.; Jiang, C.; Huang, W.; Chen, W.; Gong, Q.; Yang, J.; Zhao, Y.; Zhuang, C.; Wang, J.; Yang, Z. Quantifying the supply-demand balance of ecosystem services and identifying its spatial determinants: A case study of ecosystem restoration hotspot in Southwest China. Ecol. Eng. 2022, 174, 106472. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, T.; Lin, Y.; Kong, X.; He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci Total Environ. 2019, 657, 781–791. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, D.; Zhao, C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 2021, 75, 103341. [Google Scholar] [CrossRef]
- Li, W.; Chen, W.; Bian, J.; Xian, J.; Zhan, L. Impact of Urbanization on Ecosystem Services Balance in the Han River Ecological Economic Belt, China: A Multi-Scale Perspective. Int. J. Environ. Res. Public Health 2022, 19, 14304. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, C.; Wang, Y.; Zhao, Y.; Gong, Q.; Wang, J.; Yang, Z. Linking land degradation and restoration to ecosystem services balance by identifying landscape drivers: Insights from the globally largest loess deposit area. Environ. Sci. Pollut. Res. Int. 2022, 29, 83347–83364. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An analysis of land use conflict potentials based on ecological-production-living function in the southeast coastal area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Delgado-Matas, C.; Mola-Yudego, B.; Gritten, D.; Kiala-Kalusinga, D.; Pukkala, T. Land use evolution and management under recurrent conflict conditions: Umbundu agroforestry system in the Angolan Highlands. Land Use Policy 2015, 42, 460–470. [Google Scholar] [CrossRef]
- Brown, G.; Raymond, C.M. Methods for identifying land use conflict potential using participatory mapping. Landsc. Urban Plan. 2014, 122, 196–208. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y.; Wang, Y. Land use conflict identification and sustainable development scenario simulation on China’s southeast coast. J. Clean. Prod. 2019, 238, 117899. [Google Scholar] [CrossRef]
- Kangas, K.; Brown, G.; Kivinen, M.; Tolvanen, A.; Tuulentie, S.; Karhu, J.; Markovaara-Koivisto, M.; Eilu, P.; Tarvainen, O.; Simila, J.; et al. Land use synergies and conflicts identification in the framework of compatibility analyses and spatial assessment of ecological, socio-cultural and economic values. J. Environ. Manag. 2022, 316, 115174. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhou, Y.; Wang, L.; Li, Q.; Liu, J. Impacts of future land use changes on land use conflicts based on multiple scenarios in the central mountain region, China. Ecol. Indic. 2022, 137, 108743. [Google Scholar] [CrossRef]
- Jing, W.; Yu, K.; Wu, L.; Luo, P. Potential Land Use Conflict Identification Based on Improved Multi-Objective Suitability Evaluation. Remote Sens. 2021, 13, 2416. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Li, M.; Fu, Y.; Hui, Y. Spatial conflict simulation of land-use based on human-land-landscape elements intercoordination: A case study in Tianjin, China. Environ. Monit. Assess. 2022, 194, 31. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Wang, W. A diagrammatic method for the identification and resolution of urban spatial conflicts. J. Environ. Manag. 2022, 316, 115297. [Google Scholar] [CrossRef]
- Bao, W.; Yang, Y.; Zou, L. How to reconcile land use conflicts in mega urban agglomeration? A scenario-based study in the Beijing-Tianjin-Hebei region, China. J. Environ. Manag. 2021, 296, 113168. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Meng, J.; Zhu, L.; Cheng, H. Spatial-temporal pattern of land use conflict in China and its multilevel driving mechanisms. Sci. Total Environ. 2021, 801, 149697. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Huang, C.; Fang, L.; Wang, S.; Wang, L. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 2020, 115, 106394. [Google Scholar] [CrossRef]
- Cowie, A.L.; Waters, C.M.; Garland, F.; Orgill, S.E.; Baumberd, A.; Cross, R.; O’Connell, D.; Metternicht, G. Assessing resilience to underpin implementation of Land Degradation Neutrality: A case study in the rangelands of western New South Wales, Australia. Environ. Sci. Policy 2019, 100, 37–46. [Google Scholar] [CrossRef]
- Dardonville, M.; Bockstaller, C.; Therond, O. Review of quantitative evaluations of the resilience, vulnerability, robustness and adaptive capacity of temperate agricultural systems. J. Clean. Prod. 2021, 286, 125456. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Dong, Y.; An, Y.; Shi, F.; Dong, S.; Liu, G. Spatio-temporal evolution scenarios and the coupling analysis of ecosystem services with land use change in China. Sci. Total Environ. 2019, 681, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Yang, Z.; Wen, M.; Huang, L.; Liu, H.; Wang, J.; Chen, W.; Zhuang, C. Identifying the spatial disparities and determinants of ecosystem service balance and their implications on land use optimization. Sci. Total Environ. 2021, 793, 148472. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, W.; Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Li, H.; Wang, J.; Zhu, Y.; Yang, Y. Quantifying the spatial arrangement of underutilized land in a rapidly urbanized rust belt city: The case of Changchun City. Land Use Policy 2019, 83, 113–123. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Muller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, G.; Chen, Y.; Qu, Y.; Zhou, T.; Li, W. How feasible is regional integration for reconciling land use conflicts across the urban–Rural interface? Evidence from Beijing–Tianjin–Hebei metropolitan region in China. Land Use Policy 2020, 92, 104433. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Zhou, Z.; You, N.; Meng, J. Dynamic Ecological Risk Assessment and Management of Land Use in the Middle Reaches of the Heihe River Based on Landscape Patterns and Spatial Statistics. Sustainability 2016, 8, 536. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The global status and trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Y. Allocating and mapping ecosystem service demands with spatial flow from built-up areas to natural spaces. Sci. Total Environ. 2021, 798, 149330. [Google Scholar] [CrossRef]
- Cao, S.; Liu, Z.; Li, W.; Xian, J. Balancing ecological conservation with socioeconomic development. Ambio 2021, 50, 1117–1122. [Google Scholar] [CrossRef]
- Spyra, M.; La Rosa, D.; Zasada, I.; Sylla, M.; Shkaruba, A. Governance of ecosystem services trade-offs in peri-urban landscapes. Land Use Policy 2020, 95, 104617. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J.; Xiang, W. Ecosystem service of green infrastructure for adaptation to urban growth: Function and configuration. Ecosyst. Health Sustain. 2018, 4, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, L. Exploring the relation between the industrial structure and the eco-environment based on an integrated approach: A case study of Beijing, China. Ecol. Indic. 2019, 103, 83–93. [Google Scholar] [CrossRef]
- Cheng, X.; Long, R.; Chen, H.; Li, Q. Coupling coordination degree and spatial dynamic evolution of a regional green competitiveness system–A case study from China. Ecol. Indic. 2019, 104, 489–500. [Google Scholar] [CrossRef]
Coupling Coordination Degree | First Grade | Relative Magnitudes of U1 and U2 | Second Grade |
---|---|---|---|
0.7 < D ≤ 1.0 | Superior balanced development | U1 − U2 > 0.1 | Superiorly balanced development with ES balance lagging |
U2 − U1 > 0.1 | Superiorly balanced development with land use conflict lagging | ||
0 ≤ |U2 − U1| ≤ 0.1 | Superiorly balanced development with ES balance and land use conflict | ||
0.5 < D ≤ 0.7 | Barely balanced development | U1 − U2 > 0.1 | Barely balanced development with ES balance lagging |
U2 − U1 > 0.1 | Barely balanced development with land use conflict lagging | ||
0 ≤ |U2 − U1| ≤ 0.1 | Barely balanced development with ES balance and land use conflict | ||
0.3 < D ≤ 0.5 | Slightly unbalanced development | U1 − U2 > 0.1 | Slightly unbalanced development with ES balance lagging |
U2 − U1 > 0.1 | Slightly unbalanced development with land use conflict lagging | ||
0 ≤ |U2 − U1| ≤ 0.1 | Slightly unbalanced development with ES balance and land use conflict | ||
0 < D ≤ 0.3 | Seriously unbalanced development | U1 − U2 > 0.1 | Seriously unbalanced development with ES balance lagging |
U2 − U1 > 0.1 | Seriously unbalanced development with land use conflict lagging | ||
0 ≤ |U2 − U1| ≤ 0.1 | Seriously unbalanced development with ES balance and land use conflict |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, D.; Gao, W.; Lu, J.; Jin, X. Investigation of Spatial Coupling Coordination Development: Identifying Land System States from the Adaptation–Conflict Perspective. Int. J. Environ. Res. Public Health 2023, 20, 373. https://doi.org/10.3390/ijerph20010373
Wang X, Wang D, Gao W, Lu J, Jin X. Investigation of Spatial Coupling Coordination Development: Identifying Land System States from the Adaptation–Conflict Perspective. International Journal of Environmental Research and Public Health. 2023; 20(1):373. https://doi.org/10.3390/ijerph20010373
Chicago/Turabian StyleWang, Xingjia, Dongyan Wang, Wanying Gao, Jiaxi Lu, and Xiaotong Jin. 2023. "Investigation of Spatial Coupling Coordination Development: Identifying Land System States from the Adaptation–Conflict Perspective" International Journal of Environmental Research and Public Health 20, no. 1: 373. https://doi.org/10.3390/ijerph20010373
APA StyleWang, X., Wang, D., Gao, W., Lu, J., & Jin, X. (2023). Investigation of Spatial Coupling Coordination Development: Identifying Land System States from the Adaptation–Conflict Perspective. International Journal of Environmental Research and Public Health, 20(1), 373. https://doi.org/10.3390/ijerph20010373